CS3383 Unit 2.4: Union Find Path Compression

David Bremner

February 20, 2024

Union Find

Path Compression Path Compression Analysis

Motivation

Using union-find in Kruskal's Algorithm

- For unbounded edge weights, the sorting costs $\Omega(|E|\log|E|) = \Omega(|E|\log|V|)$
 - Naive union-find is fast enough.
- For small edge weights (e.g. weights bounded by |E|), sorting is no longer the bottleneck.

Amortized analysis

- lt's hard to do find faster than $O(\log n)$ in the worst case
- We can make the average cost of all find operations in one run of a program almost constant
- This kind of average cost analysis is called amortized analysis
- Like with randomized algorithms, the algorithms are simple, but the analysis is a bit subtle.

"Memoizing" the find routine

```
def find(P, key):
while P.parent[key] != key:
    key = P.parent[key]
return key
```

```
def find(P, key):
if P.parent[key] != key:
    P.parent[key] = P.find(P.parent[key])
return P.parent[key]
```

"Memoizing" the find routine

def find(P, key):
if P.parent[key] != key:
 P.parent[key] = P.find(P.parent[key])
return P.parent[key]

Strong Memoization

not only only repeating the same query will be fast, but also any node on the path to the root.

Rank ordering is maintained

Property 1

For any x such that $parent(x) \neq x$, rank(x) < rank(parent(x))

Size of trees is preserved, but not subtrees.

Property 2

Any node of rank k has at least $2^k \ {\rm nodes}$ in its subtree.

Property 2'

Any root node of rank k has at least 2^k nodes in its subtree.

Not too many nodes of rank k

Property 3

If there are n elements, there are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

- When a node gets rank k > 0, it is a root, and has 2^k descendents.
- Those descendents are never used to make another node rank k.

Not too many nodes of rank k

Property 3

If there are n elements, there are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

- When a node gets rank k > 0, it is a root, and has 2^k descendents.
- Those descendents are never used to make another node rank k.

Path compression example

(0,3), (1,4), (2,5)

Path compression example

(0,3), (1,4), (2,5)

 $\log^* n$

Amortization

- We will keep track of (some) operations by counting them locally at every node.
- In order to "pay" for future operations, we give every node 2^k "dollars" if its max rank is in

$$[k+1,\ldots 2^k]$$

for some $k = 2^j$.

We will count the total amount of money passed outAnd argue that no node runs out of money.

Paying for find operations

```
def find(P, key):
if P.parent[key] != key:
    P.parent[key] = P.find(P.parent[key])
return P.parent[key]
```

- Either rank(parent [key]) is in a later interval than rank(key) or not.
- lncreasing intervals can happen at most $\log^* n$ times.
- If in the same interval, we say key pays a dollar back.

Summing up

\blacktriangleright Total cost for n operations

lackslash $\leq n\log^* n$ total steps where parent is in next interval

 $ig > \leq n \log^* n$ total steps where parent is in same interval

Amortized cost in $O(\log^* n)$ per operation.

