
Managing state for a “stateless” world.

David Bremner

March 11, 2024



A toy web application

p. 203
I Server sends a page asking for a number,
I User types a number and hits enter,
I Server sends a second page asking for another number,
I User types a second number and hits enter,
I Server sends a page showing the sum of the two numbers.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=203


A toy web application

p. 203
I Server sends a page asking for a number,
I User types a number and hits enter,
I Server sends a second page asking for another number,
I User types a second number and hits enter,
I Server sends a page showing the sum of the two numbers.

20
24

-0
3-

11 Managing state for a “stateless” world.
From Web Apps to Continuations

A toy web application

1. The HTTP protocol is *stateless*: each HTTP query can be thought of as
running a program (or a function), getting a result, then killing it. This
makes interactive applications hard to write.
The basic problem here is HTTP’s statelessness, something that both web
servers and web browsers use extensively. Browsers give you navigation
buttons and sometimes will not even communicate with the web server
when you use them (instead, they’ll show you cached pages), they give you
the ability to open multiple windows or tabs from the current one, and they
allow you to ”clone” the current tab. If you view each set of HTTP queries
as a session – this means that web browsers allow you to go back and forth
in time, explore multiple futures in parallel, and clone your current world.

2. You can obviously ask for both numbers on the same page, but the
interleaved compution style is common.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=203


Server-side interactive programming

Knowing nothing of webdev, how would we write this?
(output

(+ (get-num "First number: ")
(get-num "Second number: ")))

Implementing this server-side means
I breaking into steps
I preserving values / state between steps



Server-side interactive programming

Knowing nothing of webdev, how would we write this?
(output

(+ (get-num "First number: ")
(get-num "Second number: ")))

Implementing this server-side means
I breaking into steps
I preserving values / state between steps

20
24

-0
3-

11 Managing state for a “stateless” world.
From Web Apps to Continuations

Server-side interactive programming

1. The interaction is limited to presenting the user with some data and that’s
all – you cannot do any kind of interactive querying. We therefore must
turn this server function into three separate functions: one that shows the
prompt for the first number, one that gets the value entered and shows the
second prompt, and a third that shows the results page.



Generating forms
One option is to use hidden fields
<form action="http://.../page2">

<input type="text" name="n1" />
</form>
<form action="http://.../page3">

<input type="hidden" name="n1" value="1" />
<input type="text" name="n2" />

</form>
<form action="http://.../page1">

<input type="text" name="result"
value="21" readonly/>

</form>

Even our toy example is already a challenge; this is only
half of the code.



Generating forms
One option is to use hidden fields
<form action="http://.../page2">

<input type="text" name="n1" />
</form>
<form action="http://.../page3">

<input type="hidden" name="n1" value="1" />
<input type="text" name="n2" />

</form>
<form action="http://.../page1">

<input type="text" name="result"
value="21" readonly/>

</form>

Even our toy example is already a challenge; this is only
half of the code.

20
24

-0
3-

11 Managing state for a “stateless” world.
From Web Apps to Continuations

Generating forms

1. The state is all saved in the client browser – if it dies, then the interaction
is gone.

2. The state might even include values that are not expressible as part of the
form (for example an open database connection or a running process).

3. Another common approach is to store the state information on the server,
and use a small handle (eg, in a cookie) to identify the state, then each
function can use the cookie to retrieve the current state of the service –
but this is exactly how we get to the above bugs. It will fail with any of the
mentioned time-manipulation features.



Reintroduction to Continuations: Web Programming

Re-start with the original (idealized) expression: p. 204
(output (+ (get-num "First number: ")

(get-num "Second number: ")))

We need to begin with executing the first read:
(get-num "First number: ")

Plug result into expression to read the 2nd number and sum
(output (+ <*>

(get-num "Second number: ")))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=204


Reintroduction to Continuations: Web Programming

Re-start with the original (idealized) expression: p. 204
(output (+ (get-num "First number: ")

(get-num "Second number: ")))

We need to begin with executing the first read:
(get-num "First number: ")

