CS3383 Unit 3: Dynamic Programming
David Bremner

March 1, 2024

QOutline

Dynamic Programming
Shortest path in DAG

March Break Hotels

Scenario

Wanted Cheap holiday

Costs Hotel + Taxi, no charge for
inconvenience

March Break Hotels

Scenario

Wanted Cheap holiday

Costs Hotel + Taxi, no charge for
inconvenience

Taxi Cost
a b ¢ aprt
a 0 10 30 50
b 10 0 30 50
c 30 30 0 50
aprt 50 50 50 O

Hotel Price
1 2 3 4
100 100 100 100
b 8 40 120 120
50 80 80 80

It's a trap!

Hotel Price Taxi Cost .

1 5 3 4 a b c airport
a 100 100 100 100 : 100 100 28 gg
b 80 40 120 120

c 1000 1000 O 500

¢ 50 80 80 80 airport 50 50 50 O

Let's get graphical

airport

airport

Day 1

Day 2

Day 3

Day 4

Let's get graphical

a c c a
150 \
airport 130 b b b b airport
%‘ 5/007
c a a c
Day 1 Day 2 Day 3 Day 4

Let's get graphical

150

airport

130

/

1100
1080

Day 1

airport

Day 2

Day 3

Day 4

Let's get graphical

airport

2

80

1100

80

130

80

/

110

Day 1

500

airport

100

Day 2

\

Day 3

Day 4

Let's get graphical

100
b 100 a

130 1100 XY

80

. 150
airport a c a
80 130

80

[50 b b » airport

500
b
a ¢
1080

Day 1 Day 2 Day 3 Day 4

Djikstra considered overkill

P There are no negative edge weights, so shortest path
is tractable.

P Even better, we have an acyclic graph (why?)

P So we find a shortest path in linear time after
topological sorting.

“Recursive” topological sort

Recursive "algorithm”

1. Remove a source from the DAG, and put it first.
2. Topologically sort the remaining graph.

P how to quickly find a source?

“Recursive” topological sort

Recursive "algorithm”

1. Remove a source from the DAG, and put it first.
2. Topologically sort the remaining graph.

P how to quickly find a source?

P Use some auxilary data structure to track
sources across iterations

Using a Queue

BFS-like topological sort

function ToPSORT(G)
@ < All Sources

while lempty(Q) do
v+ deq(Q)

end while

1:
2
3
4
5:
6
7
8. end function

Using a Queue

BFS-like topological sort

1: function ToPSORT(G)

2 @ < All Sources

3 while lempty(Q) do

4 v < deq(Q)

5: Output v

6 Remove v, add new sources to)
7 end while

8. end function

Using a Queue

BFS-like topological sort

1: function ToPSORT(G)

2 @ < All Sources

3 while lempty(Q) do

4 v < deq(Q)

5: Output v

6 Remove v, add new sources to)
7 end while

8. end function

P What is the complexity of step 67

Topological sort with counters

—
c|1 gl
aO/' \\
el el
b |0 e |1 i]| 2 k
N //
1

Topological sort with counters

fl/go\‘

J

T~

. /'

b|OF»le |l —»i 271
a a (i

Topological sort with counters

T~
. | —
e| 0 —»i]| 2
711{
g

Topological sort with counters

fO/\

:

0 .
N

J
k
e

eO—»iZ%

Topological sort with counters

No priority queue needed

while len(Q) > O:
v = Q.popleft ()
rank [v]=1en (output)
output .append (v)
for (u,_) in G[v]:
count [u] -= 1
if count[u] ==
Q.append (u)

O:

Shortest Paths in DAGs

P Every path in a DAG goes through nodes in
linearized (topological sort) order.

for j in range(rank[rootl]+1l,n):
v = order[j]
for (prev,w) in Inl[v]:
if w+dist[prev] < distl[v]:
dist [v]=w+dist [prev]

Shortest Paths in DAGs

P Every path in a DAG goes through nodes in
linearized (topological sort) order.

P cvery node is reached via its predecessors

for j in range(rank[rootl]+1l,n):
v = order[j]
for (prev,w) in Inl[v]:
if w+dist[prev] < distl[v]:
dist [v]=w+dist [prev]

Shortest Paths in DAGs

P Every path in a DAG goes through nodes in
linearized (topological sort) order.

P cvery node is reached via its predecessors
P So we need a single loop after sorting.

for j in range(rank[rootl]+1l,n):
v = order[j]
for (prev,w) in Inl[v]:
if w+dist[prev] < distl[v]:
dist [v]=w+dist [prev]

What makes this Dynamic Programming?

Ordered Subproblems

In order to solve our problem in a single pass, we need
P An ordered set of subproblems L (%)

What makes this Dynamic Programming?

Ordered Subproblems

In order to solve our problem in a single pass, we need
P An ordered set of subproblems L(3)

P Each subproblem L(i) can be solved using only
the answers for L(j), for j < i.

	Dynamic Programming
	Shortest path in DAG

