CS3383 Unit 5.1: Travelling Salesperson Problem

David Bremner

April 2, 2024

Combinatorial Search

Travelling Salesperson problem Dynamic Programming for TSP Branch and Bound

Travelling Salesperson Problem

TSP

Given G = (V, E)Find a shortest tour that visits all nodes.

Brute Force

- n! different tours
- Each one takes $\Theta(n)$ time to test
- \blacktriangleright Using Stirling's approximation for n!

$$n\cdot n!\in \Theta(n^{n+\frac{3}{2}}e^{-n})$$

Subproblems for Dynamic Programming

C(S,j) length of shortest path starting at 1, visiting all nodes in S and ending at j.

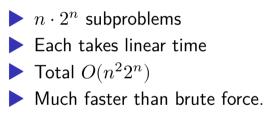
Recurrence

$$C(S,j) = \min_{i \in S \smallsetminus \{j\}} C(S \smallsetminus \{j\},i) + d_{ij}$$

Dynamic Programming for TSP

$$\begin{array}{l} C[\{1\},1] \leftarrow 0 \\ \texttt{for } \texttt{s} = \texttt{2} \texttt{ to n } \texttt{do} \\ \texttt{for } \forall \texttt{ subsets } S \ni \texttt{1} \texttt{ of size } \texttt{s} \texttt{ do} \\ C[S,1] \leftarrow \infty \\ \texttt{for } j \in S \setminus \{\texttt{1}\} \texttt{ do} \\ C[S,j] \leftarrow \min_{i \in S \setminus \{j\}} C[S \setminus \{j\},i] + d_{ij} \\ \texttt{end} \\ \texttt{end} \\ \texttt{end} \\ \texttt{return } \min_{j} C[V,j] + d_{j1} \end{array}$$

Analysis



Branch and Bound

In general dynamic programming is too slow (not surprising since it's exact)

In practice people use an enhanced backtracking method called branch and bound.

lower bounds

Suppose we are minimizing some function f(·).
We need some function lowerbound such that
lowerbound(P_i) ≤ f(P_i) for all subproblems P_i
lowerbound is faster to compute than f

Branch and Bound

In general dynamic programming is too slow (not surprising since it's exact)

In practice people use an enhanced backtracking method called branch and bound.

lower bounds

Suppose we are minimizing some function f(·).
We need some function lowerbound such that
lowerbound(P_i) ≤ f(P_i) for all subproblems P_i
lowerbound is faster to compute than f

Branch and Bound in General

```
def BranchAndBound (P_0):
       S \leftarrow \{P_0\}
       \texttt{best} \leftarrow \infty
       while S \neq \emptyset:
               (P, S) \leftarrow \operatorname{pop}(S)
               for P_i \in \text{expand}(P):
                       if test (P_i) = SUCCESS:
                               best \leftarrow \min(\text{best}, f(P_i))
                       elif lowerbound(P_i) < \text{best}:
                               S \leftarrow S \cup \{P_i\}
```

return best

Subproblems for B&B TSP

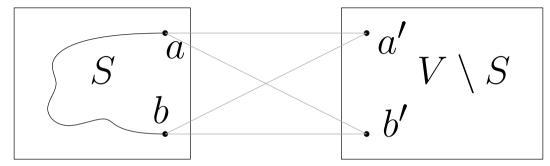
 $\begin{array}{l} [a,S,b] \mbox{ path from } a \mbox{ to } b \mbox{ passing through all of } S \\ \mbox{completed by cheapest path from } b \mbox{ to } a \mbox{ using } V\smallsetminus S. \\ P_0 \end{tabular} \left[a, \{\,a\,\}, a\right] \end{array}$

Subproblems for B&B TSP

 $\begin{array}{l} [a,S,b] \mbox{ path from } a \mbox{ to } b \mbox{ passing through all of } S \\ \mbox{completed by cheapest path from } b \mbox{ to } a \mbox{ using } V\smallsetminus S. \\ P_0 \end{tabular} \left[a, \{\ a \ \}, a \right] \end{array}$

 $\mathsf{expand}([a,S,b]) = \{ \, [a,S \cup \{ \, x \, \}, x] \mid x \in V \smallsetminus S \, \}$

Lower bounds from MST



We need to connect

- $\blacktriangleright a$ to some $a' \in V \smallsetminus S$
- $\blacktriangleright \ b \text{ to some } b' \in V \smallsetminus S$
- ▶ a' to b' using all nodes of $V \setminus S$.
- Last is a (special) spanning tree of $V \setminus S$.

