
CS3383 Unit 2: Greedy

David Bremner

January 28, 2024



Outline

Greedy
Properties of (optimal) Huffman trees
Huffman algorithm



Lecture background

▶ CLRS4 §15.3
▶ https:

//jeffe.cs.illinois.edu/teaching/
algorithms/book/04-greedy.pdf

▶ Huffman Coding is covered in §4.4
▶ DPV 5.2

From Data
Structures

▶ heaps
▶ priority queues

https://jeffe.cs.illinois.edu/teaching/algorithms/book/04-greedy.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/book/04-greedy.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/book/04-greedy.pdf


Lecture background

▶ CLRS4 §15.3
▶ https:

//jeffe.cs.illinois.edu/teaching/
algorithms/book/04-greedy.pdf

▶ Huffman Coding is covered in §4.4
▶ DPV 5.2

From Data
Structures

▶ heaps
▶ priority queues

https://jeffe.cs.illinois.edu/teaching/algorithms/book/04-greedy.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/book/04-greedy.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/book/04-greedy.pdf


Prefix codes

Symbol Freq Codeword
A 70 0
B 3 001
C 20 01
D 37 11

▶ avoiding ambiguous bitstreams: what is 001?



Prefix codes

Symbol Freq Codeword
A 70 0
B 3 100
C 20 101
D 37 11



Huffman coding

Symbol Codeword
A 0
B 100
C 101
D 11

0

A [70]

1

[60]

C [20]B [3]

D [37]

[23]

(Avg cost) cost(𝑇 ) =
𝑛

∑
𝑖=1

𝑓𝑖depth𝑖



Huffman trees are full

Lemma (Full Trees)
In an optimal Huffman tree every node has zero or two children.

Proof.
If not, consider a node with one child. The
corresponding bit in the code can be deleted
without changing the property of being a prefix
code.



Lightest leaves are deepest

f 1 f 2

f 3f 5 f 4

f 1 + f 2



The two lightest leaves are deepest

Lemma (Lightest siblings)
There exists an optimal tree where the lightest
leaves are siblings on the deepest level.

fjfi



The two lightest leaves are deepest

Lemma (Lightest siblings)
There exists an optimal tree where the lightest
leaves are siblings on the deepest level.

setup for contradiction
Let 𝑇 be an optimal Huffman tree with
cost(𝑇 ) = ∑𝑘 𝑓𝑘𝑑𝑘. Let 𝑓𝑖 be a leaf on the
deepest level. Suppose some other leaf 𝑓𝑗 exists
with 𝑓𝑗 < 𝑓𝑖 and 𝑑𝑗 < 𝑑𝑖.

fj
fi



The two lightest leaves are deepest
Lemma (Lightest siblings)
There exists an optimal tree where the lightest
leaves are siblings on the deepest level.

Let 𝑇 ′ be the tree with 𝑓𝑖 and 𝑓𝑗 swapped. The
cost of 𝑇 ′ is

cost(𝑇 ′) = (∑
𝑘

𝑓𝑘𝑑𝑘) − 𝑓𝑗𝑑𝑗 − 𝑓𝑖𝑑𝑖 + 𝑓𝑗𝑑𝑖 + 𝑓𝑖𝑑𝑗

= cost(𝑇 ) − [(𝑑𝑗 − 𝑑𝑖) × (𝑓𝑗 − 𝑓𝑖)]
(residual)

fj
fi



The two lightest leaves are deepest

Lemma (Lightest siblings)
There exists an optimal tree where the lightest
leaves are siblings on the deepest level.

