
CS4613 Lecture 3: Evalation and AE

David Bremner

March 21, 2023

Semantics (= Evaluation)

We can use BNF specifications to
help define meaning. Given a
grammar
ae := NUMBER

| ae1 + ae2
| ae1 - ae2

ae1: ae
ae2: ae

We can define an evaluator
function (pseudocode)
a. eval(NUMBER) = NUMBER(?)
b. eval(ae1 + ae2) =

eval(ae1) + eval(ae2)
c. eval(ae1 - ae2) =

eval(ae1) - eval(ae2)

Semantics (= Evaluation)

We can use BNF specifications to
help define meaning. Given a
grammar
ae := NUMBER

| ae1 + ae2
| ae1 - ae2

ae1: ae
ae2: ae

We can define an evaluator
function (pseudocode)
a. eval(NUMBER) = NUMBER(?)
b. eval(ae1 + ae2) =

eval(ae1) + eval(ae2)
c. eval(ae1 - ae2) =

eval(ae1) - eval(ae2)

20
23

-0
3-

21 CS4613 Lecture 3: Evalation and AE
Evaluation as Semantics

Semantics (= Evaluation)

1. meaning in our context is ”running” a program (or ”interpreting”,
”compiling”, but we will use ”evaluating”)).

2. The text (and many others) use the convention of 〈A〉 to denote
meta-variables, i.e. variables whose values are pieces of program.

Note the completely different roles of the two “+”s and “-”s. In
fact, it might have been more correct to write:
a. eval(NUMBER) = NUMBER
b. eval(ae1 "+" ae2) = eval(ae1) + eval(ae2)
c. eval(ae1 "-" ae2) = eval(ae1) - eval(ae2)

When we write:
eval(1 - 2 + 3) = ... = 1 - 2 + 3

we have two expressions, but one stands for an
input syntax, and one stands for a ‘real’
mathematical expression.

Note the completely different roles of the two “+”s and “-”s. In
fact, it might have been more correct to write:
a. eval(NUMBER) = NUMBER
b. eval(ae1 "+" ae2) = eval(ae1) + eval(ae2)
c. eval(ae1 "-" ae2) = eval(ae1) - eval(ae2)

When we write:
eval(1 - 2 + 3) = ... = 1 - 2 + 3

we have two expressions, but one stands for an
input syntax, and one stands for a ‘real’
mathematical expression.20

23
-0

3-
21 CS4613 Lecture 3: Evalation and AE

Evaluation as Semantics

1. - Note that there’s a similar kind of informality in our syntax BNF
specifications, where we assume that FOO (foo) refers to some terminal
(non-terminal).

2. An alternative popular notation for eval(X) is [[X]]:
a. [[NUMBER]] = NUMBER b. [[ae1 + ae2]] = [[ae1]] + [[ae2]] c. [[ae1 -
ae2]] = [[ae1]] - [[ae2]]

Ambiguity
eval(1 - 2 + 3) = ?

Depending on the way the expression is parsed, 2 or -4:
eval(1 - 2 + 3) = eval(1 - 2) + eval(3)

; [b]
= eval(1) - eval(2) + eval(3)

; [c]
= 1 - 2 + 3 ; [a,a,a]
= 2

eval(1 - 2 + 3) = eval(1) - eval(2 + 3)
; [c]

= eval(1) - (eval(2) + eval(3))
; [a]

= 1 - (2 + 3) ; [a,a,a]
= -4

I We need parens around a sub-expression only in one case, why?

I With ‘eval’ the parse tree matters, so
ambiguity must be eliminated.

eval(1 - 2 + 3) = eval(1) - eval(2 + 3)
; [c]

= eval(1) - (eval(2) + eval(3))
; [a]

= 1 - (2 + 3) ; [a,a,a]
= -4

I We need parens around a sub-expression only in one case, why?

I With ‘eval’ the parse tree matters, so
ambiguity must be eliminated.

20
23

-0
3-

21 CS4613 Lecture 3: Evalation and AE
Evaluation as Semantics

1. In a case of a computer implementation, the syntax on the left is (as
always) an AE syntax, and the ‘real’ expression on the right is an expression
in whatever language we use to implement our AE language.

Suppose we want to parse numbers ourselves
number: DIGIT number

eval(0) = 0
eval(1) = 1
...
eval(9) = 9

eval(DIGIT) = DIGIT
eval(DIGIT number) = 10*eval(DIGIT) + eval(number)

This grammar is unambiguous.
number: DIGIT | DIGIT number

But the corresponding eval rule is wrong:
eval(123) = 10*eval(1) + eval(23)

= 10*1 + 10*eval(2) + eval(3)
= 10*1 + 10*2 + 3
= 33

Changing the order of the last rule works much better:
number: DIGIT | number DIGIT

And then:
eval(number DIGIT) = 10*eval(number) + eval(DIGIT)

I What are potential problems (think implementation language
versus implemented language).

Changing the order of the last rule works much better:
number: DIGIT | number DIGIT

And then:
eval(number DIGIT) = 10*eval(number) + eval(DIGIT)

I What are potential problems (think implementation language
versus implemented language).

20
23

-0
3-

21 CS4613 Lecture 3: Evalation and AE
Evaluation as Semantics

1. Think of an average language that does not give you bignums, making the
above rules fail when the numbers are too big. In Racket, we happen to be
using an integer representation for the syntax of integers, and both are
unlimited. But what if we wanted to write a Racket compiler in C or a C
compiler in Racket? What about a C compiler in C, where the compiler
runs on a 64 bit machine, and the result needs to run on a 32 bit machine?

