Outline

Greedy MST

Minimum spanning tree

Minimum Spanning Tree

Given $G=(V, E), w: E \rightarrow \mathbb{R}$, a minimum spanning tree T is a spanning tree (i.e. connecting all vertices) that minimizes $\operatorname{cost}(T)=\sum_{e \in T} w(e)$

Cut Property

Lemma

Let T be a minimum spanning tree, $X \subset T$ s.t. X does not connect $(S, V-S)$. Let e be the lightest edge from S to $V-S . X \cup e$ is part of some MST.

Cut Property Proof

Cut Property

Let T be an MST, $X \subset T$ s.t. X does not connect $(S, V-S)$. Let e be the lightest edge from S to $V-S . X \cup e$ is part of some MST.

Let $X \subseteq T$ where T is MST
$>$ if $e \in T$, done
$>$ add e to T, makes a cycle

Cut Property Proof

- Let $X \subseteq T$ where T is MST
- if $e \in T$, done
- add e to T, makes a cycle

- \exists crossing $e^{\prime} \in E-X$
- swap e and e^{\prime}

Prim's Algorithm

$S=$ nodes reached so far

Prim's Algorithm

def prim(G,root):
$\mathrm{pq}=\mathrm{pqdict}() ; \operatorname{prev}=\{ \}$
for v in G.keys ():
pq.additem(v,inf)
pq.updateitem (root, 0)
while len(pq) >0:
$\mathrm{v}=\mathrm{pq} \cdot \mathrm{pop}()$
for (z,weight) in G[v]:
if z in $p q$ and weight < pq[z]:
prev[z]=v
pq.updateitem(z,weight)
return prev

```
0 \inA
0 \in V-A
```



```
0 \inA
0 \in V-A
```



```
0 \inA
0 \in V-A
```



```
o \inA
0 \in V-A
```


ALGORITHMS
 Example of Prim's algorithm

```
0 \inA
\bullet \in V-A
```


ALGORITHMS
 Example of Prim's algorithm

```
0 }\in
- \(\in V-A\)
```



```
o \inA
- \(\in V-A\)
```



```
\(0 \in A\)
- \(\in V-A\)
```



```
\(0 \in A\)
- \(\in V-A\)
```



```
- \(\in A\)
- \(\in V-A\)
```



```
\(0 \in A\)
- \(\in V-A\)
```



```
- \(\in A\)
- \(\in V-A\)
```


