
CS4613 Lecture 8: Types

David Bremner

February 4, 2024



Type Checking

static types checked before program execution
benefits limited proofs of correctness
strategy recursively evaluate the type of an expression



A language with numbers and strings p. 110

(define-type BinOp
[plus]
[++]) ;; string concat

(define-type Exp
[binE (operator : BinOp)

(left : Exp)
(right : Exp)]

[numE (value : Number)]
[strE (value : String)])

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=110


Some sample expressions

exp1 (binE (plus) (numE 3) (numE 4)) ;; OK
(binE (++) (strE "3") (strE "4")) ;; OK
(binE (plus) (numE 3) (strE "4")) ;; not OK

lectures/lecture08/exp1.rkt


Some sample expressions

exp1 (binE (plus) (numE 3) (numE 4)) ;; OK
(binE (++) (strE "3") (strE "4")) ;; OK
(binE (plus) (numE 3) (strE "4")) ;; not OK

20
24

-0
2-

04 CS4613 Lecture 8: Types
Type Calculators

Some sample expressions

1. None of these are problematic from the point of view of expressions; our
“grammar” does not try to enforce typing, although it (in principle) could
do a partial job

lectures/lecture08/exp1.rkt


An evaluator

(define (interp expr)
(type-case Exp expr

[(numE n) (numV n)]
[(strE s) (strV s)]
[(binE o l r)

(let ([l-val (interp l)]
[r-val (interp r)])

(type-case BinOp o
[(++) (on-strings string-append l-val r-val)]
[(plus) (on-nums + l-val r-val)]))]))



Dynamic (run time) type checking

(define (on-nums func l r)
(cond

[(and (numV? l) (numV? r))
(numV (func (numV-value l) (numV-value r)))]

[else (error 'interp "expected 2 numbers")]))



So we detect the error, what is the problem?

exp2 (test (interp (binE (plus) (numE 3) (numE 4)))
(numV 7))

(test (interp (binE (++) (strE "3") (strE "4")))
(strV "34"))

(test/exn (interp (binE (plus) (numE 3) (strE "4")))
"numbers")

lectures/lecture08/exp2.rkt


So we detect the error, what is the problem?

exp2 (test (interp (binE (plus) (numE 3) (numE 4)))
(numV 7))

(test (interp (binE (++) (strE "3") (strE "4")))
(strV "34"))

(test/exn (interp (binE (plus) (numE 3) (strE "4")))
"numbers")

20
24

-0
2-

04 CS4613 Lecture 8: Types
Type Calculators

So we detect the error, what is the problem?

1. Our intepreter is dynamically typed, so it detects the typing error without
attempting an invalid operation, or crashing

2. Our implementation language has more checks than something like C, so
we are unlikely to make have undefined behaviour

3. The answer is that we may not detect the error until after the software is in
use for some time. This can be very inconvenient/expensive to fix

lectures/lecture08/exp2.rkt


“Evaluating” types p. 112
Each type abstracts over a set of values.
(define-type Type

[numT]
[strT])

(define (tc e)
(type-case Exp e

[(binE o l r)
(type-case BinOp o

[(plus) (expect2 (numT) (tc l) (tc r))]
[(++) (expect2 (strT) (tc l) (tc r))])]

[(numE v) (numT)]
[(strE v) (strT)]))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=112


“Evaluating” types p. 112
Each type abstracts over a set of values.
(define-type Type

[numT]
[strT])

(define (tc e)
(type-case Exp e

[(binE o l r)
(type-case BinOp o

[(plus) (expect2 (numT) (tc l) (tc r))]
[(++) (expect2 (strT) (tc l) (tc r))])]

[(numE v) (numT)]
[(strE v) (strT)]))20

24
-0

2-
04 CS4613 Lecture 8: Types

Type Calculators

“Evaluating” types p. 112

1. This has been refactored from the code in the book to better fit on slides
and to highlight the comparison with dynamic type checking

