
CS4613 Lecture 2

David Bremner

March 21, 2023

BNF, Grammars, the Simple AE Language

I We want to investigate programming languages, and we want
to do that using a programming language.

I The first thing when we design a language is to specify the
syntax.

I For this we use extended BNF (Backus-Naur Form). We’ll use
a version compatible with
http://docs.racket-lang.org/brag

http://docs.racket-lang.org/brag

driver1 ae: NUMBER
| ae "+" ae
| ae "-" ae

We use this BNF grammar to derive expressions in some language.
We start with ae, which should be one of these:
I a number NUMBER
I ae, the text “+”, and another ae
I the same but with “-”

I NUMBER is a terminal: when we reach it in
the derivation, we’re done.

I ae is a non-terminal: when we reach it, we
have to continue with one of the options.

lecture2/driver1.rkt

driver1 ae: NUMBER
| ae "+" ae
| ae "-" ae

We use this BNF grammar to derive expressions in some language.
We start with ae, which should be one of these:
I a number NUMBER
I ae, the text “+”, and another ae
I the same but with “-”

I NUMBER is a terminal: when we reach it in
the derivation, we’re done.

I ae is a non-terminal: when we reach it, we
have to continue with one of the options.

20
23

-0
3-

21 CS4613 Lecture 2
BNF and Parsing

1. Explain the different parts. Specifically, this is a mixture of low-level
(concrete) syntax definition with parsing.

lecture2/driver1.rkt

I We could specify what NUMBER is (turning it into a number
non-terminal):

2 number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 8 | 9 | number number

I But we don’t. As is typical, such tokens are constructed in a
lexer; for most of the course we’ll use the built in Racket
numbers.

I For maximum flexibility, we can make our own
regular expression based lexers.

lecture2/snippet-002.rkt

I We could specify what NUMBER is (turning it into a number
non-terminal):

2 number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 8 | 9 | number number

I But we don’t. As is typical, such tokens are constructed in a
lexer; for most of the course we’ll use the built in Racket
numbers.

I For maximum flexibility, we can make our own
regular expression based lexers.20

23
-0

3-
21 CS4613 Lecture 2

BNF and Parsing

1. This makes life a lot easier, and we get free stuff like floats, rationals etc.

lecture2/snippet-002.rkt

For completeness, here is the lexer for ae
lexer (define (tokenize ip)

(define my-lexer
(lexer-src-pos
[(:+ numeric)
(token 'NUMBER (string- >number lexeme))]

[(:or "+" "-" "*" "/" "(" ")")
(token lexeme lexeme)]

[whitespace
(token 'WHITESPACE lexeme #:skip? #t)]

[(eof)
(void)]))

(define (next-token) (my-lexer ip))
next-token)

lecture2/lexer.rkt

Using our parser:

driver1 (require "grammar1.rkt")
(require "lexer.rkt")

(syntax- >datum (parse
(tokenize-string "1 + 2 - 3")))

lecture2/driver1.rkt

We can use our BNF to prove that “1-2+3” is a
valid ae expression:
ae
ae + ae ; (2)
ae + NUMBER ; (1)
ae - ae + NUMBER ; (3)
ae - ae + 3 ; NUMBER
NUMBER - ae + 3 ; (1)
NUMBER - NUMBER + 3 ; (1)
1 - NUMBER + 3 ; NUMBER
1 - 2 + 3 ; NUMBER

I We can visualize the derivation using a tree, with the rules
used at every node.

I These specifications suffer from being ambiguous: an
expression can be derived in multiple ways (which means we
don’t know how to evaluate it).

I instead of allowing an ae on both sides of the operation, we
force one to be a number:

grmr2 ae: NUMBER
| NUMBER "+" ae
| NUMBER "-" ae

driver2(syntax- >datum (parse (tokenize-string
"1 + 2 - 3")))

lecture2/grammar2.rkt
lecture2/driver2.rkt

I instead of allowing an ae on both sides of the operation, we
force one to be a number:

grmr2 ae: NUMBER
| NUMBER "+" ae
| NUMBER "-" ae

driver2(syntax- >datum (parse (tokenize-string
"1 + 2 - 3")))

20
23

-0
3-

21 CS4613 Lecture 2
Ambiguous Grammars

1. Now there is a single way to derive any expression, and it is always
associating operations to the right: an expression like ”1+2+3” can only
be derived as ”1+(2+3)”.

