
GC continued: Reference counting, two-space
collectors

David Bremner

March 27, 2024

Reference Counting
Reference counting: a way to know whether a record has other users
I Attach a count to every record, starting at 0
I When installing a pointer to a record (into a root or another

record), increment its count
I When replacing a pointer to a record, decrement its count
I When a count is decremented to 0, decrement counts for other

records referenced by the record, then free it

Reference Counting

1
1

1

1

2

1
1

I references outside the main box are
roots

Reference Counting

1
1

0

1

3

1
1

Adjust counts when a pointer is changed…

Reference Counting

1
1

1

2

1
1

… freeing a record if its count goes to 0

Reference Counting

1
1

0

2

1
1

Same if the pointer is in a root

Reference Counting

1
1

2

0
1

Adjust counts after frees, too…

Reference Counting

1
1

2

1

… which can trigger more frees

Reference Counting And Cycles

1
1

1

2

1
1

An assignment can create a cycle…

Reference Counting And Cycles

1
1

2

2

1
1

Adding a reference increments a count

Reference Counting And Cycles

1
1

1

2

1
1

Lower-left records are inaccessible, but not
deallocated
In general, cycles break reference counting

Pros and Cons of reference counting
Pros
I simple
I tracing pauses are not needed (concurrency is easier).
I predictable destructors

Cons
I Overhead on every reference update
I Ripple out can be expensive
I Space overhead for counters
I Cache effects from updating counters
I Cycles need some special handling, or live forever.

Two-Space Copying Collectors
A two-space copying collector compacts memory as it collects,
making allocation easier.
Allocator
I Partitions memory into to-space and from-space
I Allocates only in to-space

Collector
I Starts by swapping to-space and from-space
I Coloring gray → copy from from-space to to-space
I Choosing a gray record → walk once though the new to-space,

update pointers

Allocator fast-path
(define (malloc n some-roots more-roots)

(define addr (heap-ref (alloc-ptr)))
(cond

[(<= (+ addr n) (space-limit))
(heap-set! (alloc-ptr) (+ addr n))
addr]

[else

;
...

]))

(define (gc/alloc n)
(define addr (heap-ref (alloc-ptr)))
(unless (<= (+ addr n) (space-limit))

(error 'gc/alloc "no space"))
(heap-set! (alloc-ptr) (+ addr n)) addr)

Allocator slow path

(collect-garbage some-roots more-roots)
(define next (heap-ref (alloc-ptr)))
(unless (<= (+ next n) (space-limit))

(error 'alloc "no space"))
(heap-set! (alloc-ptr) (+ next n))
;; check for remaining forward info
(unless (or (at-from-space? some-roots)

(at-from-space? more-roots))
(free-from-space))

next

Left = from-space, Right = to-space

Mark gray = copy and leave forward address

Copy and forward
(case (heap-ref loc)

[(flat) (define new-addr (gc/alloc 2))
(heap-set! new-addr 'flat)
(heap-set! (+ new-addr 1)

(heap-ref (+ loc 1)))
(heap-set! loc 'frwd)
(heap-set! (+ loc 1) new-addr)
new-addr]

;
...

[(frwd) (heap-ref (+ loc 1))]
[else (error 'forward/loc "wrong tag at ~a" loc)])

Choose gray by walking through to-space

Walking to-space
(define (forward/ref loc)

(cond
[(= loc (heap-ref (alloc-ptr))) (void)]
[else

(case (heap-ref loc)
[(flat) (forward/ref (+ loc 2))]
[(cons)

(gc:set-first! loc (forward/loc
(heap-ref (+ loc 1))))

(gc:set-rest! loc (forward/loc
(heap-ref (+ loc 2))))

(forward/ref (+ loc 3))]

;
...

[else (error 'forward/ref "wrong tag at ~a"
loc)])]))

Mark referenced as gray

Mark black = move gray-choosing arrow

Nothing to color gray; increment the arrow

Color referenced record gray

Increment the gray-choosing arrow

Referenced is already copied, use forwarding
address

Choosing arrow reaches the end of to-space: done

Next collection: Left = to-space; Right =
from-space.

Fib, again

fib (allocator-setup "copying.rkt" 160)
(define (fib n)

(cond
[(<= n 1) 1]
[else (+ (fib (- n 1)) (fib (- n 2)))]))

(fib 5)

lectures/lecture19/fib.rkt

Two-Space Numeric Example
memory 26-byte (13 bytes for each space), 2 registers

tags 1: integer, 2: pointer, 3: (integer, pointer), 99: moved
Register 1: 7 Register 2: 0

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
From: 01 75 02 00 03 02 10 03 02 02 03 01 04

Register 1: 7 Register 2: 0

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
From: |01 75|02 00|03 02 10|03 02 02|03 01 04|

Register 1: 0 Register 2: 0

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
From: |01 75|02 00|03 02 10|99 00 02|03 01 04|

Register 1: 0 Register 2: 3

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
From: |99 03|02 00|03 02 10|99 00 02|03 01 04|

Register 1: 0 Register 2: 3

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
From: |99 03|99 05|03 02 10|99 00 02|03 01 04|
To: 00 00 00 00 00 00 00 00 00 00 00 00 00

^
To: |03 02 02|00 00 00 00 00 00 00 00 00 00

^
To: |03 02 02|01 75|00 00 00 00 00 00 00 00

^
To: |03 02 05|01 75|02 00|00 00 00 00 00 00

^
To: |03 02 05|01 75|02 00|00 00 00 00 00 00

^
To: |03 02 05|01 75|02 03|00 00 00 00 00 00

^

Acknowledgements

I Lecture 19 based in part on slides by Vincent St. Amour.
I Copying collector from Master’s Thesis of Yixi Zhang

https://github.com/yixizhang/racket-gc/

https://github.com/yixizhang/racket-gc/

	Reference Counting
	Reference Counting versus Tracing GC
	Two-Space Copying Collectors
	Acknowledgements

