CS3383 Unit 2.4: Union Find Path
 Compression

David Bremner

February 26, 2024

Outline

Union Find
Path Compression
Path Compression Analysis

"Memoizing" the find routine

```
def find(P, key):
    while P.parent[key] != key:
        key = P.parent[key]
    return key
def find(P, key):
    if P.parent[key] != key:
        P.parent[key] = \
        P.find(P.parent[key])
    return P.parent[key]
```


"Memoizing" the find routine

```
def find(P, key):
    if P.parent[key] != key:
    P.parent[key] = \
        P.find(P.parent[key])
    return P.parent[key]
```


"Memoizing" the find routine

$$
\begin{aligned}
& \text { def find (P, key): } \\
& \text { if P.parent[key] ! = key: } \\
& \text { P.parent[key] = } \\
& \text { P.find (P .parent [key]) } \\
& \text { return P. parent [key] }
\end{aligned}
$$

Find example

Find example

After find(8)
find(8), find(10)

find(8), find(10)

Rank ordering is maintained

Property 1

For any x such that parent $(x) \neq x$, $\operatorname{rank}(x)<\operatorname{rank}(\operatorname{parent}(x))$

Rank ordering is maintained

Property 1

For any x such that parent $(x) \neq x$, $\operatorname{rank}(x)<\operatorname{rank}(\operatorname{parent}(x))$

Shortcuts preserve order

Size of trees is preserved, but not subtrees.

Property 2'
Any root node of rank k has at least 2^{k} nodes in its subtree.

Size of trees is preserved, but not subtrees.

Property 2'

Any root node of rank k has at least 2^{k} nodes in its subtree.

Proof of property 2'.
Induction: Base case is $k=0$. Roots of rank k are made from two rank $k-1$ roots.

Union+Find Example 1/

- initial partition

Union+Find Example 1/

- initial partition

- after union $(0,3)$, union $(1,4)$

Union+Find Example 2/

Union+Find Example 3/

after union $(4,0)$, find(1), union $(2,5)$

Union+Find Example 4/

after union $(4,0)$, find(1), union $(2,5)$

Union+Find Example 5/

after union(5,0), find(2)

Not too many nodes of rank k

Property 3

If there are n elements, there are at most $\left\lfloor n / 2^{k}\right\rfloor$ nodes of rank k.

Not too many nodes of rank k

Property 3

If there are n elements, there are at most $\left\lfloor n / 2^{k}\right\rfloor$ nodes of rank k.

- From property 1, descendents of a given rank k node are distinct.

Not too many nodes of rank k

Property 3

If there are n elements, there are at most $\left\lfloor n / 2^{k}\right\rfloor$ nodes of rank k.

- From property 1, descendents of a given rank k node are distinct.
- When a node gets rank $k>0$, it is a root, and has 2^{k} descendents.

Not too many nodes of rank k

Property 3

If there are n elements, there are at most $\left\lfloor n / 2^{k}\right\rfloor$ nodes of rank k.
\rightarrow From property 1 , descendents of a given rank k node are distinct.

- When a node gets rank $k>0$, it is a root, and has 2^{k} descendents.
- Those descendents are never used to make another node rank k. (non-roots stay non-roots).

Rank intervals

$>$ We divide the numbers $[1, n]$ into $\left[k+1,2^{k}\right]$

$$
[1,1],[2,2],[3,4],[5,16], \ldots,\left[k+1,2^{k}\right]
$$

Rank intervals

- We divide the numbers $[1, n]$ into $\left[k+1,2^{k}\right]$

$$
[1,1],[2,2],[3,4],[5,16], \ldots,\left[k+1,2^{k}\right]
$$

- The first p intervals cover

$$
\left.2^{2^{2 \cdots 2}}\right\} p-1 \text { times }
$$

Rank intervals

$>$ We divide the numbers $[1, n]$ into $\left[k+1,2^{k}\right]$

$$
[1,1],[2,2],[3,4],[5,16], \ldots,\left[k+1,2^{k}\right]
$$

- The first p intervals cover

$$
\left.2^{2^{2 \cdots 2}}\right\} p-1 \text { times }
$$

$>\log ^{*}(n)+1$ intervals cover n

$$
\log ^{*}(n)= \begin{cases}1 & \text { if } \log (n) \leq 1 \\ 1+\log ^{*}(\log (n)) & \text { otherwise }\end{cases}
$$

Bounding disbursements $1 / 2$

$>$ Each node in an interval ending in 2^{k} gets 2^{k} dollars.

