
Eager and Lazy evaluation.

David Bremner

March 21, 2023



Substitution Review
New ‘let1‘-form (like racket let)
lae : NUMBER

| { + lae lae }
| { - lae lae }
| { * lae lae }
| { / lae lae }
| { let1 { ID lae } lae }
| ID

Substitution
e[v/i] – To substitute an id. ‘i’ in an expr. ‘e’ with an
expr. ‘v’, replace instances of ‘i’ free in ‘e’ with ‘v’.



Substitution Review
New ‘let1‘-form (like racket let)
lae : NUMBER

| { + lae lae }
| { - lae lae }
| { * lae lae }
| { / lae lae }
| { let1 { ID lae } lae }
| ID

Substitution
e[v/i] – To substitute an id. ‘i’ in an expr. ‘e’ with an
expr. ‘v’, replace instances of ‘i’ free in ‘e’ with ‘v’.20

23
-0

3-
21 Eager and Lazy evaluation.

Substitution Review

Substitution Review

1. + Avoid writing expressions twice.
+ More expressive language (can express identity).
+ Avoid redundant redundancy.



‘Let1’ evaluation rules

Extended AE evaluation rules:
eval(...) = ... same as the AE rules ...
eval({let1 {x E1} E2}) = eval(E2[eval(E1)/x])
eval(ID) = error!

One thing we glossed over last time is the type error in this scheme.
What’s wrong with this picture:

(has-type subst :
(LAE Symbol LAE -> LAE ))

(has-type eval : (LAE -> Number))



We hacked around the type problem by wrapping the results of
subst:
(define (interp expr)

(type-case LAE expr
...

[(Let1 bound-id named-expr bound-body)
(interp (subst bound-body

bound-id
(Num (interp named-expr))))]))



Lazy Plait

What should this evaluate to?
lp (let ([x (/ 1 0)])

42)

I we can make it succeed by adding ’#:lazy’ to our language
definition

I Lazy evaluation provides new kinds of modularity via infinite
sequences or streams (related to generators).

lecture5/lazy-plait.rkt


Lazy Plait

What should this evaluate to?
lp (let ([x (/ 1 0)])

42)

I we can make it succeed by adding ’#:lazy’ to our language
definition

I Lazy evaluation provides new kinds of modularity via infinite
sequences or streams (related to generators).

20
23

-0
3-

21 Eager and Lazy evaluation.
Lazy Evaluation

Lazy Plait

See the paper “Why Functional Programming Matters” by John Hughes.

lecture5/lazy-plait.rkt


Using Streams
streams (define ones (stream-cons 1 ones))

(stream- >list (stream-take ones 15))

(define (stream-add s1 s2)
(for/stream ([a s1] [b s2]) (+ a b)))

(define twos (stream-add ones ones))
(stream- >list (stream-take twos 15))

(define fibs (stream-cons 1
(stream-cons 1

(stream-add fibs
(stream-rest fibs)))))

(stream- >list (stream-take fibs 15))

lecture5/streams.rkt


Lazy vs Eager Evaluation
Two basic approaches to evaluation
I In lazy evaluation (without sharing), bindings are used for

unevaluated code; computation is still duplicated.
I In eager evaluation bindings are used for values

What is our existing evaluator?
eval({let1 {x E1} E2}) = eval(E2[eval(E1)/x])

[(Let1 bound-id named-expr bound-body)
(interp (subst bound-body bound-id

(Num (interp named-expr))))]



Making evaluation lazy
We can do the substitution purely syntactically:
eval({let1 {x E1} E2}) = eval(E2[E1/x])

Similarly in the code:
(define (interp expr)

(type-case LAE expr
...

