
CS3383 Unit 2.4: Union Find Path
Compression

David Bremner

February 26, 2024



Outline

Union Find
Path Compression
Path Compression Analysis



“Memoizing” the find routine

def find(P, key):
while P.parent[key] != key:

key = P.parent[key]
return key

def find(P, key):
if P.parent[key] != key:

P.parent[key] = \
P.find(P.parent[key])

return P.parent[key]



“Memoizing” the find routine
def find(P, key):

if P.parent[key] != key:
P.parent[key] = \

P.find(P.parent[key])
return P.parent[key]

before

1
0

0
3

3
0

2
1

8
0

5
1

4
2

9
0

10
0

6
1

7
0



“Memoizing” the find routine
def find(P, key):

if P.parent[key] != key:
P.parent[key] = \

P.find(P.parent[key])
return P.parent[key]

before

1
0

0
3

3
0

2
1

8
0

5
1

4
2

9
0

10
0

6
1

7
0

1
0

0
3

3
0

2
1

8
0

5
1
9
0

7
0

4
2

10
0

6
1

After find(8)



Find example

1
0

0
3

3
0

2
1

8
0

5
1

4
2

9
0

10
0

6
1

7
0

1
0

0
3

3
0

2
1

8
0

5
1
9
0

7
0

4
2

10
0

6
1

After find(8)



Find example

1
0

0
3

3
0

2
1

8
0

5
1

4
2

9
0

10
0

6
1

7
0

1
0

0
3

3
0

2
1

8
0

5
1
9
0

7
0

4
2

10
0

6
1

After find(8)



find(8), find(10)

1
0

0
3

3
0

2
1

8
0

5
1
9
0

7
0

4
2

10
0

6
1

1
0

0
3

3
0

2
1

8
0

5
1

9
0

7
0

4
2

10
0

6
1



find(8), find(10)

1
0

0
3

3
0

2
1

8
0

5
1
9
0

7
0

4
2

10
0

6
1

1
0

0
3

3
0

2
1

8
0

5
1

9
0

7
0

4
2

10
0

6
1



Rank ordering is maintained

Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥,
rank(𝑥) < rank(parent(𝑥))

Shortcuts preserve order

𝑥

parent(𝑥)

parent(parent(𝑥))



Rank ordering is maintained

Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥,
rank(𝑥) < rank(parent(𝑥))

Shortcuts preserve order

𝑥

parent(𝑥)

parent(parent(𝑥))



Size of trees is preserved, but not subtrees.

Property 2’
Any root node of rank 𝑘 has at least 2𝑘 nodes in its
subtree.

Proof of property 2’.
Induction: Base case is 𝑘 = 0. Roots of rank 𝑘 are
made from two rank 𝑘 − 1 roots.

1
0

4
1

3
2
0
0

2
1



Size of trees is preserved, but not subtrees.

Property 2’
Any root node of rank 𝑘 has at least 2𝑘 nodes in its
subtree.

Proof of property 2’.
Induction: Base case is 𝑘 = 0. Roots of rank 𝑘 are
made from two rank 𝑘 − 1 roots.

1
0

4
1

3
2
0
0

2
1



Union+Find Example 1/

▶ initial partition
0
0

1
0

2
0

3
0

4
0

5
0

▶ after union(0,3), union(1,4)

0
0

3
1

1
0

4
1

2
0

5
0



Union+Find Example 1/

▶ initial partition
0
0

1
0

2
0

3
0

4
0

5
0

▶ after union(0,3), union(1,4)

0
0

3
1

1
0

4
1

2
0

5
0



Union+Find Example 2/

after union(0,3), union(1,4)

0
0

3
1

1
0

4
1

2
0

5
0

after union(4,0)

0
0

3
2

1
0

4
1

2
0

5
0



Union+Find Example 3/

after union(4,0)

0
0

3
2

1
0

4
1

2
0

5
0

after union(4,0), find(1),
union(2,5)

0
0

3
2

1
0

4
1

2
0

5
1



Union+Find Example 4/

after union(4,0), find(1),
union(2,5)

0
0

3
2

1
0

4
1

2
0

5
1

after union(5,0)

0
0

3
2

1
0

4
1

2
0

5
1



Union+Find Example 5/

after union(5,0)

0
0

3
2

1
0

4
1

2
0

5
1

after union(5,0), find(2)

0
0

3
2

1
0

4
1

2
0

5
1



Not too many nodes of rank 𝑘

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

▶ From property 1, descendents of a given rank 𝑘
node are distinct.

