
GC V: generational GC

David Bremner

April 6, 2024



Generational Garbage Collection

Generational Hypothesis
Most objects die young
I die means become garbage
I empirically well supported
I like many good ideas, goes back to Self in the 1980s



Our examples have lots of young garbage

sum (allocator-setup "mark-sweep-free-list.rkt" 160)
(define (sum lst)

(cond
[(empty? lst) 0]
[else (+ (first lst) (sum (rest lst)))]))

(sum '(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18))

I postmortem on next slide

lectures/lecture22/sum-ms.rkt


Our examples have lots of young garbage
I heap state just before first gc
I before about location 95 is

live
I all of the 'flat #f are

garbage
I other stuff is potentially live



Generational Garbage Collection
Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

Nursery Main heap

I We have two (or
more) spaces

I We always allocate
into the nursery

I The nursery is small,
and typically fills up
quickly.

I We use a copying
strategy for the
nursery

I Cost ∼ #live objects
I New allocations are

still into the nursery
I Per G.H., much of

what is allocated in
the nursury is quickly
garbage

I After surviving one or
more collections,
objects are moved to
the main (tenured)
heap

I Eventually the main
heap fills up as well.

I Typically we use some
non-copying strategy
to collect the main
heap

I The cycle of
allocations and
nursery collection
repeats.

I Eventually we will
have to collect the
main heap again.



How it (mostly) works

Nursery
I Collected often
I Cheap to collect as long as mostly dead objects
I Typically small

Main (Tenured) heap
I Large enough to contain peak “live” data
I Marking and sweeping both expensive
I Don’t collect often



Intergenerational Pointers

Main Heap
Nursery

Remember Set

I Can’t ignore main heap
when GCing nursery.

I Avoiding marking main heap
is the point of gen. GC

metadata Track pointers from
main heap to nursery

conservative Assume they’re live



Updating Remember Sets

Main Heap
Nursery

Remember Set

I old-young points are created
by mutation

I write barriers catch mutation



Write Barriers
(define (gc:set-first! pr-loc new)

(cond
[(gc:cons? pr-loc)
(define loc (track/loc pr-loc))
(heap-set! (+ loc 1) new)
(when (and (2nd-gen? loc)

(at-to-space? new))
(table/alloc (+ loc 1) new))]

[else (error 'set-first! "non pair at ~s"
pr-loc)]))

(define (track/loc loc-or-root)
(define loc (->location loc-or-root))
(case (heap-ref loc)

[(flat pair proc) loc]
[(frwd) (heap-ref (+ loc 1))]
[else (error 'track/loc "wrong tag ~s at ~a"

(heap-ref loc) loc)]))



Heap layout

Table

Nursery

(define (init-allocator)
(heap-set! (alloc-word) 1)
(for ([i (in-range 1 (heap-size))])

(heap-set! i 'free))
(heap-set! (1st-gen-size) 'free-n)
(heap-set! (+ 1 (1st-gen-size)) #f)
(heap-set! (+ 2 (1st-gen-size))

(- (2nd-gen-size)
(1st-gen-size)))

(heap-set! (free-list-head)
(1st-gen-size))

(heap-set! (table-start) (add1 (table-start)))
(print-heap-layout))



Two stage GC
(define (malloc n . extra-roots)

(define addr (heap-ref (alloc-word)))
(cond

[(enough-to-space? addr n)
(heap-set! (alloc-word) (+ addr n))
addr]

[else
(collect-garbage extra-roots)
(switch/sweep-tospace n)]))

(define (move/loc loc)
(cond

[(at-to-space? loc)
(case (heap-ref loc)

;
...

[(pair)
(define new (copy/alloc 3 (heap-ref (+ loc 1))

(heap-ref (+ loc 2))))
(heap-set! new 'pair)
(heap-set! (+ new 1)

(track/loc (heap-ref (+ loc 1))))
(heap-set! (+ new 2)

(track/loc (heap-ref (+ loc 2))))
(heap-set! loc 'frwd) (heap-set! (+ loc 1) new)
new]

;
...

[(frwd) (heap-ref (+ loc 1))]
[else (error 'move/loc "wrong tag ~s at ~a"

(heap-ref loc) loc)])]
[else loc]))

(define (copy/alloc n . extra-roots)
(define next (find-free-space (heap-ref

(free-list-head)) #f n))
(cond [next next]

[else
(2nd-gen-gc extra-roots)
(define next (find-free-space

(heap-ref (free-list-head)) #f n))
(unless next

(error 'copy/alloc "no space"))
next]))



Quicksort Demo

sort (define (sort l less?)
(if (empty? l) l

(let* ([pivot (first l)]
[left? (lambda (x) (less? x pivot))]
[left (filter left? (rest l))]
[right? (lambda (x) (not (less? x

pivot)))]
[right (filter right? (rest l))])

(append (append (sort left less?)
(cons pivot empty))

(sort right less?)))))
(sort '(3 1 4 2) (lambda (a b) (< a b)))

lectures/lecture22/sort.rkt


Heap State
Nursery

Table



I Lecture 22 based in part on slides by Vincent St. Amour.
I Generational collector, write barrier example, based on code

from the Master’s Thesis of Yixi Zhang
https://github.com/yixizhang/racket-gc/

I The GC Handbook.

https://github.com/yixizhang/racket-gc/

	Generational GC
	Heap structure
	Generational Implementation
	Acknowledgements / References

