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Generational Garbage Collection

Generational Hypothesis
Most objects die young
I die means become garbage
I empirically well supported
I like many good ideas, goes back to Self in the 1980s



Our examples have lots of young garbage

sum (allocator-setup "mark-sweep-free-list.rkt" 160)
(define (sum lst)

(cond
[(empty? lst) 0]
[else (+ (first lst) (sum (rest lst)))]))

(sum '(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18))

I postmortem on next slide

lectures/lecture22/sum-ms.rkt


Our examples have lots of young garbage
I heap state just before first gc
I before about location 95 is

live
I all of the 'flat #f are

garbage
I other stuff is potentially live



Generational Garbage Collection
Nursery Main heap
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I We have two (or
more) spaces

I We always allocate
into the nursery

I The nursery is small,
and typically fills up
quickly.

I We use a copying
strategy for the
nursery

I Cost ∼ #live objects
I New allocations are

still into the nursery
I Per G.H., much of

what is allocated in
the nursury is quickly
garbage

I After surviving one or
more collections,
objects are moved to
the main (tenured)
heap

I Eventually the main
heap fills up as well.

I Typically we use some
non-copying strategy
to collect the main
heap

I The cycle of
allocations and
nursery collection
repeats.

I Eventually we will
have to collect the
main heap again.



How it (mostly) works

Nursery
I Collected often
I Cheap to collect as long as mostly dead objects
I Typically small

Main (Tenured) heap
I Large enough to contain peak “live” data
I Marking and sweeping both expensive
I Don’t collect often



Intergenerational Pointers

Main Heap
Nursery

Remember Set

I Can’t ignore main heap
when GCing nursery.

I Avoiding marking main heap
is the point of gen. GC

metadata Track pointers from
main heap to nursery

conservative Assume they’re live



Updating Remember Sets

Main Heap
Nursery

Remember Set

I old-young points are created
by mutation

I write barriers catch mutation



Write Barriers
(define (gc:set-first! pr-loc new)

(cond
[(gc:cons? pr-loc)
(define loc (track/loc pr-loc))
(heap-set! (+ loc 1) new)
(when (and (2nd-gen? loc)

(at-to-space? new))
(table/alloc (+ loc 1) new))]

[else (error 'set-first! "non pair at ~s"
pr-loc)]))

(define (track/loc loc-or-root)
(define loc (->location loc-or-root))
(case (heap-ref loc)

[(flat pair proc) loc]
[(frwd) (heap-ref (+ loc 1))]
[else (error 'track/loc "wrong tag ~s at ~a"

(heap-ref loc) loc)]))



Heap layout

Table

Nursery

(define (init-allocator)
(heap-set! (alloc-word) 1)
(for ([i (in-range 1 (heap-size))])

(heap-set! i 'free))
(heap-set! (1st-gen-size) 'free-n)
(heap-set! (+ 1 (1st-gen-size)) #f)
(heap-set! (+ 2 (1st-gen-size))

(- (2nd-gen-size)
(1st-gen-size)))

(heap-set! (free-list-head)
(1st-gen-size))

(heap-set! (table-start) (add1 (table-start)))
(print-heap-layout))



Two stage GC
(define (malloc n . extra-roots)

(define addr (heap-ref (alloc-word)))
(cond

[(enough-to-space? addr n)
(heap-set! (alloc-word) (+ addr n))
addr]

[else
(collect-garbage extra-roots)
(switch/sweep-tospace n)]))

(define (move/loc loc)
(cond

[(at-to-space? loc)
(case (heap-ref loc)

;
...

[(pair)
(define new (copy/alloc 3 (heap-ref (+ loc 1))

(heap-ref (+ loc 2))))
(heap-set! new 'pair)
(heap-set! (+ new 1)

(track/loc (heap-ref (+ loc 1))))
(heap-set! (+ new 2)

(track/loc (heap-ref (+ loc 2))))
(heap-set! loc 'frwd) (heap-set! (+ loc 1) new)
new]

;
...

[(frwd) (heap-ref (+ loc 1))]
[else (error 'move/loc "wrong tag ~s at ~a"

(heap-ref loc) loc)])]
[else loc]))

(define (copy/alloc n . extra-roots)
(define next (find-free-space (heap-ref

(free-list-head)) #f n))
(cond [next next]

[else
(2nd-gen-gc extra-roots)
(define next (find-free-space

(heap-ref (free-list-head)) #f n))
(unless next

(error 'copy/alloc "no space"))
next]))



Quicksort Demo

sort (define (sort l less?)
(if (empty? l) l

(let* ([pivot (first l)]
[left? (lambda (x) (less? x pivot))]
[left (filter left? (rest l))]
[right? (lambda (x) (not (less? x

pivot)))]
[right (filter right? (rest l))])

(append (append (sort left less?)
(cons pivot empty))

(sort right less?)))))
(sort '(3 1 4 2) (lambda (a b) (< a b)))

lectures/lecture22/sort.rkt


Heap State
Nursery

Table



I Lecture 22 based in part on slides by Vincent St. Amour.
I Generational collector, write barrier example, based on code

from the Master’s Thesis of Yixi Zhang
https://github.com/yixizhang/racket-gc/

I The GC Handbook.

https://github.com/yixizhang/racket-gc/
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