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Race Conditions
Non-Determinism

▶ result varies from run to run
▶ sometimes OK (in certain randomized algorithms)
▶ mostly a bug.

x = 0
parallel for i ← 1 to 2 do

x ← x + 1

▶ nondeterministic unless incrementing x is
atomic
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Racy execution

𝑥 = 0

𝑟1 ← 𝑥𝑟2 ← 𝑥

incr 𝑟1incr 𝑟2

𝑥 ← 𝑟1𝑥 ← 𝑟2

print 𝑥

▶ all possible topological sorts are
valid execution orders

▶ In particular it’s not hard for
both loads to complete before
either store

▶ In practice there are various
synchronization strategies
(locks, etc…).

▶ Here we will insist that parallel
strands are independent
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Racy demo

#pragma omp parallel for
for (int i=0; i<10000; i++ ){

x++ ;
}

▶ what is the final value of x?



We can write bad code with spawn too

sum(i, j)
if (i>j)
return;

if (i==j)
x++;

else
m=(i+j)/2;
spawn sum(i,m);
sum(m+1,j);
sync;

▶ here we have the same
non-deterministic interleaving of
reading and writing 𝑥

▶ the style is a bit unnatural, in
particular we are not using the
return value of spawn at all.



spawn race demo
static void
sum(long i, long j, long *out) {

if (i>j)
return;

if (i==j) {
(*out)++ ;

} else {
long m=(i+j)/2;

#pragma omp task
sum(i,m,out);
sum(m+1,j, out);

#pragma omp taskwait
}



Being more functional helps

sum(i, j)
if (i>j) return 0;
if (i==j) return i;

m ← (i+j)/2;

left ← spawn sum(i,m);
right ← sum(m+1,j);
sync;
return left + right;

▶ each strand writes into
different variables

▶ sync is used as a barrier to
serialize
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functional sum demo
long sum(long i, long j) {

if (i>j) return 0;
if (i==j) {

return i;
} else {

long left ,right ,m=(i+j)/2;
#pragma omp task shared(left)

left = sum(i,m);
right = sum(m+1,j);

#pragma omp taskwait
return left+right;

}
}



Single Writer races

x ← spawn foo(x)
y ← foo(x)
sync

▶ arguments to spawned routines are
evaluated in the parent context

▶ but this isn’t enough to be race free.
▶ which value 𝑥 is passed to the second call

of ’foo’ depends how long the first one
takes.



Single Writer races

x ← spawn foo(x)
y ← foo(x)
sync

▶ arguments to spawned routines are
evaluated in the parent context

▶ but this isn’t enough to be race free.

▶ which value 𝑥 is passed to the second call
of ’foo’ depends how long the first one
takes.



Single Writer races

x ← spawn foo(x)
y ← foo(x)
sync

▶ arguments to spawned routines are
evaluated in the parent context

▶ but this isn’t enough to be race free.
▶ which value 𝑥 is passed to the second call

of ’foo’ depends how long the first one
takes.



Scheduling
Scheduling Problem
Abstractly Mapping threads to processors
Pragmatically Mapping logical threads to a thread pool.

Ideal Scheduler
On-Line No advance knowledge of when threads will spawn or

complete.
Distributed No central controller.

▶ to simplify analysis, we relax the second condition
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A greedy centralized scheduler
Maintain a ready queue of strands ready to run.

Scheduling Step
Complete Step If ≥ 𝑝 (# processors) strands are ready, assign 𝑝

strands to processors.

Incomplete Step Otherwise, assign all waiting strands to processors

▶ To simplify analysis, split any non-unit strands into a chain of
unit strands

▶ Therefore, after one time step, we schedule again.
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Optimal and Approximate Scheduling
Recall

𝑇𝑝 ≥ 𝑇1/𝑝(work law)
𝑇𝑝 ≥ 𝑇∞(span)

Therefore

𝑇𝑝 ≥ max(𝑇1/𝑝, 𝑇∞) = opt

With the greedy algorithm we can achieve

𝑇𝑝 ≤ 𝑇1
𝑝

+ 𝑇∞ ≤ 2 max(𝑇1/𝑝, 𝑇∞) = 2 × opt
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Counting Complete Steps

▶ Let 𝑘 be the number of complete steps.

▶ At each complete step we do 𝑝 units of work.
▶ Every unit of work corresponds to one step of the serialization,

so 𝑘𝑝 ≤ 𝑇1.
▶ Therefore 𝑘 ≤ 𝑇1/𝑝
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Counting Incomplete Steps

▶ Let 𝐺 be the DAG of remaining strands.

▶ ready queue = the set of sources in 𝐺
▶ In incomplete step runs all sources in 𝐺
▶ Every longest path starts at a source

▶ After an incomplete step, length of longest path shrinks by 1
▶ There can be at most 𝑇∞ incomplete steps.
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Parallel Slackness

parallel slackness = parallelism
𝑝

= 𝑇1
𝑝𝑇∞

speedup = 𝑇1
𝑇𝑝

≤ 𝑇1
𝑇∞

= 𝑝 × slackness

▶ If slackness < 1, speedup < 𝑝

▶ If slackness ≥ 1, linear speedup achievable for given number of
processors
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Slackness and Scheduling

slackness ∶= 𝑇1
𝑝 × 𝑇∞

Theorem
For suf. large slackness, greedy
scheduler approaches time 𝑇1/𝑝.

Suppose

𝑇1/(𝑝 × 𝑇∞) ≥ 𝑐

(1) 𝑇∞ ≤ 𝑇1
𝑐𝑝

With the greedy scheduler,

𝑇𝑝 ≤ (𝑇1
𝑝

+ 𝑇∞)

Substituting (1),

𝑇𝑝 ≤ 𝑇1
𝑝

(1 + 1
𝑐
)
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