CS3383 Unit 3: Dynamic Programming

David Bremner

March 1, 2024

Outline

Dynamic Programming
Shortest path in DAG

March Break Hotels

Scenario

```
Wanted Cheap holiday

Costs Hotel + Taxi, no charge for inconvenience
```

March Break Hotels

Scenario

```
Wanted Cheap holiday

Costs Hotel + Taxi, no charge for inconvenience
```

	Taxi Cost					Hotel Price			
				aprt				3	4
a	0	10	30	50	а	100	100	100	100
b	10	0	30	50	h	80	40	120	120
С	30	30	0	50	D				
aprt	50	50	50	0	С	50	80	80	80

It's a trap!

	Hote	l Pric	0				Taxi	Cost	
				4		а	b	С	airport
	_	_	3	-	а	•			•
a			100		b	10	0	30	50
b	80	40	120	120		_	1000		500
С	50	80	80	80				_	0
					airport	50	50	50	U

Djikstra considered overkill

- ► There are no negative edge weights, so shortest path is tractable.
- Even better, we have an acyclic graph (why?)
- So we find a shortest path in linear time after topological sorting.

"Recursive" topological sort

Recursive "algorithm"

- 1. Remove a *source* from the DAG, and put it first.
- 2. Topologically sort the remaining graph.
- how to quickly find a source?

"Recursive" topological sort

Recursive "algorithm"

- 1. Remove a *source* from the DAG, and put it first.
- 2. Topologically sort the remaining graph.
- how to quickly find a source?
- Use some auxilary data structure to track sources across iterations

Using a Queue

```
BFS-like topological sort
 1: function TopSort(G)
         Q \leftarrow \mathsf{All} \; \mathsf{Sources}
         while !empty(Q) do
             v \leftarrow \deg(Q)
 4:
  5:
 6:
         end while
 8: end function
```

Using a Queue

```
BFS-like topological sort
 1: function TopSort(G)
        Q \leftarrow \mathsf{All} \; \mathsf{Sources}
        while !empty(Q) do
            v \leftarrow \deg(Q)
            Output v
 5:
             Remove v, add new sources to Q
 6:
        end while
 8: end function
```

Using a Queue

8: end function

```
BFS-like topological sort
 1: function TopSort(G)
        Q \leftarrow \mathsf{All} \; \mathsf{Sources}
        while !empty(Q) do
            v \leftarrow \deg(Q)
             Output v
 5:
             Remove v, add new sources to Q
 6:
        end while
```

What is the complexity of step 6?

No priority queue needed

```
while len(Q) > 0:
    v = Q.popleft()
    rank[v]=len(output)
    output.append(v)
    for (u,_) in G[v]:
        count[u] -= 1
        if count[u] == 0:
            Q.append(u)
```

Shortest Paths in DAGs

Every path in a DAG goes through nodes in linearized (topological sort) order.

Shortest Paths in DAGs

- Every path in a DAG goes through nodes in linearized (topological sort) order.
- every node is reached via its predecessors

Shortest Paths in DAGs

- Every path in a DAG goes through nodes in linearized (topological sort) order.
- every node is reached via its predecessors
- So we need a single loop after sorting.

What makes this *Dynamic Programming*?

Ordered Subproblems

In order to solve our problem in a single pass, we need

 \blacktriangleright An ordered set of subproblems L(i)

What makes this *Dynamic Programming*?

Ordered Subproblems

In order to solve our problem in a single pass, we need

- \blacktriangleright An ordered set of subproblems L(i)
- Each subproblem L(i) can be solved using only the answers for L(j), for j < i.