CS3383 Unit 2.4: Union Find Path Compression

David Bremner

February 26, 2024

Outline

Union Find Path Compression Path Compression Analysis

"Memoizing" the find routine

```
def find(P, key):
  while P.parent[key] != key:
    key = P.parent[key]
  return key
```

```
def find(P, key):
    if P.parent[key] != key:
        P.parent[key] = \
            P.find(P.parent[key])
    return P.parent[key]
```

"Memoizing" the find routine

"Memoizing" the find routine

◆□▶▲圖▶▲圖▶▲圖▶ ▲□▶

Find example

Find example

After find(8)

find(8), find(10)

find(8), find(10)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ ○

Rank ordering is maintained

Property 1

For any x such that $parent(x) \neq x$, rank(x) < rank(parent(x))

Rank ordering is maintained

Property 1

For any x such that $\operatorname{parent}(x) \neq x$, $\operatorname{rank}(x) < \operatorname{rank}(\operatorname{parent}(x))$

Shortcuts preserve order

Size of trees is preserved, but not subtrees.

Property 2'

Any root node of rank k has at least 2^k nodes in its subtree.

Size of trees is preserved, but not subtrees.

Property 2'

Any root node of rank k has at least 2^k nodes in its subtree.

Proof of property 2'.

Induction: Base case is k = 0. Roots of rank k are made from two rank k - 1 roots.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣A⊙

Union+Find Example 1/

initial partition $\begin{array}{c|c} 0 \\ 0 \\ 0 \end{array} \begin{pmatrix} 1 \\ 0 \\ 0 \end{array} \begin{pmatrix} 2 \\ 0 \\ 0 \end{array} \begin{pmatrix} 3 \\ 0 \\ 0 \end{array} \begin{pmatrix} 4 \\ 0 \\ 0 \end{array} \begin{pmatrix} 5 \\ 0 \end{pmatrix}$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Union+Find Example 1/

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三副 - のへ⊙

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Union+Find Example 3/

Union+Find Example 4/

Union+Find Example 5/

Not too many nodes of rank k

Property 3

If there are n elements, there are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Not too many nodes of rank k

Property 3

If there are n elements, there are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

From property 1, descendents of a given rank k node are distinct.

Not too many nodes of rank k

Property 3

If there are n elements, there are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- From property 1, descendents of a given rank k node are distinct.
- When a node gets rank k > 0, it is a root, and has 2^k descendents.

Not too many nodes of rank \boldsymbol{k}

Property 3

If there are n elements, there are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

- From property 1, descendents of a given rank k node are distinct.
- When a node gets rank k > 0, it is a root, and has 2^k descendents.
- Those descendents are never used to make another node rank k. (non-roots stay non-roots).

Rank intervals

 \blacktriangleright We divide the numbers [1, n] into $[k + 1, 2^k]$

$$[1,1], [2,2], [3,4], [5,16], \dots, [k+1,2^k]$$

Rank intervals

$$\blacktriangleright$$
 We divide the numbers $[1, n]$ into $[k + 1, 2^k]$

$$[1,1], [2,2], [3,4], [5,16], \dots, [k+1,2^k]$$

The first *p* intervals cover

$$2^{2^{2^{\cdots 2}}}
brace p-1$$
 times

Rank intervals

$$\blacktriangleright$$
 We divide the numbers $[1, n]$ into $[k + 1, 2^k]$

$$[1,1], [2,2], [3,4], [5,16], \dots, [k+1,2^k]$$

The first p intervals cover

$$2^{2^{2^{\cdots 2}}}
brace p - 1$$
 times

 $\label{eq:log*} \log^*(n) + 1 \text{ intervals cover } n \\ \log^*(n) = \begin{cases} 1 & \text{if } \log(n) \leq 1 \\ 1 + \log^*(\log(n)) & \text{otherwise} \end{cases}$

Each node in an interval ending in 2^k gets 2^k dollars.

