
CS4613 Lecture 4: Binding and Substitution

David Bremner

March 21, 2023

Repeated Code
Repetition is not just extra computation
{* {+ 4 2} {+ 4 2}}

it leads to bugs
{* {+ 4 2} {+ 4 1}}

and obscures meaning
with x = {+ 4 2},

{* x x}

Syntax to be negotiated, this is binding,
introducing an identifier.

Repeated Code
Repetition is not just extra computation
{* {+ 4 2} {+ 4 2}}

it leads to bugs
{* {+ 4 2} {+ 4 1}}

and obscures meaning
with x = {+ 4 2},

{* x x}

Syntax to be negotiated, this is binding,
introducing an identifier.

20
23

-0
3-

21 CS4613 Lecture 4: Binding and Substitution
Motivation: D(o not)R(epeat)Y(ourself)

Repeated Code

1. These are often called ”variables”, but we will try to avoid this name: what
if the identifier does not change (vary)?

Binding and substitution
Substitute away bindings
{let1 {x {+ 4 2}}

{* x x}}

Reduce to: {* 6 6} by substituting 6 for ‘x’ in the body
sub-expression of ‘let1’.

A little more complicated example

{let1 {x {+ 4 2}}
{let1 {y {* x x}}

{+ y y}}}

A little more complicated example:
{let1 {x {+ 4 2}}

{let1 {y {* x x}}
{+ y y}}}

We can do a series of substitutions

= {let1 {x 6} {let1 {y {* x x}} [add]
{+ y y}}}

= {let1 {y {* 6 6}} {+ y y}} [subst]
= {let1 {y 36} {+ y y}} [mul]
= {+ 36 36} [subst]
= 72 [add]

Adding Bindings to AE: The LAE Language
I PLAI (1st ed) Chapter 3. PLAI3 “Evaluating Local Binding”
I To add let1 to our language, we start with the BNF. We now

call our language ‘LAE’ (Let1+AE):

I Two new grammar rules: one for introducing
an identifier, and one for using it.

lae: NUMBER
| { + lae lae }
| { - lae lae }
| { * lae lae }
| { / lae lae }
| { let1 { ID lae } lae }
| ID

Adding Bindings to AE: The LAE Language
I PLAI (1st ed) Chapter 3. PLAI3 “Evaluating Local Binding”
I To add let1 to our language, we start with the BNF. We now

call our language ‘LAE’ (Let1+AE):

I Two new grammar rules: one for introducing
an identifier, and one for using it.

lae: NUMBER
| { + lae lae }
| { - lae lae }
| { * lae lae }
| { / lae lae }
| { let1 { ID lae } lae }
| ID

20
23

-0
3-

21 CS4613 Lecture 4: Binding and Substitution
Adding Bindings to AE: The LAE Language

Adding Bindings to AE: The LAE Language

1. This is common in many language specifications, for example ‘define-type’
introduces a new type, and it comes let1 ‘type-case that allows us to
destruct its instances.

Extended abstract syntax
We use Symbols for IDs (performance/tradition)
(define-type LAE

[Num (val : Number)]
[Add (l : LAE) (r : LAE)]
[Sub (l : LAE) (r : LAE)]
[Mul (l : LAE) (r : LAE)]
[Div (l : LAE) (r : LAE)]
[Id (name : Symbol)]
[Let1 (name : Symbol)

(val : LAE)
(expr : LAE)])

Two new forms to parse

(cond
...
[(s-exp-symbol? sx) (Id (s-exp- >symbol sx))]
[(s-exp-match? `(let1 (SYMBOL ANY) ANY) sx)
(let* ([def (sx-ref sx 1)]

[id (s-exp- >symbol (sx-ref def 0))]
[val (parse-sx (sx-ref def 1))]
[expr (parse-sx (sx-ref sx 2))])

(Let1 id val expr))]

Implementing ‘let1’ Evaluation

To evaluate:
{let1 {id LAE1} LAE2}

Evaluate ’LAE2’ with ’id’ substituted by ’LAE1’.
eval({let1 {id LAE1} LAE2}) =

eval(subst(LAE2 ,id,LAE1))

There is a more common syntax for substitution
eval({let1 {id LAE1} LAE2}) = eval(LAE2[LAE1/id])

Now all we need is an exact definition of substitution.

Implementing ‘let1’ Evaluation

To evaluate:
{let1 {id LAE1} LAE2}

Evaluate ’LAE2’ with ’id’ substituted by ’LAE1’.
eval({let1 {id LAE1} LAE2}) =

eval(subst(LAE2 ,id,LAE1))

There is a more common syntax for substitution
eval({let1 {id LAE1} LAE2}) = eval(LAE2[LAE1/id])

Now all we need is an exact definition of substitution.20
23

-0
3-

21 CS4613 Lecture 4: Binding and Substitution
Adding Bindings to AE: The LAE Language

Implementing ‘let1’ Evaluation

1. Note that substitution is not the same as evaluation, only part of the
evaluation process. In the previous examples, when we evaluated the
expression we did substitutions as well as the usual arithmetic operations
that were already part of the AE evaluator. In this last definition there is
still a missing evaluation step, see if you can find it.