Once we have all lightest leaves on the bottom
level, we can swap them at will without changing
the cost of the tree.

fjfi



Huffman demo

def huffman(f):
tree=[]; H=[]; n = len(f)
for i in range(0,n):

heappush(H,(f[i],i))
tree.append((f[i],None ,None))

for k in range(n,2*n-1):
(f1,index1) = heappop(H)
(f2,index2) = heappop(H)
f3 = f1 + f2
heappush(H,(f3,k))
tree.append((f3,index1 ,index2))

return tree

214
84

37
47

23
3

20
24

130
60
70



Huffman example

Symbol Freq Codeword
A 70 0
B 3 100
C 20 101
D 37 11

▶ first loop gives us
H=[(3,0),(20,1),(37,2),(70,3)]
T=[(3,None ,None),(20,None ,None),

(37,None ,None),(70,None ,None)]



Correctness of Huffman algorithm

Theorem (Greedy Huffman Algorithm)
huffman produces an optimal binary prefix code.

f1 f2

fn+1



Correctness of Huffman algorithm

Theorem (Greedy Huffman Algorithm)
huffman produces an optimal binary prefix code.

base case
If we have 1 or 2 symbols, any one bit code is
optimal.

f1 f2

fn+1



Correctness of Huffman algorithm

Theorem (Greedy Huffman Algorithm)
huffman produces an optimal binary prefix code.

induction hypothesis
For all 𝑘 < 𝑛, huffman([𝑓1 … 𝑓𝑘]) produces an
optimal Huffman tree.

f1 f2

fn+1



Correctness of Huffman algorithm

Theorem (Greedy Huffman Algorithm)
huffman produces an optimal binary prefix code.

induction setup
Let 𝑓1 ≤ 𝑓2 ≤ … 𝑓𝑛 be the original input. From
lightest siblings, there exists some optimal 𝑇𝑛 with
𝑓1 and 𝑓2 as deepest siblings. Let 𝑓𝑛+1 = 𝑓1 + 𝑓2.
Let 𝑇𝑛−1 = huffman(𝑓3 … 𝑓𝑛+1).

f1 f2

fn+1



Induction example

3 20

23 37

60

70

130Tn−1



Induction details

By induction, 𝑇𝑛−1 is optimal. Now put 𝑓1 and 𝑓2
back as children of 𝑓𝑛+1, producing 𝑇𝑛. Let 𝑑𝑖
denote the height of 𝑓𝑖 in 𝑇𝑛−1 (and/or 𝑇𝑛)

cost(𝑇𝑛) =
𝑛

∑
𝑘=1

𝑓𝑘𝑑𝑘

= 𝑓1𝑑1 + 𝑓2𝑑2 +
𝑛+1

∑
𝑗=3

𝑓𝑗𝑑𝑗 − 𝑓𝑛+1𝑑𝑛+1

f1 f2

fn+1



Induction details

cost(𝑇𝑛) = 𝑓1𝑑1 + 𝑓2𝑑2 +
𝑛+1

∑
𝑘=3

𝑓𝑘𝑑𝑘 − 𝑓𝑛+1𝑑𝑛+1

= cost(𝑇𝑛−1) + 𝑓1𝑑1 + 𝑓2𝑑2 − 𝑓𝑛+1𝑑𝑛+1
= cost(𝑇𝑛−1) + (𝑓1 + 𝑓2)𝑑1 − 𝑓𝑛+1(𝑑1 − 1)
= cost(𝑇𝑛−1) + 𝑓1 + 𝑓2.

f1 f2

fn+1



Induction details

Suppose ∃ cheaper 𝑇 ′
𝑛 for 𝑓1 … 𝑓𝑛. Removing 𝑓1

and 𝑓2 yields a tree 𝑇 ′
𝑛−1 for 𝑓3 … 𝑓𝑛+1.

cost(𝑇 ′
𝑛) = cost(𝑇 ′

𝑛−1) + 𝑓1 + 𝑓2
cost(𝑇 ′

𝑛−1) + (𝑓1 + 𝑓2) < cost(𝑇𝑛−1) + (𝑓1 + 𝑓2)

cost(𝑇 ′
𝑛−1) < cost(𝑇𝑛−1)

(contradiction)

f1 f2

fn+1


	Greedy
	Properties of (optimal) Huffman trees
	Huffman algorithm


