# CS3383 Unit 2 Lecture 3: Union Find / Disjoint Set 

David Bremner

March 17, 2024


## Outline

Union Find
Motivation: MST
Forest representation for disjoint sets
Bounding the height of trees

Union Find
Motivation: MST
Forest representation for disjoint sets
Bounding the height of trees

## Kruskal's MST algorithm

```
def kruskal(n,E):
    P=Partition(n); X= []
    E.sort()
    for (weight,u,v) in E:
    if P.find(u) != P.find(v):
    X.append((u,v))
    P.union(u,v)
return X
```

How does crossing property apply? What is $S$ ?

## Kruskal example



Union Find
Motivation: MST
Forest representation for disjoint sets
Bounding the height of trees

## Init and Find

```
def __init__(P,n):
# sometimes called makeset(j)
P.parent = [j for j in range(n)]
P.rank = [0] * n
def find(P, key):
    while P.parent[key] != key:
        key = P.parent[key]
    return key
while P.parent[key] ! = key:
\[
\text { key }=\text { P.parent [key] }
\]
return key
```



## Union operation

$$
\begin{aligned}
& \text { def union(P, } x, y) \text { : } \\
& r x=P . f i n d(x) \\
& r y=P . f i n d(y) \\
& \text { if } r x \text { ! }=r y: \\
& \text { if P.rank[rx] > P.rank[ry]: } \\
& \text { P.parent[ry] =rx } \\
& \text { else: } \\
& P \text {.parent }[r x]=r y \\
& \text { if P.rank[rx] == P.rank[ry]: } \\
& \text { P.rank[ry] }+=1
\end{aligned}
$$



## Case 1 of main if

## Union Find Example 1/3

$>$ initial partition

0 | 1 |
| :--- |
| 0 |
| 0 |



## Union Find Example 1/3

- initial partition

- after union $(0,3)$, union $(1,4)$, union $(2,5)$



## Union Find Example 2/3

after union $(0,3)$, union $(1,4)$, union $(2,5)$
after union $(2,6)$, union $(4,0)$


## Union Find Example 3/3

after union $(1,6)$


Union Find
Motivation: MST
Forest representation for disjoint sets
Bounding the height of trees

## Properties of Union Find trees

## Property 1

For any $x$ such that parent $(x) \neq x$, $\operatorname{rank}(x)<\operatorname{rank}(\operatorname{parent}(x))$

## Properties of Union Find trees

## Property 1

For any $x$ such that parent $(x) \neq x$, $\operatorname{rank}(x)<\operatorname{rank}(\operatorname{parent}(x))$

## Property 2

Any node of rank $k$ has at least $2^{k}$ nodes in its subtree.

## Properties of Union Find trees

## Property 1

For any $x$ such that parent $(x) \neq x$, $\operatorname{rank}(x)<\operatorname{rank}(\operatorname{parent}(x))$

## Property 2

Any node of rank $k$ has at least $2^{k}$ nodes in its subtree.

## Property 3

If there are $n$ elements, there are at most $\left\lfloor n / 2^{k}\right\rfloor$ nodes of rank $k$.

## Properties of Union Find trees

## Property 1

For any $x$ such that $\operatorname{parent}(x) \neq x$, $\operatorname{rank}(x)<\operatorname{rank}(\operatorname{parent}(x))$

## Property 2

Any node of rank $k$ has at least $2^{k}$ nodes in its subtree.

## Property 3

If there are $n$ elements, there are at most $\left\lfloor n / 2^{k}\right\rfloor$ nodes of rank $k$.

## Conclusion

$\therefore$ Trees are height at most $\log _{2} n$

## Proof of Property 1

## Property 1

For any $x$ such that parent $(x) \neq x$, $\operatorname{rank}(x)<\operatorname{rank}(\operatorname{parent}(x))$

## Proof of Property 1

## Property 1

For any $x$ such that parent $(x) \neq x$, $\operatorname{rank}(x)<\operatorname{rank}(\operatorname{parent}(x))$

## Base Case

Initially every node has parent $(x)=x$.

## Proof of Property 1

## Property 1

For any $x$ such that $\operatorname{parent}(x) \neq x$, $\operatorname{rank}(x)<\operatorname{rank}(\operatorname{parent}(x))$

## induction

## Base Case

Initially every node has
parent $(x)=x$.

```
if P.rank[rx] > P.rank[ry]:
    P.parent[ry] = rx
else:
    P.parent[rx] = ry
    if P.rank[rx] == P.rank[ry]:
    P.rank[ry] += 1
```


## Proof of Property 2

## Property 2

Any node of rank $k$ has at least $2^{k}$ nodes in its subtree.

## Proof of Property 2

## Property 2

Any node of rank $k$ has at least $2^{k}$ nodes in its subtree.

base case<br>true for $k=0$.

## Proof of Property 2

## Property 2

Any node of rank $k$ has at least $2^{k}$ nodes in its subtree.

## Induction

- Rank $k+1$ is created only when joining two trees of rank $k$.
if P.rank[rx] == P.rank[ry]: P.rank[ry] += 1
- by induction, each of these subtrees has at least $2^{k}$ nodes


## Proof of property 3

## Property 3

If there are $n$ elements, are at most $\left\lfloor n / 2^{k}\right\rfloor$ nodes of rank $k$.

## Proof of property 3

## Property 3

If there are $n$ elements, are at most $\left\lfloor n / 2^{k}\right\rfloor$ nodes of rank $k$.

## Proof

- By Property 1 any element has at most one ancestor of rank $k$.
- Therefore the children of two rank $k$ nodes are distinct.
- Apply property 2.