Naive Substitution
e[v/i] := replace all occurances of ‘i’ in ‘e’ by ‘v’.

Simple cases work
{let1 {x 5} {+ x x}} --> {+ 5 5}
{let1 {x 5} {+ 10 4}} --> {+ 10 4}

Nonsense results in other cases
{let1 {x 5} {+ x {let1 {x 3} 10}}}

--> {+ 5 {let1 {5 3} 10}} ???

Clearly there are different kinds of occurrences of
identifiers.

Binding, Free, and Bound identifiers

I Binding Instance: names the identifier in a new binding.
I In our BNF syntax, binding instances are only the ID position

of the ‘let1’ form.
I Scope region of program text in which instances of the

identifier refer to the value bound in the binding instance.
I Bound Instance (or Bound Occurrence): contained within the

scope of a binding instance of its name.

I Free Instance (or Free Occurrence): not
contained in any binding instance of its name

Binding, Free, and Bound identifiers

I Binding Instance: names the identifier in a new binding.
I In our BNF syntax, binding instances are only the ID position

of the ‘let1’ form.
I Scope region of program text in which instances of the

identifier refer to the value bound in the binding instance.
I Bound Instance (or Bound Occurrence): contained within the

scope of a binding instance of its name.

I Free Instance (or Free Occurrence): not
contained in any binding instance of its name20

23
-0

3-
21 CS4613 Lecture 4: Binding and Substitution

Substitution

Binding, Free, and Bound identifiers

1. Note that this definition of scope actually relies on a definition of
substitution, because that is what is used to specify how identifiers refer to
values.

Substitution, take 2

Goals
I don’t substitute for binding instances
I handle shadowing

Definition (Substitution v2)
e[v/i] := replace all instances of ‘i’ that are free in ‘e’ with ‘v’.

Racket substitution definition
; returns expr[to/from].
; leaves no free occurences of `to'
(define (subst expr from to)

(type-case LAE expr
...
[(Add l r) (Add (subst l from to)

(subst r from to))]
[(Id name) (if (eq? name from) to expr)]
[(Let1 bound-id named-expr bound-body)
(if (eq? bound-id from)

expr ; <-- don't go in!
(Let1 bound-id

named-expr
(subst bound-body from to)))]))

Let’s test a few cases.

22 (test (subst
;; {+ x {let1 {x 3} x}
(Add (Id 'x) (Let1 'x (Num 3) (Id 'x)))
'x (Num 5))

;; {+ 5 {let1 {x 3} x}}
(Add (Num 5) (Let1 'x (Num 3) (Id 'x))))

(test (subst
;; {+ x {let1 {y 3} x}}
(Add (Id 'x) (Let1 'y (Num 3) (Id 'x)))
'x (Num 5))

;; {+ 5 {let1 {y 3} 5}}
(Add (Num 5) (Let1 'y (Num 3) (Num 5))))

I Before we find more bugs, we need to see how
substitution is used in evaluation.

I To modify our evaluator, we need to deal let1
‘let1’ expressions and identifiers.

lecture4/snippet-022.rkt

evaluating ‘let1’

To evaluate:
{let1 {x E1} E2}

I evaluate ‘E1’ to get a value ‘V1’
I substitute the identifier ‘x’ let1 the expression ‘V1’ in ‘E2’,
I evaluate the new expression.

In other words:
eval({let1 {x E1} E2}) =

eval(E2[eval(E1)/x])

Evaluating identifiers?

‘subst’ leaves no free instances of the substituted variable around.
{let1 {x E1} E2} => E2[E1/x]

If the initial expression is valid (did not contain any free variables),
then substitution removes all free identifiers.
I We can now extend the eval rule of AE to LAE:

eval(...) = ... same as the AE rules ...
eval({let1 {x E1} E2}) = eval(E2[eval(E1)/x])
eval(id) = error!

Evaluating identifiers?

‘subst’ leaves no free instances of the substituted variable around.
{let1 {x E1} E2} => E2[E1/x]

If the initial expression is valid (did not contain any free variables),
then substitution removes all free identifiers.
I We can now extend the eval rule of AE to LAE:

eval(...) = ... same as the AE rules ...
eval({let1 {x E1} E2}) = eval(E2[eval(E1)/x])
eval(id) = error!20

23
-0

3-
21 CS4613 Lecture 4: Binding and Substitution

Substitution

Evaluating identifiers?

