
CS3383 Unit 2.4: Union Find Path
Compression

David Bremner

February 20, 2024



Union Find
Path Compression
Path Compression Analysis



Motivation
Using union-find in Kruskal’s Algorithm

▶ For unbounded edge weights, the sorting costs
Ω(|𝐸| log |𝐸|) = Ω(|𝐸| log |𝑉 |)

▶ Naive union-find is fast enough.
▶ For small edge weights (e.g. weights bounded by |𝐸|), sorting

is no longer the bottleneck.



Amortized analysis
▶ It’s hard to do find faster than 𝑂(log 𝑛) in the worst case
▶ We can make the average cost of all find operations in one run

of a program almost constant
▶ This kind of average cost analysis is called amortized analysis
▶ Like with randomized algorithms, the algorithms are simple,

but the analysis is a bit subtle.



“Memoizing” the find routine
def find(P, key):

while P.parent[key] != key:
key = P.parent[key]

return key

def find(P, key):
if P.parent[key] != key:

P.parent[key] = P.find(P.parent[key])
return P.parent[key]



“Memoizing” the find routine
def find(P, key):

if P.parent[key] != key:
P.parent[key] = P.find(P.parent[key])

return P.parent[key]

1
0

0
3

3
0

2
1

8
0

5
1

4
2

9
0

10
0

6
1

7
0

1
0

0
3

3
0

2
1

8
0

5
1
9
0

7
0

4
2

10
0

6
1

After find(8)



Strong Memoization
▶ not only only repeating the same query will be fast, but also

any node on the path to the root.

1
0

4
1

3
2

0
0

2
1 1

0

4
1

3
2
0
0

2
1

▶ After find(0)
▶ Notice ranks look a bit odd,

but still increase.



Rank ordering is maintained

Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥,
rank(𝑥) < rank(parent(𝑥))

𝑥

parent(𝑥)

parent(parent(𝑥))



Size of trees is preserved, but not subtrees.

Property 2
Any node of rank 𝑘 has at least
2𝑘 nodes in its subtree.

Property 2’
Any root node of rank 𝑘 has at
least 2𝑘 nodes in its subtree.

1
0

4
1

3
2

0
0

2
1



Not too many nodes of rank 𝑘

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

▶ When a node gets rank 𝑘 > 0, it is a root, and has 2𝑘

descendents.
▶ Those descendents are never used to make another node

rank 𝑘.



Not too many nodes of rank 𝑘

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

▶ When a node gets rank 𝑘 > 0, it is a root, and has 2𝑘

descendents.
▶ Those descendents are never used to make another node

rank 𝑘.



Path compression example

0
0

3
1

1
0

4
1

2
0

5
1

6
0

(0,3), (1,4), (2,5)
0
0

3
2

1
0

4
1

2
0

5
1

6
0

(2,6), (4,0)

0
0

3
2

1
0

2
0

5
1

4
1

6
0

(1,6)



Path compression example

0
0

3
1

1
0

4
1

2
0

5
1

6
0

(0,3), (1,4), (2,5)
0
0

3
2

1
0

4
1

2
0

5
1

6
0

(2,6), (4,0)

0
0

3
2

1
0

2
0

5
1

4
1

6
0

(1,6)



log∗ 𝑛

nnnnnnnnn

lo
g*

 n
lo

g*
 n

lo
g*

 n
lo

g*
 n

lo
g*

 n
lo

g*
 n

lo
g*

 n
lo

g*
 n

lo
g*

 n

10²⁵10²⁵10²⁵10²⁵10²⁵10²⁵10²⁵10²⁵10²⁵ 10⁵¹10⁵¹10⁵¹10⁵¹10⁵¹10⁵¹10⁵¹10⁵¹10⁵¹ 10⁷⁷10⁷⁷10⁷⁷10⁷⁷10⁷⁷10⁷⁷10⁷⁷10⁷⁷10⁷⁷
111111111

222222222

333333333

444444444

555555555
log∗(𝑛) = {1 if log(𝑛) ≤ 1

1 + log∗(log(𝑛)) otherwise



Amortization
▶ We will keep track of (some) operations by counting them

locally at every node.
▶ In order to “pay” for future operations, we give every node 2𝑘

“dollars” if its max rank is in

[𝑘 + 1, … 2𝑘]

for some 𝑘 = 2𝑗.
▶ We will count the total amount of money passed out
▶ And argue that no node runs out of money.



Paying for find operations

def find(P, key):
if P.parent[key] != key:

P.parent[key] = P.find(P.parent[key])
return P.parent[key]

▶ Either rank(parent [key]) is in a later interval than rank(key)
or not.

▶ Increasing intervals can happen at most log∗ 𝑛 times.
▶ If in the same interval, we say key pays a dollar back.



Summing up

▶ Total cost for 𝑛 operations
▶ ≤ 𝑛 log∗ 𝑛 total steps where parent is in next interval
▶ ≤ 𝑛 log∗ 𝑛 total steps where parent is in same interval

▶ Amortized cost in 𝑂(log∗ 𝑛) per operation.


	Union Find
	Path Compression
	Path Compression Analysis


