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“Memoizing” the find routine

def find(P, key):
while P.parent[key] != key:

key = P.parent[key]
return key
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P.parent[key] = \
P.find(P.parent[key])

return P.parent[key]
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Find example
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find(8), find(10)
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find(8), find(10)
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Rank ordering is maintained

Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥,
rank(𝑥) < rank(parent(𝑥))

Shortcuts preserve order

𝑥

parent(𝑥)

parent(parent(𝑥))
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Size of trees is preserved, but not subtrees.

Property 2’
Any root node of rank 𝑘 has at least 2𝑘 nodes in its
subtree.

Proof of property 2’.
Induction: Base case is 𝑘 = 0. Roots of rank 𝑘 are
made from two rank 𝑘 − 1 roots.
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Union+Find Example 1/
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Union+Find Example 2/
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Union+Find Example 3/
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Union+Find Example 4/

after union(4,0), find(1),
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Union+Find Example 5/
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Not too many nodes of rank 𝑘

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

▶ From property 1, descendents of a given rank 𝑘
node are distinct.

▶ When a node gets rank 𝑘 > 0, it is a root, and
has 2𝑘 descendents.

▶ Those descendents are never used to make
another node rank 𝑘. (non-roots stay
non-roots).
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Rank intervals
▶ We divide the numbers [1, 𝑛] into [𝑘 + 1, 2𝑘]

[1, 1], [2, 2], [3, 4], [5, 16], … , [𝑘 + 1, 2𝑘]

▶ The first 𝑝 intervals cover

222⋯2}𝑝 − 1 times

▶ log∗(𝑛) + 1 intervals cover 𝑛

log∗(𝑛) = {1 if log(𝑛) ≤ 1
1 + log∗(log(𝑛)) otherwise
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Bounding disbursements 1/2
▶ Each node in an interval ending in 2𝑘 gets 2𝑘 dollars.

▶ By property 3, the total number of nodes in such an interval is
at most 𝑛

2𝑘+1 + 𝑛
2𝑘+2 + 𝑛

2𝑘+3 + … 𝑛
22𝑘

▶ We need to bound
2𝑘

∑
𝑖=𝑘+1

2−𝑖

= 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖
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Bounding disbursements 2/2
▶ We need to bound

2𝑘

∑
𝑖=𝑘+1
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1 − 1/2

G.S.

▶ each interval get at most 𝑛 dollars in total
▶ 𝑛(log∗ 𝑛 + 1) dollars over all intervals.
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Paying for find operations 1/2
def find(P, key):

if P.parent[key] != key:
P.parent[key] = \

P.find(P.parent[key])
return P.parent[key]

▶ Either rank(parent [key]) is in a later interval
than rank[key] or not.

▶ Increasing intervals can happen at most log∗ 𝑛
times.

▶ If in the same interval, we say key pays a dollar
back.

▶ every
call does
an
update

▶ work
𝑂(#updates)
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Paying for find operations 2/2
If rank(parent [key]) is in the interval as rank(key), we say key
pays a dollar back.

No node goes broke
▶ Each time 𝑥 pays a dollar, it increases the rank

of its parent.

▶ If rank(𝑥) ∈ [𝑘 + 1 … 2𝑘], that can repeat less
than 2𝑘 times before its parent is in a higher
interval.

▶ Once that happens, payments stop.

𝑥

parent(𝑥)

parent(parent(𝑥))
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Summing up

▶ We can think about the analysis as classifying all of the
updates to a given key as “near” or “far”, and bounding those
in two different ways.

▶ Total cost for 𝑛 operations
▶ ≤ 𝑛 log∗ 𝑛 total steps where parent is in next interval
▶ ≤ 𝑛 log∗ 𝑛 total steps where parent is in same interval

▶ Amortized cost in 𝑂(log∗ 𝑛) per operation.
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