Plug result into expression to read the 2nd number and sum
(output (+ <*>

(get-num "Second number: ")))20
24

-0
3-

11 Managing state for a “stateless” world.
From Web Apps to Continuations

Reintroduction to Continuations: Web Programming

1. Assuming for now that ‘get-num’ is implemented and works
2. That’s the same as the first expression, except that instead of the first

‘get-num’ we use a ”hole”:
3. ‘〈*〉’ marks the point where we need to plug the result of the first question

into.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=204


A better way to explain this hole is to make it a function argument:
(lambda (<*>)

(output (+ <*>
(get-num "Second number: "))))

Combine first step with the second “consumer” function:
((lambda (<*>)

(output
(+ <*> (get-num "Second number: "))))

(get-num "First number: "))



A better way to explain this hole is to make it a function argument:
(lambda (<*>)

(output (+ <*>
(get-num "Second number: "))))

Combine first step with the second “consumer” function:
((lambda (<*>)

(output
(+ <*> (get-num "Second number: "))))

(get-num "First number: "))

20
24

-0
3-

11 Managing state for a “stateless” world.
From Web Apps to Continuations

1. Actually, we can split the second and third steps in the same way.



Continue by splitting the body of the consumer:
(output (+ <*> (get-num "Second number: ")))

Into a “reader” and the rest of the computation (using a new hole):
(get-num "Second number: ") ; reader part

(output (+ <*> <*2>)) ; rest of comp



Doing all of this gives us:

getnum1 ((lambda (<*1>)
((lambda (<*2>)

(output (+ <*1> <*2>)))
(get-num "Second number: ")))

(get-num "First number: "))

I This works, but is not much fun to read

lectures/lecture16/get-num1.rkt


Passing a continuation argument
p. 207Conceptually, we’d like to think about ‘get-num’ as something

that is implemented in a simple way:
(define (get-num prompt)

(begin
(display prompt)
(s-exp- >number (read))))

Add an argument for the consumer function
(define (get-num/k prompt k)

(begin
(display prompt)
(k (s-exp- >number (read)))))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=207


Passing a continuation argument
p. 207Conceptually, we’d like to think about ‘get-num’ as something

that is implemented in a simple way:
(define (get-num prompt)

(begin
(display prompt)
(s-exp- >number (read))))

Add an argument for the consumer function
(define (get-num/k prompt k)

(begin
(display prompt)
(k (s-exp- >number (read)))))20

24
-0

3-
11 Managing state for a “stateless” world.

From Web Apps to Continuations

Passing a continuation argument

1. In this version of ‘get-num’ the ‘k’ argument is the continuation of the
computation. (‘k’ is a common name for a continuation argument.)

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=207


We have essentially turned our initial version “inside-out”.

getnum2 (get-num/k "First number: "
(lambda (<*1>)

(get-num/k "Second number: "
(lambda (<*2>)

(output (+ <*1> <*2>))))))

I Each application of ‘get-num/k’ can be a server function,
where the computation suspends after the interaction.

I suspending just requires storing the consumer function e.g. in
a hash table

I each get-num/k just reads – everything else is inside the
consumer.

lectures/lecture16/get-num2.rkt


We have essentially turned our initial version “inside-out”.

getnum2 (get-num/k "First number: "
(lambda (<*1>)

(get-num/k "Second number: "
(lambda (<*2>)

(output (+ <*1> <*2>))))))

I Each application of ‘get-num/k’ can be a server function,
where the computation suspends after the interaction.

I suspending just requires storing the consumer function e.g. in
a hash table

I each get-num/k just reads – everything else is inside the
consumer.20

24
-0

3-
11 Managing state for a “stateless” world.

