
CS4613 Lecture 2

David Bremner

January 2, 2025



Simplified Calculator Parser
If we choose an S-expression based surface syntax, we can simplify
our parser. p. 35

parse (define (parse s)
(local

[(define (sx n) (list-ref (s-exp- >list s) n))
(define (px n) (parse (sx n)))
(define (? pat) (s-exp-match? pat s))]

(cond
[(? `NUMBER) (num (s-exp- >number s))]
[(? `(+ ANY ANY)) (plus (px 1) (px 2))]
[(? `(* ANY ANY)) (times (px 1) (px 2))]
[else (error 'parse (to-string s))])))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=35
lectures/lecture02/parse.rkt


Testing the new parser

parse (test (parse `{* {+ 1 2} {+ 3 4}})
(times
(plus (num 1) (num 2))
(plus (num 3) (num 4))))

(test/exn (parse `{1 + 2}) "")

I How could the negative test be improved?

lectures/lecture02/parse.rkt


Connecting the parser and evaluator

p. 36
run (run : (S-Exp -> Number))

(define (run s)
(calc (parse s)))

(test (run `{+ 1 {+ 2 3}}) 6)
(test (run `{* {+ 2 3} {+ 5 6}}) 55)

I more convenient to write tests (and read them)
I more layers to update for new features

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=36
lectures/lecture02/run.rkt


Design Choices
Simple conditional
(if test-ex then-ex else-ex)
I test-ex is evaluated first, and if ‘true’ (whatever that

means!) then-ex is evaluated, otherwise else-ex p. 38
I Building block for e.g. short circuit evaluation, cond

What is truth?
I Trade off between convenience/conciseness and (bad)

surprises.
I Defining a small set of “falsy” values is a reasonable option.
I With only numbers, we will define if0, with 0 as true

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=38


A SImPl Plan for a new feature

Extend datatype add constructor p. 38
Extend Evaluator new case for type-case
Extend Parser (if any)

(define-type Exp
[num (n : Number)]
[plus (left : Exp) (right : Exp)]
[times (left : Exp) (right : Exp)]
[cnd (test : Exp) (then : Exp) (else : Exp)])

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=38


A SImPl Plan for a new feature
Extend datatype add constructor
Extend Evaluator new case for type-case p. 41
Extend Parser (if any)

(define (calc e)
(type-case Exp e

[(num n) n]
[(plus l r) (+ (calc l) (calc r))]
[(times l r) (* (calc l) (calc r))]
[(cnd c t e) (if (zero? (calc c))

(calc t)
(calc e))]))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=41


Updated parser

if0 (define (parse s)
(local

[(define (sx n) (list-ref (s-exp- >list s) n))
(define (px n) (parse (sx n)))
(define (? pat) (s-exp-match? pat s))]

(cond
[(? `NUMBER) (num (s-exp- >number s))]
[(? `(+ ANY ANY)) (plus (px 1) (px 2))]
[(? `(* ANY ANY)) (times (px 1) (px 2))]
[(? `(if0 ANY ANY ANY)) ;; NEW
(cnd (px 1) (px 2) (px 3))]

[else (error 'parse (to-string s))])))

lectures/lecture02/if0.rkt


Motivation for value type: adding Boolean

p. 41
(define (calc e)

(type-case Exp e
[(num n) n]
[(bool b) b]
...))

I In a statically typed language like plait a function returns one
type.

I Interpreters are often implemented in statically typed
languages.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=41


Motivation for value type: adding Boolean

p. 41
(define (calc e)

(type-case Exp e
[(num n) n]
[(bool b) b]
...))

I In a statically typed language like plait a function returns one
type.

I Interpreters are often implemented in statically typed
languages.20

25
-0

1-
02 CS4613 Lecture 2

Representing values

Motivation for value type: adding Boolean

1. Also in most other, but not all statically typed languages.
2. Why do you think statically typed languages are a common choice for

“infrastructure”?

