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Dynamic Programming
Shortest path in DAG



March Break Hotels

Scenario

Wanted Cheap holiday

Costs Hotel + Taxi, no charge for
inconvenience



March Break Hotels

Scenario

Wanted Cheap holiday

Costs Hotel + Taxi, no charge for
inconvenience

Taxi Cost
a b ¢ aprt
a 0 10 30 50
b 10 0 30 50
c 30 30 0 50
aprt 50 50 50 O

Hotel Price
1 2 3 4
100 100 100 100
b 8 40 120 120
50 80 80 80



It's a trap!

Hotel Price Taxi Cost .

1 5 3 4 a b c airport
a 100 100 100 100 : 100 100 28 gg
b 80 40 120 120

c 1000 1000 O 500

¢ 50 80 80 80 airport 50 50 50 O



Let's get graphical
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Let's get graphical
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Let's get graphical
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Djikstra considered overkill

P There are no negative edge weights, so shortest path
is tractable.

P Even better, we have an acyclic graph (why?)

P So we find a shortest path in linear time after
topological sorting.



“Recursive” topological sort

Recursive "algorithm”

1. Remove a source from the DAG, and put it first.
2. Topologically sort the remaining graph.

P how to quickly find a source?



“Recursive” topological sort

Recursive "algorithm”

1. Remove a source from the DAG, and put it first.
2. Topologically sort the remaining graph.

P how to quickly find a source?

P Use some auxilary data structure to track
sources across iterations



Using a Queue

BFS-like topological sort

function ToPSORT(G)
@ < All Sources

while lempty(Q) do
v+ deq(Q)

end while

1:
2
3
4
5:
6
7
8. end function



Using a Queue

BFS-like topological sort

1: function ToPSORT(G)

2 @ < All Sources

3 while lempty(Q) do

4 v < deq(Q)

5: Output v

6 Remove v, add new sources to )
7 end while

8. end function



Using a Queue

BFS-like topological sort

1: function ToPSORT(G)

2 @ < All Sources

3 while lempty(Q) do

4 v < deq(Q)

5: Output v

6 Remove v, add new sources to )
7 end while

8. end function

P What is the complexity of step 67



Topological sort with counters
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Topological sort with counters
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Topological sort with counters
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Topological sort with counters




No priority queue needed

while len(Q) > O:
v = Q.popleft ()
rank [v]=1en (output)
output .append (v)
for (u,_ ) in G[v]:
count [u] -= 1
if count[u] ==
Q.append (u)

O:



Shortest Paths in DAGs

P Every path in a DAG goes through nodes in
linearized (topological sort) order.

for j in range(rank[rootl]+1l,n):
v = order[j]
for (prev,w) in Inl[v]:
if w+dist[prev] < distl[v]:
dist [v]=w+dist [prev]
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Shortest Paths in DAGs

P Every path in a DAG goes through nodes in
linearized (topological sort) order.

P cvery node is reached via its predecessors
P So we need a single loop after sorting.

for j in range(rank[rootl]+1l,n):
v = order[j]
for (prev,w) in Inl[v]:
if w+dist[prev] < distl[v]:
dist [v]=w+dist [prev]



What makes this Dynamic Programming?

Ordered Subproblems

In order to solve our problem in a single pass, we need
P An ordered set of subproblems L (%)



What makes this Dynamic Programming?

Ordered Subproblems

In order to solve our problem in a single pass, we need
P An ordered set of subproblems L(3)

P Each subproblem L(i) can be solved using only
the answers for L(j), for j < i.
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