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Travelling Salesperson Problem
TSP

Given 𝐺 = (𝑉 , 𝐸)
Find a shortest tour that visits all nodes.

Brute Force
▶ 𝑛! different tours

▶ Each one takes Θ(𝑛) time to test
▶ Using Stirling’s approximation for 𝑛!

𝑛 · 𝑛! ∈ Θ(𝑛𝑛+3
2 𝑒−𝑛)
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Subproblems for Dynamic Programming

𝐶(𝑆, 𝑗) length of shortest path starting at 1, visiting all nodes in
𝑆 and ending at 𝑗.

Recurrence
𝐶(𝑆, 𝑗) = min

𝑖∈𝑆∖{ 𝑗 }
𝐶(𝑆 ∖ { 𝑗 }, 𝑖) + 𝑑𝑖𝑗



Dynamic Programming for TSP

𝐶[{ 1 }, 1] ← 0
for s = 2 to n do

for ∀ subsets 𝑆 ∋ 1 of size 𝑠 do
𝐶[𝑆, 1] ← ∞
for 𝑗 ∈ 𝑆 ∖ { 1 } do

𝐶[𝑆, 𝑗] ← min𝑖∈𝑆∖{ 𝑗 } 𝐶[𝑆 ∖ { 𝑗 }, 𝑖] + 𝑑𝑖𝑗
end

end
end
return min𝑗 𝐶[𝑉 , 𝑗] + 𝑑𝑗1



Analysis
▶ 𝑛 · 2𝑛 subproblems, each takes linear time: total Θ(𝑛22𝑛)

▶ Brute force 𝑏(𝑛) ≥ 𝑐1𝑛𝑛+3/2𝑒−𝑛

▶ speedup

𝑠(𝑛) ≥ 𝑐1𝑛𝑛+3/2𝑒−𝑛

𝑐2𝑛22𝑛

≥ 𝑐3
1√
𝑛

( 𝑛
2𝑒

)
𝑛

for 𝑛 ≥ 6

≥ 𝑐42𝑛
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Branch and Bound
▶ In general dynamic programming is too slow (not surprising

since it’s exact)

▶ In practice people use an enhanced backtracking method called
branch and bound.

lower bounds
▶ Suppose we are minimizing some function 𝑓(·).
▶ We need some function lowerbound such that

▶ lowerbound(𝑃𝑖) ≤ 𝑓(𝑃𝑖) for all subproblems 𝑃𝑖
▶ lowerbound is faster to compute than 𝑓
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Branch and Bound in General
def BranchAndBound(𝑃0):

𝑆 ← { 𝑃0 }
best ← ∞
while 𝑆 ≠ ∅:

(𝑃 , 𝑆) ← pop(𝑆)
for 𝑃𝑖 ∈ expand(𝑃 ):

if test(𝑃𝑖) = SUCCESS:
best ← min(best, 𝑓(𝑃𝑖))

elif lowerbound(𝑃𝑖) < best:
𝑆 ← 𝑆 ∪ { 𝑃𝑖 }

return best



Subproblems for B&B TSP

[𝑎, 𝑆, 𝑏] path from 𝑎 to 𝑏 passing through 𝑆
completed by cheapest path from 𝑏 to 𝑎 using 𝑉 ∖ 𝑆.

𝑃0 [𝑎, { 𝑎 }, 𝑎]

expand([𝑎, 𝑆, 𝑏]) = { [𝑎, 𝑆 ∪ { 𝑥 }, 𝑥] ∣ 𝑥 ∈ 𝑉 ∖ 𝑆 }
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Lower bounds from MST

S V \ Sa

b

a′

b′

We need to connect
▶ 𝑎 to some 𝑎′ ∈ 𝑉 ∖ 𝑆

▶ 𝑏 to some 𝑏′ ∈ 𝑉 ∖ 𝑆
▶ 𝑎′ to 𝑏′ using all nodes of 𝑉 ∖ 𝑆.
▶ Last is a (special) spanning tree of 𝑉 ∖ 𝑆.



Lower bounds from MST

S V \ Sa

b

a′

b′

We need to connect
▶ 𝑎 to some 𝑎′ ∈ 𝑉 ∖ 𝑆
▶ 𝑏 to some 𝑏′ ∈ 𝑉 ∖ 𝑆

▶ 𝑎′ to 𝑏′ using all nodes of 𝑉 ∖ 𝑆.
▶ Last is a (special) spanning tree of 𝑉 ∖ 𝑆.



Lower bounds from MST

S V \ Sa

b

a′

b′

We need to connect
▶ 𝑎 to some 𝑎′ ∈ 𝑉 ∖ 𝑆
▶ 𝑏 to some 𝑏′ ∈ 𝑉 ∖ 𝑆
▶ 𝑎′ to 𝑏′ using all nodes of 𝑉 ∖ 𝑆.

▶ Last is a (special) spanning tree of 𝑉 ∖ 𝑆.



Lower bounds from MST

S V \ Sa

b

a′

b′

We need to connect
▶ 𝑎 to some 𝑎′ ∈ 𝑉 ∖ 𝑆
▶ 𝑏 to some 𝑏′ ∈ 𝑉 ∖ 𝑆
▶ 𝑎′ to 𝑏′ using all nodes of 𝑉 ∖ 𝑆.
▶ Last is a (special) spanning tree of 𝑉 ∖ 𝑆.


	Combinatorial Search
	Travelling Salesperson problem
	Dynamic Programming for TSP
	Branch and Bound