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=41


Defining datatypes
Need to distinguish (unevaluated) expressions from values. p. 42
(define-type Exp

[numE (n : Number)]
[boolE (b : Boolean)]
[plusE (left : Exp) (right : Exp)]
[timesE (left : Exp) (right : Exp)]
[cndE (test : Exp) (then : Exp) (else : Exp)])

One constructor per (evaluated) type
(define-type Value

[numV (the-number : Number)]
[boolV (the-boolean : Boolean)])

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=42


Defining datatypes
Need to distinguish (unevaluated) expressions from values. p. 42
(define-type Exp

[numE (n : Number)]
[boolE (b : Boolean)]
[plusE (left : Exp) (right : Exp)]
[timesE (left : Exp) (right : Exp)]
[cndE (test : Exp) (then : Exp) (else : Exp)])

One constructor per (evaluated) type
(define-type Value

[numV (the-number : Number)]
[boolV (the-boolean : Boolean)])20

25
-0

1-
02 CS4613 Lecture 2

Representing values

Defining datatypes

1. Renaming of Exp constructors is optional, nothing would break if we kept
the old names. On the other hand, we will see a few places where the
distinction is important.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=42


New return type for evaluator

p. 44
(calc : (Exp -> Value))
(define (calc e)

(type-case Exp e
[(numE n) (numV n)]
[(boolE b) (boolV b)]
...))

The following has multiple type issues. What are they?
[(plusE l r) (+ (calc l) (calc r))]

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=44


What this problem needs is more indirection

(define (num-op op expr1 expr2)
(local [(define (unwrap v)

(type-case Value v
[(numV n) n]
[else (error 'num-op "NaN")]))]

(numV (op (unwrap expr1)
(unwrap expr2)))))

Now our arithmetic cases looks like
[(plusE l r) (num-op + (calc l) (calc r))]
[(timesE l r) (num-op * (calc l) (calc r))]



What this problem needs is more indirection

(define (num-op op expr1 expr2)
(local [(define (unwrap v)

(type-case Value v
[(numV n) n]
[else (error 'num-op "NaN")]))]

(numV (op (unwrap expr1)
(unwrap expr2)))))

Now our arithmetic cases looks like
[(plusE l r) (num-op + (calc l) (calc r))]
[(timesE l r) (num-op * (calc l) (calc r))]20

25
-0

1-
02 CS4613 Lecture 2

Representing values

What this problem needs is more indirection

1. The book uses a simpler function add because there is only one arithmetic
operation.



Updating conditional

We saw the question of what to consider as truthy is surprisingly
complicated. p. 45
[(cndE c t e) (if (boolean-decision (calc c))

(calc t)
(calc e))]

The book’s version is strict:
(define (boolean-decision v)

(type-case Value v
[(boolV b) b]
[else (error 'if "not a boolean")]))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=45


Updating conditional

We saw the question of what to consider as truthy is surprisingly
complicated. p. 45
[(cndE c t e) (if (boolean-decision (calc c))

(calc t)
(calc e))]

The book’s version is strict:
(define (boolean-decision v)

(type-case Value v
[(boolV b) b]
[else (error 'if "not a boolean")]))20

25
-0

1-
02 CS4613 Lecture 2

Representing values

Updating conditional

1. In functional programming, any time something seems complicated, the
usual way to break into more tractable pieces is to define a function. If
nothing else, the name of a function acts as documentation

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=45


Alternative conditional semantics

(define (boolean-decision v)
(type-case Value v

[(boolV b) b]
[(numV n) (not (zero? n))]))

I This is convenient, but what should we do when values can be
functions?



E-Value-ator

calc (define (calc e)
(type-case Exp e

[(numE n) (numV n)]
[(boolE b) (boolV b)]
[(plusE l r) (num-op + (calc l) (calc r))]
[(timesE l r) (num-op * (calc l) (calc r))]
[(cndE c t e) (if (boolean-decision (calc c))

(calc t)
(calc e))]))

(test (calc (plusE (numE 3) (numE 4))) (numV 7))
(test (calc (cndE (boolE #t) (numE 0) (numE 1)))

(numV 0))

lectures/lecture02/calc.rkt

	Parsing Revisited
	Evaluating Conditionals
	Representing values