lecture2/grammar2.rkt
lecture2/driver2.rkt

I To change this to left-association, we would use this:

grm3 ae: NUMBER
| ae "+" NUMBER
| ae "-" NUMBER

driver3(syntax- >datum (parse (tokenize-string
"1 + 2 - 3")))

lecture2/grammar3.rkt
lecture2/driver3.rkt

I Suppose that our AE syntax has addition and multiplication:
ae: NUMBER

| ae "+" ae
| ae "*"ae

I We can fix precedence by adding new
non-terminals – say one for “factors”:

ae: NUMBER
| ae "+" ae
| fac

fac: NUMBER
| fac "*" fac

I equivalently
ae: ae "+" ae

| fac

fac: NUMBER
| fac "*" fac

I if we want to still be able to multiply additions,
we can force them to appear in parentheses:

driver4ae: ae "+" ae
| fac

fac: NUMBER
| fac "*" fac
| "(" ae ")"

lecture2/driver4.rkt

I equivalently
ae: ae "+" ae

| fac

fac: NUMBER
| fac "*" fac

I if we want to still be able to multiply additions,
we can force them to appear in parentheses:

driver4ae: ae "+" ae
| fac

fac: NUMBER
| fac "*" fac
| "(" ae ")"

20
23

-0
3-

21 CS4613 Lecture 2
Ambiguous Grammars

1. Now we must parse any AE expression as additions of multiplications (or
numbers). First, note that if ae goes to 〈fac〉 and that goes to NUMBER,
then there is no need for an ae to go to a NUMBER,

lecture2/driver4.rkt

driver4 (parse-string "1 + 2 * 3")
(parse-string "1 * 2 + 3")
(parse-string "(1 + 2) * (3 + 4)")

I Next, note that AE is still ambiguous about
additions, which can be fixed by forcing the left
hand side of an addition to be a factor:

ae: fac "+" ae
| fac

fac: NUMBER
| fac "*" fac
| "(" ae ")"

lecture2/driver4.rkt

Final grammar for AE
We still have an ambiguity for multiplications, so we do the same
thing and add another non-terminal for “atoms”:

ae: fac "+" ae
| fac

fac: atom "*" fac
| atom

atom: NUMBER | "(" ae ")"

driver5(parse-string "1 + 2 * 3")
(parse-string "1 * 2 + 3")
(parse-string "(1 + 2) * (3 + 4)")

lecture2/driver5.rkt

Final grammar for AE
We still have an ambiguity for multiplications, so we do the same
thing and add another non-terminal for “atoms”:

ae: fac "+" ae
| fac

fac: atom "*" fac
| atom

atom: NUMBER | "(" ae ")"

driver5(parse-string "1 + 2 * 3")
(parse-string "1 * 2 + 3")
(parse-string "(1 + 2) * (3 + 4)")

20
23

-0
3-

21 CS4613 Lecture 2
Ambiguous Grammars

Final grammar for AE

1. And you can try to derive several expressions to be convinced that
derivation is always deterministic now.
But as you can see, this is exactly the cosmetics that we want to avoid – it
will lead us to things that might be interesting, but unrelated to the
principles behind programming languages. It will also become much much
worse when we have a real language rather such a tiny one.

lecture2/driver5.rkt

A slightly more complex BNF example
grammar json: number | string | array | object

number: NUMBER
string: STRING
array: "[" [json ("," json)*] "]"
object: "{" [kvpair ("," kvpair)*] "}"
kvpair: STRING ":" json

lecture2/json-grammar.rkt

lexer

The scanner is also a bit more complex, we have to parse quoted
strings. I leave it for the curious to read…

driver(syntax- >datum
(parse
(tokenize (open-input-string #<<EOF

[
{"thread": "0000000000031e50",

"timestamp": 1358008026,
"date_relative": "35 mins. ago",
"matched": 1, "total": 1, "authors":
"Debian Bug Tracking System",
"subject": "Processed: tagging as
pending bugs that are closed by
packages in NEW", "tags": ["inbox",
"inbox::debian", "unread"]},

{"thread": "0000000000031e55",
"timestamp": 1358006945,
"date_relative": "53 mins. ago",
"matched": 1, "total": 1, "authors":
"Debian Bug Tracking System",
"subject": "Processed: bug 697993 is
forwarded to
http://rt.cpan.org/Public/Bug/Display.html?id =82660",
"tags": ["inbox", "inbox::debian",
"unread"]}]

EOF
))))

lecture2/json-lexer.rkt
lecture2/json-driver.rkt

That’s enough of that…

I We will declare the whole business of parsing complicated
syntax to be tangential to this course.

