CS3383 Unit 5.2: Travelling Salesperson
Problem

David Bremner

December 6, 2020

QOutline

Combinatorial Search
Travelling Salesperson problem
Dynamic Programming for TSP
Branch and Bound

Travelling Salesperson Problem
TSP
Given G = (V, E)
Find a shortest tour that visits all nodes.

Brute Force

» n! different tours

Travelling Salesperson Problem
TSP
Given G = (V, E)
Find a shortest tour that visits all nodes.

Brute Force

» n! different tours
P Each one takes ©(n) time to test

Travelling Salesperson Problem
TSP
Given G = (V, E)
Find a shortest tour that visits all nodes.

Brute Force

» n! different tours
P Each one takes O(n) time to test
P Using Stirling’s approximation for n!

n-nl € O(n"tze ™)

Subproblems for Dynamic Programming

C'(S,7) length of shortest path starting at 1, visiting all nodes in
S and ending at j.

Recurrence

C(S.5) = min C(S\{jY.i)+d.,
(S,7) i (S\{Jj},i)+d;

Dynamic Programming for TSP

C[{1},1]«+0
for s = 2 to n do
for V subsets S of size s do
C[S,1] + o
for jES\{l} do
O[S,] mineg, ;) CIS\ {5},] +
end
end
end
return min; C[V,j] +d;;

Analysis

P 7 - 2" subproblems, each takes linear time: total ©(n?2")

Analysis
P 7 - 2" subproblems, each takes linear time: total ©(n?2")
» Brute force b(n) > ¢,n"*3/2e™"

Analysis
P 7 - 2" subproblems, each takes linear time: total ©(n?2")
» Brute force b(n) > ¢,n"*3/2e™"

P speedup

Analysis
P 1 - 2" subproblems, each takes linear time
» Brute force b(n) > ¢,n"*3/2e™"

P speedup

n+3/2 ,—n

cn e

>

s(n) 2 con?2n
2o 7z (52)

C —_— —_—

= B/n \2e

forn > 6

> ¢, 2"

. total ©(n22")

Branch and Bound

P In general dynamic programming is too slow (not surprising
since it's exact)

Branch and Bound

P In general dynamic programming is too slow (not surprising
since it's exact)

P In practice people use an enhanced backtracking method called
branch and bound.

Branch and Bound

P In general dynamic programming is too slow (not surprising
since it's exact)

P In practice people use an enhanced backtracking method called
branch and bound.

lower bounds

P Suppose we are minimizing some function f(-).

P We need some function lowerbound such that

P lowerbound(P;) < f(P;) for all subproblems P,
P lowerbound is faster to compute than f

Branch and Bound in General

def BranchAndBound (F,):
S {F}
best < o0
while S #0:
(P, S) < pop(5)
for P, € expand(P):
if test(F;,) = SUCCESS:
best < min(best, f(F;))
elif lowerbound(P,) < best:
S+ SU{P}

return best

Subproblems for B&B TSP

la,S,b] path from a to b passing through S
completed by cheapest path from b to a using V' \ S.

P() [CL?{CL}a@]

Subproblems for B&B TSP

la,S,b] path from a to b passing through S
completed by cheapest path from b to a using V' \ S.

P() [CL?{CL}a@]

expand([a, S,b]) = {[a, SU{x },z] |z € V\ S}

Lower bounds from MST

We need to connect
P atosomea e V\ S

Lower bounds from MST

We need to connect
» atosomea € V\S
» btosomed € V\S

Lower bounds from MST

We need to connect
P atosomea € V\S
» btosomed € V\S
P o’ to b using all nodes of V' \ S.

Lower bounds from MST

We need to connect
P atosomea € V\S
» btosomed € V\S
P o’ to b using all nodes of V' \ S.
P Last is a (special) spanning tree of V' \ S.

	Combinatorial Search
	Travelling Salesperson problem
	Dynamic Programming for TSP
	Branch and Bound

