
CS4613 Lecture 7: More About Objects

David Bremner

January 28, 2025



Self reference with mutation
p. 94

How to provide self (Python) or this (JS, Java)?
(define o-self!

(let ([self 'dummy])
(begin

(set! self
(lambda (m)

(case m
[(first) (lambda (x)

(msg self 'second (+ x 1)))]
[(second) (lambda (x) (+ x 1))])))

self)))
(test (msg o-self! 'first 5) 7)

self

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=94
lectures/lecture07/o-self.rkt


Self reference with mutation
p. 94

How to provide self (Python) or this (JS, Java)?
(define o-self!

(let ([self 'dummy])
(begin

(set! self
(lambda (m)

(case m
[(first) (lambda (x)

(msg self 'second (+ x 1)))]
[(second) (lambda (x) (+ x 1))])))

self)))
(test (msg o-self! 'first 5) 7)

self

20
25

-0
1-

28 CS4613 Lecture 7: More About Objects
Objects that refer to themselves

Self reference with mutation

1. The methods discussed in the book for providing this are very similar to
methods used to provide recursive functions in interpreters. In that case
the mutated self-reference is in the interpreter data structures.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=94
lectures/lecture07/o-self.rkt


… on stacker
p. 94

(defvar o-self!
(let ([self 0])

(begin
(set! self

(lambda (m)
(if (equal? m "first")

(lambda (x) ((self "second")
(+ x 1)))

(if (equal? m "second")
(lambda (x) (+ x 1))
(error "no such member")))))

self)))
((o-self! "first") 5)stacker

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=94
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28defvar+o-self%21%0A++%28let+%28%5Bself+0%5D%29%0A++++%28begin%0A++++++%28set%21+self%0A++++++++++++%28lambda+%28m%29%0A++++++++++++++%28if+%28equal%3F+m+"first"%29%0A++++++++++++++++++%28lambda+%28x%29+%28%28self+"second"%29%0A+++++++++++++++++++++++++++++++%28%2B+x+1%29%29%29%0A++++++++++++++++++%28if+%28equal%3F+m+"second"%29%0A++++++++++++++++++++++%28lambda+%28x%29+%28%2B+x+1%29%29%0A++++++++++++++++++++++%28error+"no+such+member"%29%29%29%29%29%0A++++++self%29%29%29%0A%28%28o-self%21+"first"%29+5%29%0A


… without mutation 1/3

In order to convince ourselves that mutation is not a mandatory
feature, we can implement the same thing without mutation.
Let’s see how python does it.
class Thing:

def __init__(self , x):
self.x=x

def add(self , y):
return self.x + y



… without mutation 1/3

In order to convince ourselves that mutation is not a mandatory
feature, we can implement the same thing without mutation.
Let’s see how python does it.
class Thing:

def __init__(self , x):
self.x=x

def add(self , y):
return self.x + y

20
25

-0
1-

28 CS4613 Lecture 7: More About Objects
Objects that refer to themselves

… without mutation 1/3

1. The book calls this unfortunate as a surface syntax. It is somewhat error
prone, but it allows writing in an object oriented style in languages like C



… without mutation 2/3 p. 94

We can follow the same model as python, and pass self to each
method

no (define o-self-no!
(lambda (m)

(case m
[(first) (lambda (self x) ((self 'second) self

(+ x 1)))]
[(second) (lambda (self x) (+ x 1))])))

(test (msg o-self-no! 'first o-self-no! 5) 7)

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=94
lectures/lecture07/o-self-no.rkt


… without mutation 2/3 p. 94

We can follow the same model as python, and pass self to each
method

no (define o-self-no!
(lambda (m)

(case m
[(first) (lambda (self x) ((self 'second) self

(+ x 1)))]
[(second) (lambda (self x) (+ x 1))])))

(test (msg o-self-no! 'first o-self-no! 5) 7)

20
25

-0
1-

28 CS4613 Lecture 7: More About Objects
Objects that refer to themselves

… without mutation 2/3 p. 94

1. Unlike the book, here we explicitly use the object twice here, once to find
the method, and once as a method parameter

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=94
lectures/lecture07/o-self-no.rkt
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=94


… without mutation 3/3 p. 95

The self parameter is implicit in Python, and we can do the same
(define (msg/self obj selector . args)

(apply (obj selector) obj args))

This also simplifies our sample class.
no2

(define o-self-no!
(lambda (m)

(case m
[(first) (lambda (self x) (msg/self self 'second

(+ x 1)))]
[(second) (lambda (self x) (+ x 1))])))

(test (msg/self o-self-no! 'first 5) 7)

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=95
lectures/lecture07/o-self-no2.rkt


Motivation
Structural recursion is great, but a bit rigid p. 95
(define-type BinTree

[Empty]
[Leaf (val : Number)]
[Node (left : BinTree) (right : BinTree)])

All uses of the data type must change if it changes.
tsum

(define (tsum tree)
(type-case BinTree tree

[(Empty) 0]
[(Leaf num) num]
[(Node left right) (+ (tsum left) (tsum right))]))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=95
lectures/lecture07/tree-sum.rkt


Dynamic dispatch tree sum 1/3 p. 96

(define (node v l r)
(lambda (m)

(case m
[(sum) (lambda () (+ v (msg l 'sum)

(msg r 'sum)))])))

(define (mt)
(lambda (m)

(case m
[(sum) (lambda () 0)])))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=96


Dynamic dispatch tree sum 1/3 p. 96

(define (node v l r)
(lambda (m)

(case m
[(sum) (lambda () (+ v (msg l 'sum)

(msg r 'sum)))])))

(define (mt)
(lambda (m)