- Each node in an interval ending in 2^k gets 2^k dollars.
- By property 3, the total number of nodes in such an interval is at most
 n
 n
 n
 n

$$\frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \frac{n}{2^{k+3}} + \dots + \frac{n}{2^{2^k}}$$

- Each node in an interval ending in 2^k gets 2^k dollars.
- By property 3, the total number of nodes in such an interval is at most
 n
 n
 n

$$\frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \frac{n}{2^{k+3}} + \dots + \frac{n}{2^{2^k}}$$

We need to bound

$$\sum_{i=k+1}^{2^k} 2^{-i}$$

- Each node in an interval ending in 2^k gets 2^k dollars.
- By property 3, the total number of nodes in such an interval is at most

$$\frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \frac{n}{2^{k+3}} + \dots + \frac{n}{2^{2^k}}$$

We need to bound

$$\sum_{i=k+1}^{2^k} 2^{-i} = \frac{1}{2^{k+1}} \sum_{i=0}^{2^k-k-1} 2^{-i}$$

- Each node in an interval ending in 2^k gets 2^k dollars.
- By property 3, the total number of nodes in such an interval is at most

$$\frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \frac{n}{2^{k+3}} + \dots + \frac{n}{2^{2^k}}$$

We need to bound

$$\sum_{i=k+1}^{2^{k}} 2^{-i} = \frac{1}{2^{k+1}} \sum_{i=0}^{2^{k}-k-1} 2^{-i}$$
$$\leq \frac{1}{2^{k+1}} \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i}$$

We need to bound

$$\sum_{i=k+1}^{2^{k}} 2^{-i} = \frac{1}{2^{k+1}} \sum_{i=0}^{2^{k}-k-1} 2^{-i}$$
$$\leq \frac{1}{2^{k+1}} \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i}$$

each interval get at most n dollars in total
 n(log* n + 1) dollars over all intervals.

We need to bound

$$\begin{split} \sum_{i=k+1}^{2^{k}} 2^{-i} &= \frac{1}{2^{k+1}} \sum_{i=0}^{2^{k}-k-1} 2^{-i} \\ &\leq \frac{1}{2^{k+1}} \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i} \\ &= \frac{1}{2^{k+1}} \frac{1}{1-1/2} \qquad \text{G.S.} \end{split}$$

each interval get at most n dollars in total
 n(log* n + 1) dollars over all intervals.

Paying for find operations 1/2

```
def find(P, key):
    if P.parent[key] != key:
        P.parent[key] = \
            P.find(P.parent[key])
    return P.parent[key]
```

Either rank(parent [key]) is in a later interval than rank[key] or not. every call does an update
 work O(#update

Paying for find operations 1/2

```
def find(P, key):
    if P.parent[key] != key:
        P.parent[key] = \
            P.find(P.parent[key])
    return P.parent[key]
```

- Either rank(parent [key]) is in a later interval than rank[key] or not.
- Increasing intervals can happen at most log* n times.

 every call does an update
 work O(#update

Paying for find operations 1/2

```
def find(P, key):
    if P.parent[key] != key:
        P.parent[key] = \
            P.find(P.parent[key])
    return P.parent[key]
```

- Either rank(parent [key]) is in a later interval than rank[key] or not.
- Increasing intervals can happen at most log* n times.
- If in the same interval, we say key pays a dollar back.

 every call does an update
 work O(#update

Paying for find operations 2/2

If rank(parent [key]) is in the interval as rank(key), we say key pays a dollar back.

Paying for find operations 2/2

If $\mathrm{rank}(\mathrm{parent}\,[\text{key}])$ is in the interval as $\mathrm{rank}(\text{key}),$ we say key pays a dollar back.

No node goes broke

- Each time x pays a dollar, it increases the rank of its parent.
- If rank(x) ∈ [k + 1 ... 2^k], that can repeat less than 2^k times before its parent is in a higher interval.

Paying for find operations 2/2

If rank(parent [key]) is in the interval as rank(key), we say key pays a dollar back.

No node goes broke

- Each time x pays a dollar, it increases the rank of its parent.
- If $rank(x) \in [k+1 \dots 2^k]$, that can repeat less than 2^k times before its parent is in a higher interval

Once that happens, payments stop.

Summing up

We can think about the analysis as classifying all of the updates to a given key as "near" or "far", and bounding those in two different ways.

- \blacktriangleright Total cost for n operations
 - $lacksim \leq n \log^* n$ total steps where parent is in next interval
 - $ig > \leq n \log^* n$ total steps where parent is in same interval
- Amortized cost in $O(\log^* n)$ per operation.