
CS4613 Lecture 1

David Bremner

January 2, 2025



Online resources
I https://www.cs.unb.ca/~bremner/teaching/cs4613/

I D2L will only be used for handing in online SMoL tutorials
I Homework and (some) tests will be handed via a custom

handin server
I Marked work will be returned via the same server.

https://www.cs.unb.ca/~bremner/teaching/cs4613/
https://www.cs.unb.ca/~bremner/teaching/cs4613/smol-tutorials/
https://www.cs.unb.ca/~bremner/teaching/cs4613/handin-server/


Syllabus

I https://www.cs.unb.ca/~bremner/teaching/cs4613/
printable/

I https://www.cs.unb.ca/~bremner/teaching/cs6905/
printable/

https://www.cs.unb.ca/~bremner/teaching/cs4613/printable/
https://www.cs.unb.ca/~bremner/teaching/cs4613/printable/
https://www.cs.unb.ca/~bremner/teaching/cs6905/printable/
https://www.cs.unb.ca/~bremner/teaching/cs6905/printable/


Getting started

Install racket
https://download.racket-lang.org

Customize https://www.cs.unb.ca/~bremner/
teaching/cs4613/racket/setup

Documentation https://docs.racket-lang.org

https://download.racket-lang.org
https://www.cs.unb.ca/~bremner/teaching/cs4613/racket/setup
https://www.cs.unb.ca/~bremner/teaching/cs4613/racket/setup
https://docs.racket-lang.org


SMoL: Standard Model of Languages
SMoL Core language containing features used to build many

common languages. p. 14
tutor https://www.cs.unb.ca/~bremner/teaching/

cs4613/smol-tutorials
reference raco doc smol or https:

//www.cs.unb.ca/~bremner/teaching/cs4613/docs

1 #lang smol/fun
(defvar x 10)
(deffun (f y) (+ x y))
(f 3)

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=14
https://www.cs.unb.ca/~bremner/teaching/cs4613/smol-tutorials
https://www.cs.unb.ca/~bremner/teaching/cs4613/smol-tutorials
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs
lectures/lecture01/smol1.rkt


Plait: statically typed racket

reference raco doc plait or https:
//www.cs.unb.ca/~bremner/teaching/cs4613/docs

tutorials https://www.cs.unb.ca/~bremner/teaching/
cs4613/tutorials

tour https://www.cs.unb.ca/~bremner/teaching/
cs4613/racket/plait-demo.rkt/

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs
https://www.cs.unb.ca/~bremner/teaching/cs4613/tutorials
https://www.cs.unb.ca/~bremner/teaching/cs4613/tutorials
https://www.cs.unb.ca/~bremner/teaching/cs4613/racket/plait-demo.rkt/
https://www.cs.unb.ca/~bremner/teaching/cs4613/racket/plait-demo.rkt/


Interpreters

I An interpreter maps programs to values (+ side effects). p. 16
I A compiler translates programs to other programs, typically

lower level.
I Most modern languages use a mix of the two evaluation

strategies

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=16


Substitution
I The simplest model of evaluation is substitution
I Consider the following SMoL program

(deffun (f x) (+ x 1))
(f 3)stacker

I We can evaluate it by substituting the argument in the
function body p. 19

(f 3)
→ (+ x 1)[3/x]
→ (+ 3 1)
→ 4

https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28deffun+%28f+x%29+%28%2B+x+1%29%29%0A%28f+3%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=19


Substitution continued
Building on the previous example

smol3
;; f is the same as before
(deffun (g z)

(f (+ z 4)))
(g 5)

We can evaluate in the same way: p. 19

(g 5)
→ (f (+ z 4))[5/z]
→ (f (+ 5 4)) → (f 9)
→ (+ x 1)[9/x]
→ (+ 9 1) → 10

lectures/lecture01/smol3.rkt
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=19


Design choices 1: lazy vs. eager
p. 20

Eager

→ (f (+ 5 4))
→ (f 9)
→ (+ x 1)[9/x]
→ (+ 9 1)

Lazy

(f (+ 5 4))
→ (+ x 1)[(+ 5 4)/x]
→ (+ (+ 5 4) 1)

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=20


Design choices 2: sequential versus parallel
p. 21

Sequential

(+ (f 3) (f 4))
→ (+ (+ x 1)[3/x] (f 3))
→ (+ (+ x 1)[3/x] (+ x 1)[4/x])

Parallel
(+ (f 3) (f 4))

→ (+ (+ x 1)[3/x] (+ x 1)[4/x])

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=21


Surface Syntax: Arithmetic Expressions

Consider a grammar (EBNF) for arithmetic with addition and
multiplication p. 48

grammar ae: fac "+" ae
| fac

fac: atom "*" fac
| atom

atom: NUMBER | "(" ae ")"

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=48
lectures/lecture01/ae-grammar.rkt