From Web Apps to Continuations

1. This means that the ”submit” button will somehow encode a reference to
the hash table that can make the next service call retrieve the stored
function.

lectures/lecture16/get-num2.rkt


Trivial continuations

getnum3 (output
(+ (get-num/k "First number: " (lambda (<*>) <*>))

(get-num/k "Second number: " (lambda (<*>) <*>))))

I this lacks sequencing
I it works OK here, but will be problematic “on the web”

lectures/lecture16/get-num3.rkt


Simulating web reading
p. 208

I We will simulate server transactions with ’error’
I In ‘get-num/k’ termination happens after saving the consumer

receiver in a ‘resumer’ box.
(define resumer (box done))

I ‘resume’ simply invokes the current ‘resumer’.
(define (resume)

;; clear out `resumer ' before invoking it
(let ([next (unbox resumer)])

(begin
(set-box! resumer done)
(next))))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=208


Simulating web reading
p. 208

I We will simulate server transactions with ’error’
I In ‘get-num/k’ termination happens after saving the consumer

receiver in a ‘resumer’ box.
(define resumer (box done))

I ‘resume’ simply invokes the current ‘resumer’.
(define (resume)

;; clear out `resumer ' before invoking it
(let ([next (unbox resumer)])

(begin
(set-box! resumer done)
(next))))

20
24

-0
3-

11 Managing state for a “stateless” world.
Simulating Web Transactions

Simulating web reading

1. The book uses stacker here instead of DrRacket; you may want to try
working through those (short) examples on your own.

2. Instead of storing just the receiver there, we will store a function that does
the prompting and the reading and then invoke the receiver. ‘resumer’ is
therefore bound to a box that holds a no-argument function that does the
work of resuming the computation, and when there is nothing next, it is
bound to a ‘done’ function that throws an appropriate error.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=208


Yielding via error

I We want to convince ourselves the execution can be stopped
completely and resumed, so we use error
(define (done)

(error 'resume "nothing suspended."))

(define (yield/k prompt k)
(begin (set-box! resumer k) (error 'yield

prompt)))

(define (output n) (yield/k (to-string n) done))



Simulated Web Transactions with Yield and Resume

fakeweb (define (get-num/k prompt k)
(yield/k "(resume) to go"

(lambda () (begin (display prompt)
(k (s-exp- >number

(read)))))))

(define (example)
(get-num/k "First number: "

(lambda (n1)
(get-num/k "Second number: "

(lambda (n2)
(output (+ n1 n2)))))))

lectures/lecture16/fakeweb.rkt


You can also try the bogus expression that we mentioned:

getnum4 (define (example2)
(output
(+ (get-num/k "First number: " (lambda (n) n))

(get-num/k "Second number: " (lambda (n) n)))))

and see how it breaks.

lectures/lecture16/get-num4.rkt


Yield revisited

p. 209
I Recall that (let/cc id ex) binds id to the

“current-continuation”
I Yield is almost the same, but the continuation argument is

implicit

(define (yield prompt)
(let/cc k

(begin (set-box! resumer k)
(error 'yield prompt))))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=209


Resume revisited

I Can you spot the minor change to resume?

(define (resume)
(let ([next (unbox resumer)])

(begin
(set-box! resumer done)
(next 'dummy))))



Continuations are hidden from “user code”

fweb-cc2 (define (output n) (error 'output (to-string n)))

(define (get-num prompt)
(begin

(yield "(resume) to continue")
(display prompt)
(s-exp- >number (read))))

(define (example)
(output
(+ (get-num "First number: ")

(get-num "Second number: "))))

lectures/lecture16/fweb-cc2.rkt


It’s easy to convert our example to a real “web app” using Racket’s
web server framework, and the core of the code looks very simple:

webapp
(define (start initial-request)

(page "The sum is: "
(+ (get-num "First number: ")

(get-num "Second number: "))))

Page is a simple HTML generation function
webapp

(define (page . lst)
(response/xexpr
`(html (body ,@(map

(lambda(x) (if (number? x)(~a x) x))
lst)))))

lectures/lecture16/webapp.rkt
lectures/lecture16/webapp.rkt


The core of get-num is written in continuation passing style
webapp

(define (get-num-core prompt)
(lambda (k)

(page
`(form ([action ,k])

,prompt
(input ([type "text"][name "n"]))))))

send/suspend captures the calling context, and allows resuming
by visiting a URL

webapp
(define (get-num prompt)

(string- >number
(extract-binding/single
'n
(request-bindings
(send/suspend (get-num-core prompt))))))

lectures/lecture16/webapp.rkt
lectures/lecture16/webapp.rkt

	From Web Apps to Continuations
	Simulating Web Transactions
	Using let/cc
	Using Racket's web server

