
CS4613 Lecture 6: Substitution and Functions

David Bremner

March 21, 2023



Functions & First Class Function Values
I PLAI “Evaluating Functions”
I The concept of a function is itself very close to substitution,

and to our ‘let1’ form.
I Consider the following “morph”

{let1 {x 5}
{* x x}}

{let1 x ; potential syntax
{* x x}} ;for anonymous function

{lam x
{* x x}}



Functions & First Class Function Values
I PLAI “Evaluating Functions”
I The concept of a function is itself very close to substitution,

and to our ‘let1’ form.
I Consider the following “morph”

{let1 {x 5}
{* x x}}

{let1 x ; potential syntax
{* x x}} ;for anonymous function

{lam x
{* x x}}

20
23

-0
3-

21 CS4613 Lecture 6: Substitution and Functions
Functions

Functions & First Class Function Values

1. Now that we have a form for local bindings, which forced us to deal with
proper substitutions and everything that is related, we can get to functions.



Functions and binding
We need a form to use these functions. We want
{{lam x {* x x}}

5}

to be the same as the original thing we started with
{let1 {x 5}

{* x x}}

Naming functions allows reuse
{let1 {sqr {lam x {* x x}}}

{+ {sqr 5} {sqr 6}}}

‘x’ is the formal parameter (or argument), and the ‘5’ and
‘6’ are actual parameters.



Functions and binding
We need a form to use these functions. We want
{{lam x {* x x}}

5}

to be the same as the original thing we started with
{let1 {x 5}

{* x x}}

Naming functions allows reuse
{let1 {sqr {lam x {* x x}}}

{+ {sqr 5} {sqr 6}}}

‘x’ is the formal parameter (or argument), and the ‘5’ and
‘6’ are actual parameters.

20
23

-0
3-

21 CS4613 Lecture 6: Substitution and Functions
Functions

Functions and binding

1. Note that this way of binding functions depends strongly on our functions
being values.



First class functions

Three basic approaches to functions/procedures
First order functions are not values. E.g. Java methods.
Higher order functions can receive and return other functions as

values. This is what you get in C.
First class can be stored in data structures. Can be defined where /

when other values can be, using values in current scope.



Functions as expressions
In machine-code, to compute an expression such as
(-b + sqrt(b^2 - 4*a*c)) / 2a

You have to do something like this:
x = b * b
y = 4 * a
...
s = x / y

With first-class functions, complex expressions can
have functions as intermediate values.

7 (map (λ (x) (+ x 3))
(list 1 2 3))

lecture6/snippet-007.rkt


Lambda is not the main issue

8 // Javascript
function foo(x) {

function bar(y) { return x + y; }
return bar;

}
let f = foo(1),g = foo(10);
console.log(">> "+ f(2) + ", " + g(2));

9 ;; Racket
(define (foo x)

(local [(define (bar y) (+ x y))] bar))

lecture6/snippet-008.js
lecture6/snippet-009.rkt


Lambda is not the main issue

8 // Javascript
function foo(x) {

function bar(y) { return x + y; }
return bar;

}
let f = foo(1),g = foo(10);
console.log(">> "+ f(2) + ", " + g(2));

9 ;; Racket
(define (foo x)

(local [(define (bar y) (+ x y))] bar))20
23

-0
3-

21 CS4613 Lecture 6: Substitution and Functions
Functions

Lambda is not the main issue

In both cases the returned function is not anonymous, but it’s not really named
either. the ‘bar’ name is bound only inside the body of ‘foo’, and outside of it that
name is irrelevant.

lecture6/snippet-008.js
lecture6/snippet-009.rkt


C local functions
GCC allows local function definitions as an extension, but they are
not first class. Why not?

10 typedef int(*int2int)(int);
int2int foo(int x) {

int bar(int y) { return x + y; }
return bar;

}
int main() {

int2int f = foo(1);
int2int g = foo(10);
printf(">> %d, %d\n", f(2), g(2));

}

lecture6/snippet-010.c


The FLANG Language

Concrete Syntax
flang: NUMBER

| { "+" flang flang }
| { "-" flang flang }
| { "*" flang flang }
| { "/" flang flang }
| { "let1" { ID flang } flang }
| ID
| { "lam" ID flang }
| { flang flang } ;; Call



FLANG Abstract Syntax
12 (define-type FLANG

[Num (val : Number)]
[Add (l : FLANG) (r : FLANG)]
[Sub (l : FLANG) (r : FLANG)]
[Mul (l : FLANG) (r : FLANG)]
[Div (l : FLANG) (r : FLANG)]
[Id (name : Symbol)]
[Let1 (id : Symbol)

(named-expr : FLANG)
(bound-body : FLANG)]

[Lam (param : Symbol)
(body : FLANG)]

[Call (lam : FLANG)
(val : FLANG)]) ; first type!

lecture6/snippet-012.rkt


FLANG parser

Parsing Lam requires an identifier in position 2
[(s-exp-match? `(lam SYMBOL ANY) sx)
(let* ([id (s-exp- >symbol (sx-ref sx 1))]

[body (parse-sx (sx-ref sx 2))])
(Lam id body))]

We also need a surface syntax for calling/applying a function. We
follow the book (and Racket) and just make that the default:
[(s-exp-match? `(ANY ANY) sx)
(Call (parse-sx (sx-ref sx 0))

(parse-sx (sx-ref sx 1)))]



FLANG substitution I/II
Mostly substitution is the same:
N[v/x] = N
{+ E1 E2}[v/x] = {+ E1[v/x] E2[v/x]}
;; -, *, /...
y[v/x] = y
x[v/x] = v
{let1 {y E1} E2}[v/x] = {let1 {y E1[v/x]} E2[v/x]}
{let1 {x E1} E2}[v/x] = {let1 {x E1[v/x]} E2}