Concrete syntax

driver (parse-string "1 + 2 * 3")
(parse-string "1 * 2 + 3")
(parse-string "(1 + 2) * (3 + 4)")

...
'(ae

(fac
(atom "(" (ae (fac (atom 1)) "+" (ae (fac (atom

2)))) ")")
"*"
(fac (atom "(" (ae (fac (atom 3)) "+" (ae (fac

(atom 4)))) ")"))))

lectures/lecture01/ae-driver.rkt


Abstract Syntax

I define-type provides Algebraic Data Types for plait p. 25
I We use them as programs encoding programs

exp (define-type Exp
[num (n : Number)]
[plus (left : Exp) (right : Exp)]
[times (left : Exp) (right : Exp)])

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=25
lectures/lecture01/exp.rkt


Parsing S-Expressions
p. 32

parse (define (parse-s-exp s-exp)
(local [(define (sx n)

(list-ref (s-exp- >list s-exp) n))
(define (px n) (parse-s-exp (sx n)))
(define (? pat) (s-exp-match? pat s-exp))]

(cond
[(? `(ae ANY "+" ANY)) (plus (px 1) (px 3))]
[(? `(ae (fac ANY ...))) (px 1)]
[(? `(fac ANY "*" ANY)) (times (px 1) (px 3))]
[(? `(fac (atom ANY ...))) (px 1)]
[(? `(atom NUMBER)) (num (s-exp- >number (sx 1)))]
[(? `(atom "(" ANY ")")) (px 2)]
[else (error 'parse-s-exp (to-string s-exp))])))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=32
lectures/lecture01/parse-s-exp.rkt


Parsing S-Expressions
p. 32

parse (define (parse-s-exp s-exp)
(local [(define (sx n)

(list-ref (s-exp- >list s-exp) n))
(define (px n) (parse-s-exp (sx n)))
(define (? pat) (s-exp-match? pat s-exp))]

(cond
[(? `(ae ANY "+" ANY)) (plus (px 1) (px 3))]
[(? `(ae (fac ANY ...))) (px 1)]
[(? `(fac ANY "*" ANY)) (times (px 1) (px 3))]
[(? `(fac (atom ANY ...))) (px 1)]
[(? `(atom NUMBER)) (num (s-exp- >number (sx 1)))]
[(? `(atom "(" ANY ")")) (px 2)]
[else (error 'parse-s-exp (to-string s-exp))])))

20
25

-0
1-

02 CS4613 Lecture 1
SImPl: Standard Implementation Plan

Parsing S-Expressions

1. In a sense this is a compiler: it translates one representation of a program
to another

2. There is one case per grammar rule here, because the output from the
brag parser has the same structure for each rule

3. See the text for a more direct way of parsing s-expressions; here we rely on
s-exp-match? to replace those tests.

4. The local functions are used just to reduce boilerplate (and fit the parser
on the page). ’?’ looks exotic, but it just an identifier for Racket

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=32
lectures/lecture01/parse-s-exp.rkt


Testing our parser
p. 30

parse (test
(parse-s-exp
`(ae (fac (atom 1)) "+"

(ae (fac (atom 2) "*" (fac (atom 3))))))
(plus (num 1)

(times (num 2) (num 3))))
(test
(parse-s-exp
`(ae (fac (atom 1) "*" (fac (atom 2))) "+"

(ae (fac (atom 3)))))
(plus (times (num 1) (num 2))

(num 3)))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=30
lectures/lecture01/parse-s-exp.rkt


Testing our parser
p. 30

parse (test
(parse-s-exp
`(ae (fac (atom 1)) "+"

(ae (fac (atom 2) "*" (fac (atom 3))))))
(plus (num 1)

(times (num 2) (num 3))))
(test
(parse-s-exp
`(ae (fac (atom 1) "*" (fac (atom 2))) "+"

(ae (fac (atom 3)))))
(plus (times (num 1) (num 2))

(num 3)))20
25

-0
1-

02 CS4613 Lecture 1
SImPl: Standard Implementation Plan

Testing our parser

1. test is going to be very important in this course
2. test uses equal? for equality testing

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=30
lectures/lecture01/parse-s-exp.rkt


Recursive Evaluation

The important part
In this course we want to focus on the back end of interpreters:
processing (abstract) representations of programs.

p. 28
calc (define (calc e)

(type-case Exp e
[(num n) n]
[(plus l r) (+ (calc l) (calc r))]
[(times l r) (* (calc l) (calc r))]))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=28
lectures/lecture01/calc.rkt


Testing our evaluator

calc (test (calc (num 1)) 1)
(test (calc (num 2.3)) 2.3)
(test (calc (plus (num 1) (num 2))) 3)
(test (calc (plus (plus (num 1) (num 2))

(num 3)))
6)

lectures/lecture01/calc.rkt

	Introduction
	Languages
	Evaluation (of Programs)
	SImPl: Standard Implementation Plan