(case m
[(sum) (lambda () 0)])))20

25
-0

1-
28 CS4613 Lecture 7: More About Objects

Dynamic dispatch

Dynamic dispatch tree sum 1/3 p. 96

1. These constructor definitions are simplified compared to the book. Since
self is unused, these examples skip defining it

2. The key point is that we are able to write the sum method for nodes
without knowing what kind of object we are summing. The usual kind of
trade-off applies: with this completely dynamic implementation we can’t
know until runtime if that object even supports a sum method

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=96
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=96


Dynamic dispatch tree sum 2/3 p. 96

tsum2 (define a-tree
(node 10

(node 5 (mt) (mt))
(node 15 (node 6 (mt) (mt)) (mt))))

(test (msg a-tree 'sum) (+ 10 5 15 6))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=96
lectures/lecture07/tree-sum2.rkt


Dynamic dispatch tree sum 3/3 p. 96
Suppose we want to introduce a new node type

tsum3
(define (leaf v)

(lambda (m)
(case m

[(sum) (lambda () v)])))

tsum3 (define leafy-tree
(node 10

(leaf 5)
(node 15 (leaf 6) (mt))))

(test (msg leafy-tree 'sum) (+ 10 5 15 6))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=96
lectures/lecture07/tree-sum3.rkt
lectures/lecture07/tree-sum3.rkt


Dynamic dispatch tree sum 3/3 p. 96
Suppose we want to introduce a new node type

tsum3
(define (leaf v)

(lambda (m)
(case m

[(sum) (lambda () v)])))

tsum3 (define leafy-tree
(node 10

(leaf 5)
(node 15 (leaf 6) (mt))))

(test (msg leafy-tree 'sum) (+ 10 5 15 6))20
25

-0
1-

28 CS4613 Lecture 7: More About Objects
Dynamic dispatch

Dynamic dispatch tree sum 3/3 p. 96

1. The key point here is that the method definition in node does not change
2. None of this should be taken to suggest that the dynamic-dispatch version

is the best for all situations, or even for the situation illustrated here.
3. In particular spreading the algorithm definition across different objects

might or might not be desirable

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=96
lectures/lecture07/tree-sum3.rkt
lectures/lecture07/tree-sum3.rkt
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=96


What is inheritance? p. 98

I In simplest terms, inheritance is when a method not found in
the current object is searched for in or more parent objects.

I In our object model (assuming parent-object is initialized),
this could look like

(case m
...
[else (parent-object m)])

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=98


Inheritance in Java 1/2 p. 100

Pt2 class Pt2 {
public int x;
Pt2(int x, int y) {

this.x = x - 3;
System.out.println("Pt2(" + x + "," + y+")");

}
}

Pt3 class Pt3 extends Pt2 {
public int x;
Pt3(int x, int y, int z) {

super(x,y); this.x=x+7;
System.out.println("Pt3 with " + z);

}}

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=100
lectures/lecture07/Pt2.java
lectures/lecture07/Pt3.java


Inheritance in Java 2/2 p. 101

Main class Main {
public static void main(String[] args) {

Pt3 p3345 = new Pt3(3, 4, 5);
Pt3 p3678 = new Pt3(6, 7, 8);
System.out.println(p3345.x);
System.out.println(p3678.x);
System.out.println(((Pt2)p3345).x);
System.out.println(((Pt2)p3678).x);

}
}

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=101
lectures/lecture07/Main.java


Inheritance in Java 2/2 p. 101

Main class Main {
public static void main(String[] args) {

Pt3 p3345 = new Pt3(3, 4, 5);
Pt3 p3678 = new Pt3(6, 7, 8);
System.out.println(p3345.x);
System.out.println(p3678.x);
System.out.println(((Pt2)p3345).x);
System.out.println(((Pt2)p3678).x);

}
}20

25
-0

1-
28 CS4613 Lecture 7: More About Objects

Inheritance

Inheritance in Java 2/2 p. 101

1. We can see both constructors running from the first 4 lines of output
2. We can see that separate objects are allocated for the superclass from the

second 4 lines of output

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=101
lectures/lecture07/Main.java
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=101


Desugared inheritance 1/2
tsize (define (node/size v l r)

(let ([parent-object (node v l r)])
(lambda (m)

(case m
[(size) (lambda () (+ 1 (msg l 'size)

(msg r 'size)))]
[else (parent-object m)]))))

(define (mt/size)
(let ([parent-object (mt)])

(lambda (m)
(case m

[(size) (lambda () 0)]
[else (parent-object m)]))))

lectures/lecture07/tree-size.rkt


Desugared inheritance 1/2
tsize (define (node/size v l r)

(let ([parent-object (node v l r)])
(lambda (m)

(case m
[(size) (lambda () (+ 1 (msg l 'size)

(msg r 'size)))]
[else (parent-object m)]))))

(define (mt/size)
(let ([parent-object (mt)])

(lambda (m)
(case m

[(size) (lambda () 0)]
[else (parent-object m)]))))

20
25

-0
1-

28 CS4613 Lecture 7: More About Objects
Inheritance

Desugared inheritance 1/2

1. This is simplified to use a fixed base class. The version in the book is more
suitable for something like mixins, discussed at the end of the chapter.

lectures/lecture07/tree-size.rkt


Desugared inheritance 2/2

(define a-tree/size
(node/size 10

(node/size 5 (mt/size) (mt/size))
(node/size 15

(node/size 6 (mt/size)
(mt/size))

(mt/size))))

tsize (test (msg a-tree/size 'sum) (+ 10 5 15 6))
(test (msg a-tree/size 'size) 4)

lectures/lecture07/tree-size.rkt

	Objects that refer to themselves
	Dynamic dispatch
	Inheritance