▶ When a node gets rank 𝑘 > 0, it is a root, and
has 2𝑘 descendents.

▶ Those descendents are never used to make
another node rank 𝑘. (non-roots stay
non-roots).



Not too many nodes of rank 𝑘

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

▶ From property 1, descendents of a given rank 𝑘
node are distinct.

▶ When a node gets rank 𝑘 > 0, it is a root, and
has 2𝑘 descendents.

▶ Those descendents are never used to make
another node rank 𝑘. (non-roots stay
non-roots).



Not too many nodes of rank 𝑘

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

▶ From property 1, descendents of a given rank 𝑘
node are distinct.

▶ When a node gets rank 𝑘 > 0, it is a root, and
has 2𝑘 descendents.

▶ Those descendents are never used to make
another node rank 𝑘. (non-roots stay
non-roots).



Not too many nodes of rank 𝑘

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

▶ From property 1, descendents of a given rank 𝑘
node are distinct.

▶ When a node gets rank 𝑘 > 0, it is a root, and
has 2𝑘 descendents.

▶ Those descendents are never used to make
another node rank 𝑘. (non-roots stay
non-roots).



Rank intervals
▶ We divide the numbers [1, 𝑛] into [𝑘 + 1, 2𝑘]

[1, 1], [2, 2], [3, 4], [5, 16], … , [𝑘 + 1, 2𝑘]

▶ The first 𝑝 intervals cover

222⋯2}𝑝 − 1 times

▶ log∗(𝑛) + 1 intervals cover 𝑛

log∗(𝑛) = {1 if log(𝑛) ≤ 1
1 + log∗(log(𝑛)) otherwise



Rank intervals
▶ We divide the numbers [1, 𝑛] into [𝑘 + 1, 2𝑘]

[1, 1], [2, 2], [3, 4], [5, 16], … , [𝑘 + 1, 2𝑘]

▶ The first 𝑝 intervals cover

222⋯2}𝑝 − 1 times

▶ log∗(𝑛) + 1 intervals cover 𝑛

log∗(𝑛) = {1 if log(𝑛) ≤ 1
1 + log∗(log(𝑛)) otherwise



Rank intervals
▶ We divide the numbers [1, 𝑛] into [𝑘 + 1, 2𝑘]

[1, 1], [2, 2], [3, 4], [5, 16], … , [𝑘 + 1, 2𝑘]

▶ The first 𝑝 intervals cover

222⋯2}𝑝 − 1 times

▶ log∗(𝑛) + 1 intervals cover 𝑛

log∗(𝑛) = {1 if log(𝑛) ≤ 1
1 + log∗(log(𝑛)) otherwise



Bounding disbursements 1/2
▶ Each node in an interval ending in 2𝑘 gets 2𝑘 dollars.

▶ By property 3, the total number of nodes in such an interval is
at most 𝑛

2𝑘+1 + 𝑛
2𝑘+2 + 𝑛

2𝑘+3 + … 𝑛
22𝑘

▶ We need to bound
2𝑘

∑
𝑖=𝑘+1

2−𝑖

= 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖



Bounding disbursements 1/2
▶ Each node in an interval ending in 2𝑘 gets 2𝑘 dollars.
▶ By property 3, the total number of nodes in such an interval is

at most 𝑛
2𝑘+1 + 𝑛

2𝑘+2 + 𝑛
2𝑘+3 + … 𝑛

22𝑘

▶ We need to bound
2𝑘

∑
𝑖=𝑘+1

2−𝑖

= 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖



Bounding disbursements 1/2
▶ Each node in an interval ending in 2𝑘 gets 2𝑘 dollars.
▶ By property 3, the total number of nodes in such an interval is

at most 𝑛
2𝑘+1 + 𝑛

2𝑘+2 + 𝑛
2𝑘+3 + … 𝑛

22𝑘

▶ We need to bound
2𝑘

∑
𝑖=𝑘+1

2−𝑖

= 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖



Bounding disbursements 1/2
▶ Each node in an interval ending in 2𝑘 gets 2𝑘 dollars.
▶ By property 3, the total number of nodes in such an interval is