Compositionality

We saw this grammar is easier to evaluate:
number: DIGIT | number DIGIT

I The corresponding language is compositional; the meaning of
an expression is composed of the meaning of its parts (in a
simple way).

Compositionality

We saw this grammar is easier to evaluate:
number: DIGIT | number DIGIT

I The corresponding language is compositional; the meaning of
an expression is composed of the meaning of its parts (in a
simple way).

20
23

-0
3-

21 CS4613 Lecture 3: Evalation and AE
Evaluation as Semantics

Compositionality

1. This this case this can be tolerable, since the meaning of the expression is
still made out of its parts – but imperative programming (when you use
side effects) is much more problematic since it is not compositional (at
least not in the obvious sense).

2. This is compared to functional programming, where the meaning of an
expression is a combination of the meanings of its subexpressions. For
example, every sub-expression in a functional program has some known
meaning, and these all make up the meaning of the expression that
contains them – but in an imperative program we can have a part of the
code be ‘x++’ – and that doesn’t have a meaning by itself, at least not
one that contributes to the meaning of the whole program in a direct way.

The ‘DIGIT number’ case is more complicated. The meaning
depends also on the input syntax
eval(DIGIT number) = eval(DIGIT) * 10^length(number) +

eval(number)

Implementing an Evaluator
For simple languages, a merged parser and evaluator is possible

14 (define (eval sx)
(let ([rec (lambda (fn)

(eval (fn (s-exp- >list sx))))])
(cond

[(s-exp-match? `NUMBER sx)
(s-exp- >number sx)]

[(s-exp-match? `(+ ANY ANY) sx)
(+ (rec second) (rec third))]

[(s-exp-match? `(- ANY ANY) sx)
(- (rec second) (rec third))]

[else (error 'eval (to-string sx))])))

lecture3/snippet-014.rkt

Abstract and Concrete Syntax

I For more complex languages, evaluating in the parser is not
usually practical.

I So we split into (at least) two layers
I By using the abstract syntax tree (AST) as an API, we can

independently change the (concrete) syntax and the semantics.
I We can also e.g. provide better error checking/messages.

15 (eval `{+ 1 {- 3 "a"}})

lecture3/snippet-015.rkt

Abstract and Concrete Syntax

I For more complex languages, evaluating in the parser is not
usually practical.

I So we split into (at least) two layers
I By using the abstract syntax tree (AST) as an API, we can

independently change the (concrete) syntax and the semantics.
I We can also e.g. provide better error checking/messages.

15 (eval `{+ 1 {- 3 "a"}})20
23

-0
3-

21 CS4613 Lecture 3: Evalation and AE
Implementing an Evaluator

Abstract and Concrete Syntax

1. We’ll see that typechecking actually also works on the abstract syntax.
2. this is like the distinction between XML syntax and well-formed XML

syntax.

lecture3/snippet-015.rkt

Implementing The AE Language
Back to our ‘eval’ – this will be its (obvious) type:
(AE -> Number)
;; consumes an AE and computes the corresponding number

Which leads to some obvious test cases:
(test (eval (parse-sx `3)) 3)
(test (eval (parse-sx `{+ 3 4})) 7)
(test (eval (parse-sx `{+ {- 3 4} 7})) 6)

We’re usually less interested in testing the parser (except perhaps
for debugging).

18 (test (parse-sx `{+ {- 3 4} 7})
(Add (Sub (Num 3) (Num 4)) (Num 7)))

lecture3/snippet-018.rkt

The structure of the recursive ‘eval’ code follows the recursive
structure of its input.

19 (define (eval expr)
(type-case AE expr

[(Num n)]
[(Add l r) (.... (eval l) (eval r))]
[(Sub l r) (.... (eval l) (eval r))]))

In this case, filling in the gaps is very simple
20 (define (eval expr)

(type-case AE expr
[(Num n) n]
[(Add l r) (+ (eval l) (eval r))]
[(Sub l r) (- (eval l) (eval r))]))

lecture3/snippet-019.rkt
lecture3/snippet-020.rkt

We can further combine ‘eval’ and ‘parse’ into a single ‘run’
function that evaluates an AE s-expr.
(define (run sx)

(eval (parse-sx sx)))

Four functions, just like grandpas calculator
#| BNF for the AE language:

<AE> ::= <num>
| { + <AE> <AE> }
| { - <AE> <AE> }
| { * <AE> <AE> }
| { / <AE> <AE> }

|#
;; AE abstract syntax trees
(define-type AE

[Num (val : Number)]
[Add (l : AE) (r : AE)]
[Sub (l : AE) (r : AE)]
[Mul (l : AE) (r : AE)]
[Div (l : AE) (r : AE)])

Putting the pieces together
25 (define (eval expr)

(type-case AE expr
[(Num n) n]
[(Add l r) (+ (eval l) (eval r))]
[(Sub l r) (- (eval l) (eval r))]
[(Mul l r) (* (eval l) (eval r))]
[(Div l r) (/ (eval l) (eval r))]))

(define (run sx)
(eval (parse-sx sx)))

(test (run `3) 3)
(test (run `{+ 3 4}) 7)
(test (run `{+ {- 3 4} 7}) 6)

lecture3/snippet-025.rkt

	Evaluation as Semantics
	Implementing an Evaluator

