CS3383 Unit 5.2: Travelling Salesperson Problem

David Bremner

December 6, 2020

Outline

Combinatorial Search

Travelling Salesperson problem Dynamic Programming for TSP Branch and Bound

Travelling Salesperson Problem

TSP

Given G = (V, E)Find a shortest tour that visits all nodes.

Brute Force

Travelling Salesperson Problem

TSP

Given G = (V, E)Find a shortest tour that visits all nodes.

Brute Force

- n! different tours
- Each one takes $\Theta(n)$ time to test

Travelling Salesperson Problem

TSP

Given G = (V, E)Find a shortest tour that visits all nodes.

Brute Force

- n! different tours
- Each one takes $\Theta(n)$ time to test
- \blacktriangleright Using Stirling's approximation for n!

$$n\cdot n!\in \Theta(n^{n+\frac{3}{2}}e^{-n})$$

Subproblems for Dynamic Programming

C(S,j) length of shortest path starting at 1, visiting all nodes in S and ending at j.

Recurrence

$$C(S,j) = \min_{i \in S \smallsetminus \{j\}} C(S \setminus \{j\}, i) + d_{ij}$$

Dynamic Programming for TSP

$$C[\{1\},1] \leftarrow 0$$

for s = 2 to n do
for \forall subsets S of size s do
 $C[S,1] \leftarrow \infty$
for $j \in S \setminus \{1\}$ do
 $C[S,j] \leftarrow \min_{i \in S \setminus \{j\}} C[S \setminus \{j\},i] + d_{ij}$
end
end
end
return $\min_j C[V,j] + d_{j1}$

\triangleright $n \cdot 2^n$ subproblems, each takes linear time: total $\Theta(n^2 2^n)$

n · 2ⁿ subproblems, each takes linear time: total Θ(n²2ⁿ)
Brute force *b*(*n*) ≥ *c*₁n^{n+3/2}e⁻ⁿ

▶ $n \cdot 2^n$ subproblems, each takes linear time: total $\Theta(n^2 2^n)$ ▶ Brute force $b(n) \ge c_1 n^{n+3/2} e^{-n}$

speedup

n · 2ⁿ subproblems, each takes linear time: total Θ(n²2ⁿ)
Brute force *b*(*n*) ≥ *c*₁*n*^{*n*+3/2}*e*^{-*n*}
speedup

$$\begin{split} s(n) \geq \frac{c_1 n^{n+3/2} e^{-n}}{c_2 n^2 2^n} \\ \geq c_3 \frac{1}{\sqrt{n}} \left(\frac{n}{2e}\right)^n \end{split}$$

for $n \ge 6$

 $\geq c_4 2^n$

Branch and Bound

In general dynamic programming is too slow (not surprising since it's exact)

Branch and Bound

In general dynamic programming is too slow (not surprising since it's exact)

In practice people use an enhanced backtracking method called branch and bound.

Branch and Bound

In general dynamic programming is too slow (not surprising since it's exact)

In practice people use an enhanced backtracking method called branch and bound.

lower bounds

▶ Suppose we are minimizing some function f(·).
▶ We need some function lowerbound such that
▶ lowerbound(P_i) ≤ f(P_i) for all subproblems P_i
▶ lowerbound is faster to compute than f

Branch and Bound in General

```
def BranchAndBound (P_0):
   S \leftarrow \{P_0\}
   \texttt{best} \leftarrow \infty
   while S \neq \emptyset:
          (P,S) \leftarrow \operatorname{pop}(S)
          for P_i \in \text{expand}(P):
                  if test (P_i) = SUCCESS:
                          best \leftarrow \min(\text{best}, f(P_i))
                  elif lowerbound(P_i) < \text{best}:
                          S \leftarrow S \cup \{P_i\}
   return best
```


Subproblems for B&B TSP

 $\begin{array}{l} [a,S,b] \mbox{ path from } a \mbox{ to } b \mbox{ passing through } S \\ \mbox{ completed by cheapest path from } b \mbox{ to } a \mbox{ using } V\smallsetminus S. \\ P_0 \end{tabular} \left[a, \{\ a \ \}, a\right] \end{array}$

Subproblems for B&B TSP

$\begin{array}{l} [a,S,b] \mbox{ path from } a \mbox{ to } b \mbox{ passing through } S \\ \mbox{ completed by cheapest path from } b \mbox{ to } a \mbox{ using } V\smallsetminus S. \\ P_0 \end{tabular} \left[a, \{\end{tabular}\}, a\right] \end{array}$

 $\mathsf{expand}([a,S,b]) = \{\, [a,S\cup\{\,x\,\},x] \mid x \in V\smallsetminus S\,\}$

$$\blacktriangleright a$$
 to some $a' \in V \smallsetminus S$

- $\blacktriangleright \ a \text{ to some } a' \in V \smallsetminus S$
- $\blacktriangleright \ b \text{ to some } b' \in V \smallsetminus S$

- $\blacktriangleright \ a \text{ to some } a' \in V \smallsetminus S$
- $\blacktriangleright \ b \text{ to some } b' \in V \smallsetminus S$
- ▶ a' to b' using all nodes of $V \setminus S$.

- $\blacktriangleright \ a \text{ to some } a' \in V \smallsetminus S$
- $\blacktriangleright \ b \text{ to some } b' \in V \smallsetminus S$
- ▶ a' to b' using all nodes of $V \setminus S$.
- Last is a (special) spanning tree of $V \setminus S$.