at most 𝑛
2𝑘+1 + 𝑛

2𝑘+2 + 𝑛
2𝑘+3 + … 𝑛

22𝑘

▶ We need to bound
2𝑘

∑
𝑖=𝑘+1

2−𝑖 = 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖



Bounding disbursements 1/2
▶ Each node in an interval ending in 2𝑘 gets 2𝑘 dollars.
▶ By property 3, the total number of nodes in such an interval is

at most 𝑛
2𝑘+1 + 𝑛

2𝑘+2 + 𝑛
2𝑘+3 + … 𝑛

22𝑘

▶ We need to bound
2𝑘

∑
𝑖=𝑘+1

2−𝑖 = 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖



Bounding disbursements 2/2
▶ We need to bound

2𝑘

∑
𝑖=𝑘+1

2−𝑖= 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖

= 1
2𝑘+1

1
1 − 1/2

G.S.

▶ each interval get at most 𝑛 dollars in total
▶ 𝑛(log∗ 𝑛 + 1) dollars over all intervals.



Bounding disbursements 2/2
▶ We need to bound

2𝑘

∑
𝑖=𝑘+1

2−𝑖= 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖

= 1
2𝑘+1

1
1 − 1/2

G.S.

▶ each interval get at most 𝑛 dollars in total
▶ 𝑛(log∗ 𝑛 + 1) dollars over all intervals.



Paying for find operations 1/2
def find(P, key):

if P.parent[key] != key:
P.parent[key] = \

P.find(P.parent[key])
return P.parent[key]

▶ Either rank(parent [key]) is in a later interval
than rank[key] or not.

▶ Increasing intervals can happen at most log∗ 𝑛
times.

▶ If in the same interval, we say key pays a dollar
back.

▶ every
call does
an
update

▶ work
𝑂(#updates)



Paying for find operations 1/2
def find(P, key):

if P.parent[key] != key:
P.parent[key] = \

P.find(P.parent[key])
return P.parent[key]

▶ Either rank(parent [key]) is in a later interval
than rank[key] or not.

▶ Increasing intervals can happen at most log∗ 𝑛
times.

▶ If in the same interval, we say key pays a dollar
back.

▶ every
call does
an
update

▶ work
𝑂(#updates)



Paying for find operations 1/2
def find(P, key):

if P.parent[key] != key:
P.parent[key] = \

P.find(P.parent[key])
return P.parent[key]

▶ Either rank(parent [key]) is in a later interval
than rank[key] or not.

▶ Increasing intervals can happen at most log∗ 𝑛
times.

▶ If in the same interval, we say key pays a dollar
back.

▶ every
call does
an
update

▶ work
𝑂(#updates)



Paying for find operations 2/2
If rank(parent [key]) is in the interval as rank(key), we say key
pays a dollar back.

No node goes broke
▶ Each time 𝑥 pays a dollar, it increases the rank

of its parent.

▶ If rank(𝑥) ∈ [𝑘 + 1 … 2𝑘], that can repeat less
than 2𝑘 times before its parent is in a higher
interval.

▶ Once that happens, payments stop.

𝑥

parent(𝑥)

parent(parent(𝑥))



Paying for find operations 2/2
If rank(parent [key]) is in the interval as rank(key), we say key
pays a dollar back.

No node goes broke
▶ Each time 𝑥 pays a dollar, it increases the rank

of its parent.
▶ If rank(𝑥) ∈ [𝑘 + 1 … 2𝑘], that can repeat less

than 2𝑘 times before its parent is in a higher
interval.

▶ Once that happens, payments stop.

𝑥

parent(𝑥)

parent(parent(𝑥))



Paying for find operations 2/2
If rank(parent [key]) is in the interval as rank(key), we say key
pays a dollar back.

No node goes broke
▶ Each time 𝑥 pays a dollar, it increases the rank

of its parent.
▶ If rank(𝑥) ∈ [𝑘 + 1 … 2𝑘], that can repeat less

than 2𝑘 times before its parent is in a higher
interval.

▶ Once that happens, payments stop.

𝑥

parent(𝑥)

parent(parent(𝑥))



Summing up

▶ We can think about the analysis as classifying all of the
updates to a given key as “near” or “far”, and bounding those
in two different ways.

▶ Total cost for 𝑛 operations
▶ ≤ 𝑛 log∗ 𝑛 total steps where parent is in next interval
▶ ≤ 𝑛 log∗ 𝑛 total steps where parent is in same interval

▶ Amortized cost in 𝑂(log∗ 𝑛) per operation.


	Union Find
	Path Compression
	Path Compression Analysis