Bounding disbursements $1 / 2$

- Each node in an interval ending in 2^{k} gets 2^{k} dollars.
\rightarrow By property 3, the total number of nodes in such an interval is at most

$$
\frac{n}{2^{k+1}}+\frac{n}{2^{k+2}}+\frac{n}{2^{k+3}}+\ldots \frac{n}{2^{2^{k}}}
$$

Bounding disbursements $1 / 2$

- Each node in an interval ending in 2^{k} gets 2^{k} dollars.
\rightarrow By property 3, the total number of nodes in such an interval is at most

$$
\frac{n}{2^{k+1}}+\frac{n}{2^{k+2}}+\frac{n}{2^{k+3}}+\ldots \frac{n}{2^{2^{k}}}
$$

- We need to bound

$$
\sum_{i=k+1}^{2^{k}} 2^{-i}
$$

Bounding disbursements $1 / 2$

$>$ Each node in an interval ending in 2^{k} gets 2^{k} dollars.
\rightarrow By property 3, the total number of nodes in such an interval is at most

$$
\frac{n}{2^{k+1}}+\frac{n}{2^{k+2}}+\frac{n}{2^{k+3}}+\ldots \frac{n}{2^{2^{k}}}
$$

- We need to bound

$$
\sum_{i=k+1}^{2^{k}} 2^{-i}=\frac{1}{2^{k+1}} \sum_{i=0}^{2^{k}-k-1} 2^{-i}
$$

Bounding disbursements $1 / 2$

$>$ Each node in an interval ending in 2^{k} gets 2^{k} dollars.
\rightarrow By property 3, the total number of nodes in such an interval is at most

$$
\frac{n}{2^{k+1}}+\frac{n}{2^{k+2}}+\frac{n}{2^{k+3}}+\ldots \frac{n}{2^{2^{k}}}
$$

- We need to bound

$$
\begin{aligned}
\sum_{i=k+1}^{2^{k}} 2^{-i} & =\frac{1}{2^{k+1}} \sum_{i=0}^{2^{k}-k-1} 2^{-i} \\
& \leq \frac{1}{2^{k+1}} \sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i}
\end{aligned}
$$

Bounding disbursements $2 / 2$

- We need to bound

$$
\begin{aligned}
\sum_{i=k+1}^{2^{k}} 2^{-i} & =\frac{1}{2^{k+1}} \sum_{i=0}^{2^{k}-k-1} 2^{-i} \\
& \leq \frac{1}{2^{k+1}} \sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i}
\end{aligned}
$$

$>$ each interval get at most n dollars in total

- $n\left(\log ^{*} n+1\right)$ dollars over all intervals.

Bounding disbursements $2 / 2$

- We need to bound

$$
\begin{aligned}
\sum_{i=k+1}^{2^{k}} 2^{-i} & =\frac{1}{2^{k+1}} \sum_{i=0}^{2^{k}-k-1} 2^{-i} \\
& \leq \frac{1}{2^{k+1}} \sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i} \\
& =\frac{1}{2^{k+1}} \frac{1}{1-1 / 2} \quad \text { G.S. }
\end{aligned}
$$

- each interval get at most n dollars in total
- $n\left(\log ^{*} n+1\right)$ dollars over all intervals.

Paying for find operations $1 / 2$

```
def find(P, key):
    if P.parent[key] != key:
        P.parent[key] = \
        P.find(P.parent[key])
    return P.parent[key]
```

$>$ Either rank(parent [key]) is in a later interval than rank[key] or not.
every
call does
an
update

- work
O (\#update:

Paying for find operations $1 / 2$

```
def find(P, key):
```

 if P.parent[key] != key:
 P.parent[key] = \}
 P.find (P.parent[key])
 return P.parent[key]
 $>$ Either rank(parent [key]) is in a later interval than rank[key] or not.

- Increasing intervals can happen at most $\log ^{*} n$ times.
$>$ every call does an
update
work
O (\#update

Paying for find operations $1 / 2$

```
def find(P, key):
```

 if P.parent[key] != key:
 P.parent[key] = \}
 P.find (P.parent[key])
 return P.parent[key]
 - Either rank(parent [key]) is in a later interval than rank[key] or not.
\rightarrow Increasing intervals can happen at most $\log ^{*} n$ times.
- If in the same interval, we say key pays a dollar back.

Paying for find operations $2 / 2$

If $\operatorname{rank}($ parent [key] $)$ is in the interval as $\operatorname{rank}($ key $)$, we say key pays a dollar back.

No node goes broke
\rightarrow Each time x pays a dollar, it increases the rank
 of its parent.

Paying for find operations $2 / 2$

If $\operatorname{rank}($ parent [key]) is in the interval as $\operatorname{rank}($ key $)$, we say key pays a dollar back.

No node goes broke

- Each time x pays a dollar, it increases the rank
 of its parent.
- If $\operatorname{rank}(x) \in\left[k+1 \ldots 2^{k}\right]$, that can repeat less than 2^{k} times before its parent is in a higher interval.

Paying for find operations $2 / 2$

If $\operatorname{rank}($ parent [key]) is in the interval as $\operatorname{rank}($ key $)$, we say key pays a dollar back.

No node goes broke

- Each time x pays a dollar, it increases the rank
 of its parent.
$>$ If $\operatorname{rank}(x) \in\left[k+1 \ldots 2^{k}\right]$, that can repeat less than 2^{k} times before its parent is in a higher interval.
- Once that happens, payments stop.

Summing up

$>$ We can think about the analysis as classifying all of the updates to a given key as "near" or "far", and bounding those in two different ways.

- Total cost for n operations
- $\leq n \log ^{*} n$ total steps where parent is in next interval
- $\leq n \log ^{*} n$ total steps where parent is in same interval
- Amortized cost in $O\left(\log ^{*} n\right)$ per operation.