I Is there a good solution? We can do what Racket does –
always use fully parenthesized expressions:

ae: NUMBER
| (ae + ae)
| (ae - ae)

Surprise, all languages look like Racket
I To prevent confusing Racket code with code in our

language(s), we also change the parentheses to curly ones:
ae: NUMBER

| { ae + ae }
| { ae - ae }

I In order to better support certain (future)
language features, and further simplify our
parsers, we adopt prefix notation

ae: NUMBER
| { + ae ae }
| { - ae ae }

Surprise, all languages look like Racket
I To prevent confusing Racket code with code in our

language(s), we also change the parentheses to curly ones:
ae: NUMBER

| { ae + ae }
| { ae - ae }

I In order to better support certain (future)
language features, and further simplify our
parsers, we adopt prefix notation

ae: NUMBER
| { + ae ae }
| { - ae ae }

20
23

-0
3-

21 CS4613 Lecture 2
Parsing S-expressions

Surprise, all languages look like Racket

1. (Remember that in a sense, Racket code is written in a form of
already-parsed syntax...)

Concrete and Abstract syntax

3+4 (infix),
3 4 + (postfix),
+(3,4) (prefix with args in parens),
(+ 3 4) (parenthesized prefix),

We can represent the tree as
(Add (Num 3) (Num 4))

Similarly, the expression
(3-4)+7

will be described by the Racket expression
(Add (Sub (Num 3) (Num 4)) (Num 7))

To define the data type and the necessary constructors we will use
this:

29 (define-type AE
[Num (val : Number)]
[Add (left : AE) (right : AE)]
[Sub (left : AE) (right : AE)])

lecture2/snippet-029.rkt

Similarly, the expression
(3-4)+7

will be described by the Racket expression
(Add (Sub (Num 3) (Num 4)) (Num 7))

To define the data type and the necessary constructors we will use
this:

29 (define-type AE
[Num (val : Number)]
[Add (left : AE) (right : AE)]
[Sub (left : AE) (right : AE)])20

23
-0

3-
21 CS4613 Lecture 2

Parsing S-expressions

1. Important note: ”expression” was used in two different ways in the above
– each way corresponds to a different language.

2. Racket follows the tradition of Lisp which makes syntax issues almost
negligible – the language we use is almost as if we are using the parse tree
directly. Actually, it is a very simple syntax for parse trees, one that makes
parsing extremely easy.

3. This has an interesting historical reason... Some Lisp history –
M-expressions vs. S-expressions, and the fact that we write code that is
isomorphic to an AST. Later we will see some of the advantages that we
get by doing this. See also ”The Evolution of Lisp”, section 3.5.1
(especially the last sentence).

lecture2/snippet-029.rkt

Two level parsing

We can replace the usual tokenizing with the (more powerful) read

30 (read)
;; "{+ 1 2}"

Then we write our own ‘parse’ function that will
parse the resulting list into an instance of the AE
type – an abstract syntax tree (AST).

lecture2/snippet-030.rkt

Recursive parser
31(d e f i n e (pa r se−sexp r sxp)

(cond
[(s−exp−number? sxp)
(Num (s−exp−>number sxp))]

[(and (s−exp−l i s t ? sxp)
(= 3 (l e n g t h (s−exp−> l i s t sxp))))

(l e t ∗ ([l s t (s−exp−> l i s t sxp)]
[op (s−exp−>symbol (f i r s t l s t))]
[l (pa r se−sexp r (second l s t))]
[r (pa r se−sexp r (t h i r d l s t))])

(ca s e op
[(+) (Add l r)]
[(−) (Sub l r)]
[e l s e
(e r r o r ' p a r s e (t o − s t r i n g op))]))]

[e l s e (e r r o r ' p a r s e (t o − s t r i n g sxp))]))

lecture2/snippet-031.rkt

We can simplify the parser and make it more extensible by using
s-exp-match?

32 (define (parse-sx sx)
(local

[(define (rec fn)
(parse-sx (fn (s-exp- >list sx))))]

(cond
[(s-exp-match? `NUMBER sx)
(Num (s-exp- >number sx))]

[(s-exp-match? `(+ ANY ANY) sx)
(Add (rec second) (rec third))]

[(s-exp-match? `(- ANY ANY) sx)
(Sub (rec second) (rec third))]

[else (error 'parse-sx (to-string sx))])))

lecture2/snippet-032.rkt

We can combine our parser with the function that parses a string
into a sexpr

33 ;; parses a string containing an AE expression to an AE
(define (read-ae)

(parse-sx (read)))

For our tests it will be more convenient to enter s-expressions
directly, since we get indentation etc… for free.

lecture2/snippet-033.rkt

	BNF and Parsing
	Ambiguous Grammars
	Parsing S-expressions