[(Let1 bound-id named-expr bound-body)
;; no eval , wrapping
(interp (subst bound-body bound-id named-expr))]
... ))



Testing our lazy evaluator

11 (test (run `5) 5)
(test (run `{+ 5 5}) 10)
(test (run `{let1 {x {+ 5 5}} {+ x x}}) 20)
(test (run `{let1 {x 5} {+ x x}}) 10)
(test (run `{let1 {x {+ 5 5}} {let1 {y {- x 3}}

{+ y y}}}) 14)
(test (run `{let1 {x 5} {let1 {y {- x 3}} {+ y y}}}) 4)
(test (run `{let1 {x 5} {+ x {let1 {x 3} 10}}}) 15)
(test (run `{let1 {x 5} {+ x {let1 {x 3} x}}}) 8)
(test (run `{let1 {x 5} {+ x {let1 {y 3} x}}}) 10)
(test (run `{let1 {x 5} {let1 {y x} y}}) 5)
(test (run `{let1 {x 5} {let1 {x x} x}}) 5)
(test/exn (run `{let1 {x 1} y}) "free identifier")

lecture5/snippet-011.rkt


Comparing the lazy and eager evaluators:
12 ; lazy version

(trace interp)
(run `{let1 {x {+ 1 2}} {* x x}})

13 ; eager version
(trace interp)
(run `{let1 {x {+ 1 2}} {* x x}})

I What can we guess about efficiency?
I Is there a program that runs differently?
I main feature: do not evaluate the named expression until it is

actually needed.

lecture5/snippet-012.rkt
lecture5/snippet-013.rkt


Comparing the lazy and eager evaluators:
12 ; lazy version

(trace interp)
(run `{let1 {x {+ 1 2}} {* x x}})

13 ; eager version
(trace interp)
(run `{let1 {x {+ 1 2}} {* x x}})

I What can we guess about efficiency?
I Is there a program that runs differently?
I main feature: do not evaluate the named expression until it is

actually needed.

20
23

-0
3-

21 Eager and Lazy evaluation.
Lazy Evaluation

Comparing the lazy and eager evaluators:

1. We saw that our simple lazy evaluation strategy can cause duplicate work
at runtime. Languages that rely heavily on lazy evaluation will typically
introduce some sharing mechanism for unevaluated (or partially evaluated)
expressions to avoid this.

lecture5/snippet-012.rkt
lecture5/snippet-013.rkt


Unused bound identifiers
this succeeds

14 (run `{let1 {x {/ 8 0}} 7})

Unfortunately so does this

15 (run `{let1 {x y} 7})

Why might we think about these as different?
Consider

16 (run `{let1 {y 0}
{let1 {z y}

{let1 {x {/ 8 z}} 7}}})

lecture5/snippet-014.rkt
lecture5/snippet-015.rkt
lecture5/snippet-016.rkt


Name Capturing

I We don’t want to substitute an expression into a context that
captures some of its free variables.

I Consider lazily and eagerly evaluating this program:
17 (run

`{let1 {y x}
{let1 {x 2}

{+ x y}}})

lecture5/snippet-017.rkt


Name Capturing

I We don’t want to substitute an expression into a context that
captures some of its free variables.

I Consider lazily and eagerly evaluating this program:
17 (run

`{let1 {y x}
{let1 {x 2}

{+ x y}}})

20
23

-0
3-

21 Eager and Lazy evaluation.
Problems of Lazy evaluation

Name Capturing

1. Let1 the eager evaluator, name capture is not a problem because by the
time we do the substitution, the named expression should not have free
variables that need to be replaced.

lecture5/snippet-017.rkt


Trade-offs between eager and lazy

I As long as the initial program is correct, both evaluation
strategies produce the same results.

I If a program contains free variables, they might get captured
in a naive lazy evaluator implementation

I It can be proved that when you evaluate an expression, if there
is an error that can be avoided, lazy evaluation will always
avoid it.



Trade-offs between eager and lazy

I As long as the initial program is correct, both evaluation
strategies produce the same results.

I If a program contains free variables, they might get captured
in a naive lazy evaluator implementation

I It can be proved that when you evaluate an expression, if there
is an error that can be avoided, lazy evaluation will always
avoid it.

20
23

-0
3-

21 Eager and Lazy evaluation.
Problems of Lazy evaluation

Trade-offs between eager and lazy

1. This capturing is a bug
2. + On the other hand, lazy evaluators are usually slower than eager

evaluator, so it’s a trade-off.
3. Note that with lazy evaluation we say that an identifier is bound to an

expression rather than a value. (Again, this is why the eager version needed
to wrap ‘eval’s result in a ‘Num’ and this one doesn’t.)