1. If you’re paying close attention, you might catch a potential problem in this
definition: we’re substituting ‘eval(E1)’ for ‘x’ in ‘E2’ – an operation that
requires an LAE expression, but ‘eval(E1)’ is a number. (Look at the type
of the ‘eval’ definition we had for AE, then look at the above definition of
‘subst’.) This seems like being overly pedantic, but we it will require some
resolution when we get to the code.

Racket evaluator for LAE

I We can translate our evaluation rules directly to racket.
(define (interp expr)

(type-case LAE expr
...
[(Let1 bound-id named-expr bound-body)
(interp (subst bound-body bound-id

(Num (interp named-expr))))]
...
[(Id name)
(error 'interp "free identifier")]))

Racket evaluator for LAE

I We can translate our evaluation rules directly to racket.
(define (interp expr)

(type-case LAE expr
...
[(Let1 bound-id named-expr bound-body)
(interp (subst bound-body bound-id

(Num (interp named-expr))))]
...
[(Id name)
(error 'interp "free identifier")]))20

23
-0

3-
21 CS4613 Lecture 4: Binding and Substitution

Substitution

Racket evaluator for LAE

1. We will (try to) follow the book and call this function interp from here on
2. Note the ‘Num’ expression in the marked line: evaluating the named

expression gives us back a number – we need to convert this number into a
syntax to be able to use it let1 ‘subst’. The solution is to use ‘Num’ to
convert the resulting number into a numeral (the syntax of a number). It’s
not an elegant solution, but it will do for now.

Testing the evaluator
28 (test (run `5) 5)

(test (run `{+ 5 5}) 10)
(test (run `{let1 {x {+ 5 5}} {+ x x}}) 20)
(test (run `{let1 {x 5} {+ x x}}) 10)
(test (run `{let1 {x 5} {+ x {let1 {x 3} 10}}}) 15)
(test (run `{let1 {x 5} {+ x {let1 {x 3} x}}}) 8)
(test (run `{let1 {x 5} {+ x {let1 {y 3} x}}}) 10)
(test/exn (run `{let1 {x 1} y}) "free")

lecture4/snippet-028.rkt

What about these cases?

29 (test (run `{let1 {x {+ 5 5}}
{let1 {y {- x 3}} {+ y y}}}) 14)

(test (run `{let1 {x 5} {let1 {y {- x 3}} {+ y y}}}) 4)
(test (run `{let1 {x 5} {let1 {y x} y}}) 5)
(test (run `{let1 {x 5} {let1 {x x} x}}) 5)

lecture4/snippet-029.rkt

A missing substitution

In expressions like:
{let1 {x 5}

{let1 {y x}
y}}

I We forgot to substitute ‘x’ in {let1 {y x} ...}

I We need to do the recursive subsititution in
both the let1’s named-expression as well as its
body.

Updated substitution function

;; expr[to/from]
(define (subst expr from to)

(type-case LAE expr
...
[(Let1 bound-id named-expr bound-body)
(if (eq? bound-id from)

expr
(Let1
bound-id
(subst named-expr from to) ; new
(subst bound-body from to)))]))

Another missing substitution
We still have a problem:
{let1 {x 5}

{let1 {x x}
x}}

I When we subst. the outer ‘x’, we don’t go
inside the inner ‘let1’ (same name) – but we
do need to go into its named expr.

I We need to subst. in the named expr. even if
the ident is the same one we substituting.

I cf. let vs. let*

This should
evaluate to 5,
not fail with an
error.

Updated substitution function v2
;; expr[to/from]
(define (subst expr from to)

(type-case LAE expr
...
[(Id name)
(if (eq? name from) to expr)]

[(Let1 bound-id named-expr bound-body)
(Let1
bound-id
(subst named-expr from to)
(if (eq? bound-id from)

bound-body
(subst bound-body from to)))]))

34 (test (run `{let1 {x {+ 5 5}}
{let1 {y {- x 3}} {+ y y}}}) 14)

(test (run `{let1 {x 5} {let1 {y {- x 3}} {+ y y}}}) 4)
(test (run `{let1 {x 5} {+ x {let1 {x 3} 10}}}) 15)
(test (run `{let1 {x 5} {+ x {let1 {x 3} x}}}) 8)
(test (run `{let1 {x 5} {+ x {let1 {y 3} x}}}) 10)
(test (run `{let1 {x 5} {let1 {y x} y}}) 5)
(test (run `{let1 {x 5} {let1 {x x} x}}) 5)
(test/exn (run `{let1 {x 1} y}) "free identifier")

lecture4/snippet-034.rkt

	Motivation: D(o not)R(epeat)Y(ourself)
	Adding Bindings to AE: The LAE Language
	Substitution
	Substitution II
	Substitution III

