CS3383 Unit 5.1: Travelling Salesperson Problem

David Bremner

April 2, 2024

Combinatorial Search
Travelling Salesperson problem
Dynamic Programming for TSP
Branch and Bound

Travelling Salesperson Problem

 TSPGiven $G=(V, E)$
Find a shortest tour that visits all nodes.

Brute Force

- n ! different tours
- Each one takes $\Theta(n)$ time to test
- Using Stirling's approximation for n !

$$
n \cdot n!\in \Theta\left(n^{n+\frac{3}{2}} e^{-n}\right)
$$

Subproblems for Dynamic Programming

$C(S, j)$ length of shortest path starting at 1 , visiting all nodes in S and ending at j.
Recurrence

$$
C(S, j)=\min _{i \in S \backslash\{j\}} C(S \backslash\{j\}, i)+d_{i j}
$$

Dynamic Programming for TSP

$$
\begin{aligned}
& C[\{1\}, 1] \leftarrow 0 \\
& \text { for } \mathrm{s}= 2 \text { to } \mathrm{n} \text { do } \\
& \text { for } \forall \text { subsets } S \ni 1 \text { of size } s \text { do } \\
& C[S, 1] \leftarrow \infty \\
& \text { for } j \in S \backslash\{1\} \text { do } \\
& C[S, j] \leftarrow \min _{i \in S \backslash\{j\}} C[S \backslash\{j\}, i]+d_{i j} \\
& \text { end } \\
& \text { end } \\
& \text { end } \\
& \text { return } \min _{j} C[V, j]+d_{j 1}
\end{aligned}
$$

Analysis

- $n \cdot 2^{n}$ subproblems
- Each takes linear time
- Total $O\left(n^{2} 2^{n}\right)$
- Much faster than brute force.

Branch and Bound

$>$ In general dynamic programming is too slow (not surprising since it's exact)

- In practice people use an enhanced backtracking method called branch and bound.

lower bounds

- Suppose we are minimizing some function $f(\cdot)$.
\rightarrow We need some function lowerbound such that
- lowerbound $\left(P_{i}\right) \leq f\left(P_{i}\right)$ for all subproblems P_{i}
- lowerbound is faster to compute than f

Branch and Bound

$>$ In general dynamic programming is too slow (not surprising since it's exact)

- In practice people use an enhanced backtracking method called branch and bound.

lower bounds

- Suppose we are minimizing some function $f(\cdot)$.
\rightarrow We need some function lowerbound such that
- lowerbound $\left(P_{i}\right) \leq f\left(P_{i}\right)$ for all subproblems P_{i}
- lowerbound is faster to compute than f

Branch and Bound in General

def BranchAndBound $\left(P_{0}\right)$:
$S \leftarrow\left\{P_{0}\right\}$
best $\leftarrow \infty$
while $S \neq \emptyset$:

$$
\begin{aligned}
& (P, S) \leftarrow \operatorname{pop}(S) \\
& \text { for } P_{i} \in \operatorname{expand}(P): \\
& \text { if test }\left(P_{i}\right)=\text { SUCCESS: } \\
& \text { best } \leftarrow \min \left(\text { best, } f\left(P_{i}\right)\right) \\
& \text { elif lowerbound }\left(P_{i}\right)<\text { best: } \\
& S \leftarrow S \cup\left\{P_{i}\right\}
\end{aligned}
$$

return best

Subproblems for B\&B TSP

[a, S, b] path from a to b passing through all of S completed by cheapest path from b to a using $V \backslash S$.

$$
P_{0}[a,\{a\}, a]
$$

Subproblems for B\&B TSP

[a, S, b] path from a to b passing through all of S completed by cheapest path from b to a using $V \backslash S$.

$$
P_{0}[a,\{a\}, a]
$$

$$
\operatorname{expand}([a, S, b])=\{[a, S \cup\{x\}, x] \mid x \in V \backslash S\}
$$

Lower bounds from MST

We need to connect

- a to some $a^{\prime} \in V \backslash S$
- b to some $b^{\prime} \in V \backslash S$
$>a^{\prime}$ to b^{\prime} using all nodes of $V \backslash S$.
$>$ Last is a (special) spanning tree of $V \backslash S$.