Sketch of substitution without name capture

Pruning substitution (shadowing) as with eager case:
{let1 {x E1} E2}[E3/x]

= {let1 {x E1[E3/x]} E2}

For x != y

{let1 {y E1} E2}[E3/x] =
if `y' is free in `E3'

= {let1 {y1 E1[E3/x]} E2[y1/y][E3/x]}
otherwise

= {let1 {x E1[E3/x]} E2[E3/x]}



Sketch of substitution without name capture

Pruning substitution (shadowing) as with eager case:
{let1 {x E1} E2}[E3/x]

= {let1 {x E1[E3/x]} E2}

For x != y

{let1 {y E1} E2}[E3/x] =
if `y' is free in `E3'

= {let1 {y1 E1[E3/x]} E2[y1/y][E3/x]}
otherwise

= {let1 {x E1[E3/x]} E2[E3/x]}20
23

-0
3-

21 Eager and Lazy evaluation.
Problems of Lazy evaluation

Sketch of substitution without name capture

1. You can see that this is much more complicated, and probably not correct
yet.



de Bruijn Indices

I Name capture is a problem that should be avoided.
I Note that the only thing we use names for are references.
I We don’t really care what the name is:
I The only thing we care about is what variable points where.

{let1 {x 5} {+ x x}}
{let1 {y 5} {+ y y}}

(define (foo x) (list x x))
(define (foo y) (list y y))



de Bruijn Indices

I Name capture is a problem that should be avoided.
I Note that the only thing we use names for are references.
I We don’t really care what the name is:
I The only thing we care about is what variable points where.

{let1 {x 5} {+ x x}}
{let1 {y 5} {+ y y}}

(define (foo x) (list x x))
(define (foo y) (list y y))20

23
-0

3-
21 Eager and Lazy evaluation.

de Bruijn Numbering

de Bruijn Indices

1. The sense in which these expressions are ”obviously the same”. is is called
”alpha-equality”).



Binding Structure
Which identifier references which expression is binding structure; we
can visualize it in DrRacket

21 (let ([x 1])
(let ([y x])

(let ([x x])
(+ x y))))

I Idea: if all we care about is where the arrows go, then simply
get rid of the names

I Instead of referencing a binding through its name, just specify
which of the surrounding scopes we want to refer to.

lecture5/snippet-021.rkt


We can translate
{let1 {x 5} {let1 {y 6} {+ x y}}}

to use a new ‘reference’ syntax – “[N]” –
{let1 5 {let1 6 {+ [1] [0]}}}

Scope References
[0] is the value bound in the current scope, [1] is the value from the
next one up etc…

To do this translation, we have to know the
precise scope rules.



More scope references

More complicated example:
{let1 {x 5} {+ x {let1 {y 6} {+ x y}}}}

Translates to:
{let1 5 {+ [0] {let1 6 {+ [1] [0]}}}}

Note that ‘x’ appears as a different refer-
ence based on where it appeared in the orig-
inal code.



Even more scope references

Even more subtle:
{let1 {x 5} {let1 {y {+ x 1}} {+ x y}}}

translated to:
{let1 5 {let1 {+ [0] 1} {+ [1] [0]}}}

I What scope is the named expression of the
inner let1 in?



Even more scope references

Even more subtle:
{let1 {x 5} {let1 {y {+ x 1}} {+ x y}}}

translated to:
{let1 5 {let1 {+ [0] 1} {+ [1] [0]}}}

I What scope is the named expression of the
inner let1 in?20

23
-0

3-
21 Eager and Lazy evaluation.

de Bruijn Numbering

Even more scope references

1. The inner ‘let1’ does not have its own named expression in its scope, so the
named expression is immediately in the scope of the outer ‘let1’.



de Bruijn Indices
I Instead of referencing identifiers by their name, we use an

index into the surrounding binding context.
I The major disadvantage, as can be seen in the above

examples, is that the transformed code is not easy for humans
to understand.

I Specifically, the same identifier is referenced
using different numbers, which makes it hard
to understand what some code is doing.

I Practically all compilers use de Bruijn indices
for compiled code (think about stack pointers).


	Substitution Review
	Lazy Evaluation
	Problems of Lazy evaluation
	de Bruijn Numbering