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=112
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=112


Compare and contrast
Dynamic
(define (on-strings func l r)

(cond
[(and (strV? l) (strV? r))

(strV (func (strV-value l) (strV-value r)))]
[else (error 'interp "expected 2 numbers")]))

Static
(define (expect2 type lt rt)

(cond
[(and (equal? type lt) (equal? type rt)) type]
[else (type-case Type type

[(numT) (error 'tc "needs 2 numbers")]
[(strT) (error 'tc "needs 2 strings")])]))



Compare and contrast
Dynamic
(define (on-strings func l r)

(cond
[(and (strV? l) (strV? r))

(strV (func (strV-value l) (strV-value r)))]
[else (error 'interp "expected 2 numbers")]))

Static
(define (expect2 type lt rt)

(cond
[(and (equal? type lt) (equal? type rt)) type]
[else (type-case Type type

[(numT) (error 'tc "needs 2 numbers")]
[(strT) (error 'tc "needs 2 strings")])]))

20
24

-0
2-

04 CS4613 Lecture 8: Types
Type Calculators

Compare and contrast

1. The way equal? is used here can only work on Type values, not on Value
values.

2. In a production system, the dynamic checks would likely be removed. The
streamlining of the interpreter is part of the point of static typechecking.
The typechecker runs once, while the interpreter code potentially runs
many times.



Testing the checker p. 112

tc1 (test (tc (binE (plus) (numE 5) (numE 6))) (numT))
(test (tc (binE (++) (strE "hello") (strE "world")))

(strT))
(test/exn (tc (binE (++) (numE 5) (numE 6))) "strings")
(test/exn (tc (binE (plus) (strE "hello")

(strE "world"))) "numbers")

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=112
lectures/lecture08/tc1.rkt


Base Cases p. 113

Corresponding to the base cases of our type checker
[(numE n) (numT)]
[(strE b) (strT)]

We have the axioms for each number n and string s n : Num s : Str

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=113


Base Cases p. 113

Corresponding to the base cases of our type checker
[(numE n) (numT)]
[(strE b) (strT)]

We have the axioms for each number n and string s n : Num s : Str

20
24

-0
2-

04 CS4613 Lecture 8: Types
Type Rules

Base Cases p. 113

1. These are very similar to terminals in a grammar.
2. The Γ ` e : T is actually a ternary operator. The type environment Γ is

actually ∅ here, but the convention is to omit the symbol in that case.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=113
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=113


Conditional rules p. 114

Sample typechecker case
[(plus l r) (if (and (numT? (tc l)) (numT? (tc r)))

(numT)
(error 'tc "not both numbers"))]

Equivalent type rule

` e1 : Num ` e2 : Num

` (+ e1 e2) : Num

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=114


Conditional rules p. 114

Sample typechecker case
[(plus l r) (if (and (numT? (tc l)) (numT? (tc r)))

(numT)
(error 'tc "not both numbers"))]

Equivalent type rule

` e1 : Num ` e2 : Num

` (+ e1 e2) : Num

20
24

-0
2-

04 CS4613 Lecture 8: Types
Type Rules

Conditional rules p. 114

1. We read this like “if all the things on the top (the antecedent) are true,
then the thing on the bottom (the consequent) is also true”

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=114
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=114


Type Judgements p. 116

I Suppose we want to check the type of (+ 5 (+ 6 7)).
I We can apply the previous rule, but we are not done

` 5 : Num ` (+ 6 7) : Num

` (+ 5 (+ 6 7)) : Num

I A second application of the same rule is needed

` 5 : Num
` 6 : Num ` 7 : Num

` (+ 6 7) : Num
` (+ 5 (+ 6 7)) : Num

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=116


Type Judgements p. 116

I Suppose we want to check the type of (+ 5 (+ 6 7)).
I We can apply the previous rule, but we are not done