FLANG Substitution, the new parts
call looks like arithmetic
{E1 E2}[v/x] = {E1[v/x] E2[v/x]}

lam looks like let1.
{lam y E}[v/x] = {lam y E[v/x]}
{lam x E}[v/x] = {lam x E}



New substitution cases in Racket
(type-case FLANG expr

...
[(Call l r)

(Call (subst l from to) (subst r from to))]
[(Lam bound-id bound-body)
(if (eq? bound-id from)

expr
(Lam bound-id (subst bound-body from to)))]))



Representing values in FLANG
I we need to decide on how to represent values in FLANG.
I Before, we had only numbers and we used (Racket) numbers

to represent them.
I What should be the result of evaluating

{lam x {+ x 1}}

I We need some way, e.g. type variants to distinguish between
functions and numbers.

I In fact we already have a type which would work, namely
FLANG

I We could also define a result type, which might be a bit
cleaner, but the main issues are the same.



Using FLANG to represent values

Numbers are wrapped
(test (eval (Add (Num 1) (Num 2))) (Num 3))

and evaluate to themselves
(test (interp (Num 5)) (Num 5))

as do functions
(interp (test (Lam 'x (Num 2))

(Lam 'x (Num 2))))



FLANG formal evaluation rules

eval(N) = N

eval({+ E1 E2}) = eval(E1) + eval(E2) ;; etc



FLANG formal evaluation rules

eval(N) = N

eval({+ E1 E2}) = eval(E1) + eval(E2) ;; etc

20
23

-0
3-

21 CS4613 Lecture 6: Substitution and Functions
FLANG: A language with functions

FLANG formal evaluation rules

1. ‘call’ will be very similar to ‘let1’ – the only difference is that its arguments
are ordered a little differently, being retrieved from the function that is
applied and the argument.



FLANG formal evaluation rules (part 2)

The formal evaluation rules treat functions like numbers, and use
the syntax object to represent both values:
eval(id) = error!

eval({let1 {x E1} E2}) = eval(E2[eval(E1)/x])

eval(LAM) = LAM ; assuming LAM is a function expr

eval({E1 E2}) = if eval(E1) == {lam x Ef} then
eval(Ef[eval(E2)/x])

else error!



Call and Let1
Note that the call rule could be written using a translation to a
‘let1’ expression:
eval({E1 E2})

= if eval(E1) = {lam x Ef} then
eval({let1 {x E2} Ef})

else
error!

Symmetrically, we could specify ‘let1’ using ‘call’
and ‘fun’:
eval({let1 {x E1} E2}) =
eval({{lam x E2} E1})



Dynamic typing
Need to check arithmetic operation’s arguments:
eval({+ E1 E2}) = eval(E1) + eval(E2)

if eval(E1) and eval(E2) are
numbers

otherwise error!

28 (define (arith-op op expr1 expr2)
(let ([unwrap

(λ (e)
(type-case FLANG e

[(Num n) n]
[else (error 'arith-op "NaN")]))])

(Num (op (unwrap expr1)
(unwrap expr2)))))

lecture6/snippet-028.rkt


Flang evaluator
[(Num n) expr] ; <- change here

...
[(Let1 bound-id named-expr bound-body)
(interp (subst bound-body bound-id

(interp named-expr)))] ; <- no `(Num ...)'
[(Lam bound-id bound-body) expr] ;cf. Num

[(Call lam arg-expr)
(type-case FLANG lam

[(Lam bound-id bound-body) ;cf. Let1
(interp (subst bound-body bound-id

(interp arg-expr)))]
[else (error 'eval "non-function")])]))



Returning numbers
We can also make things a little easier to use if we make ‘run’
convert the result to a number:
(define (run sx)

(let ([result (interp (parse-sx sx))])
(type-case FLANG result

[(Num n) n]
[else (error 'run "returned a non-number")])))



It’s alive?

30

(test (run `{{lam x {+ x 1}} 4})
5)

(test (run `{let1 {add3 {lam x {+ x 3}}}
{add3 1}})

4)
(test (run `{let1 {add3 {lam x {+ x 3}}}

{let1 {add1 {lam x {+ x 1}}}
{let1 {x 3}

{add1 {add3 x}}}}})
7)

lecture6/snippet-030.rkt


Oops, I an evaluation.

31 (test (run `{let1 {identity {lam x x}}
{let1 {foo {lam x {+ x 1}}}

{{identity foo} 123}}})
124)

(test (run `{{{lam x {x 1}}
{lam x {lam y {+ x y}}}} 123})

124)

lecture6/snippet-031.rkt


Fixing call
It seems like our call implementation needs work

32 (trace interp)
(run `{let1 {identity {lam x x}}

{let1 {foo {lam x {+ x 1}}}
{{identity foo} 123}}})

(run `{{{lam x {x 1}}
{lam x {lam y {+ x y}}}}

123})

So we have to reduce the expression in the function position
before we can tell if it is a function.

lecture6/snippet-032.rkt


[(Call lam arg-expr)
(let [(funV (interp lam))]

(type-case FLANG funV
[(Lam bound-id bound-body)

; just like `let1 '
(interp (subst bound-body

bound-id
(interp arg-expr)))]

[else (error 'eval "expected function")]))]))



Now our tests pass

34 (trace interp)
(test (run `{let1 {identity {lam x x}}

{let1 {foo {lam x {+ x 1}}}
{{identity foo} 123}}})

124)

(test (run
`{{{lam x {x 1}} {lam x {lam y {+ x y}}}} 123})

124)

lecture6/snippet-034.rkt

	Functions
	FLANG: A language with functions