` 5 : Num ` (+ 6 7) : Num

` (+ 5 (+ 6 7)) : Num

I A second application of the same rule is needed

` 5 : Num
` 6 : Num ` 7 : Num

` (+ 6 7) : Num
` (+ 5 (+ 6 7)) : Num20

24
-0

2-
04 CS4613 Lecture 8: Types

Type Rules

Type Judgements p. 116

1. The process starts with the rule for the top level expression
2. Nodes of the proof tree are expanded upwards, until all nodes are trivial
3. This expansion corresponds to a trace of a recursive type-checker

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=116
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=116


(Lack of) Type Judgements p. 118
Suppose we want to check the type of (+ 5 (+ 6 "hi")).
I We can apply the rule for +, but we are not done

` 5 : Num ` (+ 6 "hi") : Num

` (+ 5 (+ 6 "hi")) : Num

I A second application of the same rule is needed

` 5 : Num
` 6 : Num `"hi" : Num

` (+ 6 "hi") : Num
` (+ 5 (+ 6 "hi")) : Num

I We get stuck because there is no axiom that tells us "hi" is a
Number.

.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=118


(Lack of) Type Judgements p. 118
Suppose we want to check the type of (+ 5 (+ 6 "hi")).
I We can apply the rule for +, but we are not done

` 5 : Num ` (+ 6 "hi") : Num

` (+ 5 (+ 6 "hi")) : Num

I A second application of the same rule is needed

` 5 : Num
` 6 : Num `"hi" : Num

` (+ 6 "hi") : Num
` (+ 5 (+ 6 "hi")) : Num

I We get stuck because there is no axiom that tells us "hi" is a
Number.

.

20
24

-0
2-

04 CS4613 Lecture 8: Types
Type Rules

(Lack of) Type Judgements p. 118

1. Getting stuck is exactly where our type-checker calls error
2. The terminology is based on logic, so in this case we fail to reach a

judgement
3. So far our proof systems are pretty simple, because we have at most one

rule to apply in a given step

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=118
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=118


Typing conditionals 1/2 p. 119

Suppose we want to typecheck (if C T E). Let’s agree
I C should be boolean
I T and E should have the same type
I We need a new construct to express the latter: type variables

` C : Bool ` T : U ` E : U

` (if C T E) : U

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=119


Typing conditionals 1/2 p. 119

Suppose we want to typecheck (if C T E). Let’s agree
I C should be boolean
I T and E should have the same type
I We need a new construct to express the latter: type variables

` C : Bool ` T : U ` E : U

` (if C T E) : U

20
24

-0
2-

04 CS4613 Lecture 8: Types
Type Rules

Typing conditionals 1/2 p. 119

1. As the book explains, if we don’t assume both branches have the same
type, things get complicated

2. The assumption that the test is Boolean is more one of strictness (i.e.
wanting to catch more type errors) than a simplification

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=119
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=119


Typing conditionals 2/2 p. 121

Let’s start with a well-typed case: (if true 1 2)

` true : Bool ` 1 : U ` 2 : U

` (if true 1 2) : U

There is exactly one choice for U that works.
On the other hand consider: (if true 1 "hi")

` true : Bool ` 1 : U ` "hi" : U

` (if true 1 "hi") : U

Here no value for U satisfies both antecedents

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=121


Typing conditionals 2/2 p. 121

Let’s start with a well-typed case: (if true 1 2)

` true : Bool ` 1 : U ` 2 : U

` (if true 1 2) : U

There is exactly one choice for U that works.
On the other hand consider: (if true 1 "hi")

` true : Bool ` 1 : U ` "hi" : U

` (if true 1 "hi") : U

Here no value for U satisfies both antecedents20
24

-0
2-

04 CS4613 Lecture 8: Types
Type Rules

Typing conditionals 2/2 p. 121

1. The translation of these type variables into code is not as hard as you
might think. We just calculate the types of the sub-expressions, then check
for equality

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=121
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=121

	Type Calculators
	Type Rules

