
CS4613 Lecture 7 Environments

David Bremner

March 21, 2023



Implementing Lexical Scope: Closures and
Environments

I How do we preserve the original substitution behaviour, while
avoiding duplicate computation?

I In the substitution evaluator,
{let1 {x 1}

{lam y
{+ x y}}}

returns
{lam y {+ 1 y}}

I Now we are “immune” to re-binding



{let1 {f {let1 {x 1} {lam y {+ x y}}}}
{let1 {x 2}

{f 3}}}

I f is bound to a function that adds 1 to its input,
I x doesn’t even appear, so rebinding it around the call does

nothing.



With a naive caching evaluator, the value of
{let1 {x 1}

{lam y
{+ x y}}}

is simply:
{lam y {+ x y}}

root problem there is no place where we save the 1
I The returned expr. contains a free identifier.
I we need a value that contains the body and the

argument list, like the function syntax object
I we need to remember that we still need to

replace x by 1.



With a naive caching evaluator, the value of
{let1 {x 1}

{lam y
{+ x y}}}

is simply:
{lam y {+ x y}}

root problem there is no place where we save the 1
I The returned expr. contains a free identifier.
I we need a value that contains the body and the

argument list, like the function syntax object
I we need to remember that we still need to

replace x by 1.

20
23

-0
3-

21 CS4613 Lecture 7 Environments
Lexical Scope and Functions

1. That’s also what makes people suspect that using ‘lambda’ in Racket and
any other functional language involves some inefficient code-recompiling
magic.



New Function Values

{let1 {x 1}
{lam y

{+ x y}}}

formal argument(s) y

body {+ x y}

pending substitutions [1/x]



Closures

I The resulting object is called a closure because it closes the
function body over the substitutions that are still pending (its
environment).

I FLANG functions will need to evaluate to some type
representing a closure.



(Eagerly) Evaluating calls
I First we evaluate the function value and the argument value to

yield two values
{f 3}, [] =>

FunVal = < {lam y {+ x y}} , [x=1] >
Arg = < 3 >

I we now continue with evaluating the body,
with the new substitutions for the formal
arguments and actual values given.

{+ x y}, [y=3, x=1]
; look ma, no substitution



(Eagerly) Evaluating calls
I First we evaluate the function value and the argument value to

yield two values
{f 3}, [] =>

FunVal = < {lam y {+ x y}} , [x=1] >
Arg = < 3 >

I we now continue with evaluating the body,
with the new substitutions for the formal
arguments and actual values given.

{+ x y}, [y=3, x=1]
; look ma, no substitution20

23
-0

3-
21 CS4613 Lecture 7 Environments

Closures

(Eagerly) Evaluating calls

1. we have finished dealing with all substitutions that were necessary over the
current expression



I Rewrite the evaluation rules – Most are the same
eval(N,sc) = N
eval({+ E1 E2},sc) = eval(E1,sc) + eval(E2,sc)
; ...
eval(x,sc) = lookup(x,sc)
eval({let1 {x E1} E2},sc) =

eval(E2,extend(x,eval(E1,sc),sc))

I Except for evaluating a ‘lam’ form and a call



eval({lam x E},sc) = <{lam x E}, sc>
eval({E1 E2},sc1)

= eval(Ef,extend(x,eval(E2,sc1),sc2))
if eval(E1,sc1) =

<{lam x Ef}, sc2 >
= error! otherwise

I These substitution caches are more than “just
a cache” now – they hold an environment of
definitions. So we will switch terminology…



Substitution Caches are Environments

eval({lam x E},env) = <{lam x E}, env >
eval({E1 E2},env1) =

if eval(E1,env1) = <{lam x Ef}, env2 > then
eval(Ef,extend(x,eval(E2,env1),env2))

else
error!



Evaluation step by step

To evaluate {E1 E2} in env1:
I f := evaluate E1 in env1
I if f is not a <{lam ...}, ...> closure then error!
I a := evaluate E2 in env1
I new_env := extend env_of(f) by [arg_of(f)= a]

I evaluate (and return) body_of(f) in new_env



Evaluation step by step

To evaluate {E1 E2} in env1:
I f := evaluate E1 in env1
I if f is not a <{lam ...}, ...> closure then error!
I a := evaluate E2 in env1
I new_env := extend env_of(f) by [arg_of(f)= a]

I evaluate (and return) body_of(f) in new_env

20
23

-0
3-

21 CS4613 Lecture 7 Environments
Closures

Evaluation step by step

1. Note how the implied scoping rules match substitution-based rules.
2. The changes to the code are almost trivial, except that we need a way to

represent 〈lam x Ef, env〉 pairs.



I We need distinct types for function syntax and function
values

I We never go back from values to syntax now, which simplifies
things.

I We will now implement a separate ‘VAL’ type for runtime
values.



I We need distinct types for function syntax and function
values

I We never go back from values to syntax now, which simplifies
things.

I We will now implement a separate ‘VAL’ type for runtime
values.

20
23

-0
3-

21 CS4613 Lecture 7 Environments
An Interpreter with Closures

1. In fact, you should have noticed that Racket does this too: numbers,
strings, booleans, etc are all used by both programs and syntax
representation (s-expressions) – but note that function values are not used
in syntax.



I Thus, we need now a pair of types for our environments
(define-type ENV

[EmptyEnv]
[Extend (name : Symbol) (val : VAL)

(rest : ENV)])

(define-type VAL
[NumV (n : Number)]
[FunV (arg : Symbol) (body : FLANG)

(env : ENV)])

I we get ‘Extend’ from the type definition,
I we also get ‘(EmptyEnv)’ instead of

‘empty-subst’.



Reimplementing ‘lookup’ is now simple:

14 (define (lookup name env)
(type-case ENV env

[(EmptyEnv) (error 'lookup "no binding")]
[(Extend id val rest-env)

(if (eq? id name)
val
(lookup name rest-env))]))

lecture7/snippet-014.rkt


;; evaluates FLANGs by reducing them to VALs
(define (interp expr env)

(type-case FLANG expr

;
...

[(Lam bound-id bound-body)
(FunV bound-id bound-body env)]

[(Call fun-expr arg-expr)
(let ([fval (interp fun-expr env)])

(type-case VAL fval
[(FunV bound-id bound-body f-env)

(interp
bound-body
(Extend

bound-id
(interp arg-expr env) f-env))]

[else
(error 'eval "not a function")]))]))



I We also need to update ‘arith-op’ to use VAL objects.

16 ;; gets a Racket numeric binary operator ,
;; uses it within a NumV wrapper
(define (arith-op op val1 val2)

(local
[(define (NumV- >number v)

(type-case VAL v
[(NumV n) n]
[else (error 'arith-op "not a number")]))]

(NumV (op (NumV- >number val1)
(NumV- >number val2)))))

lecture7/snippet-016.rkt


I Finally we need to change run to use the new environment
syntax

17 ;; evaluate a FLANG program contained in an
s-expression

(define (run s-exp)
(let ([result (interp (parse-sx s-exp) (EmptyEnv))])

(type-case VAL result
[(NumV n) n]
[else (error 'run "non-number")])))

lecture7/snippet-017.rkt


Naively passing tests, new evaluator
18 (test (run `{{lam x {+ x 1}} 4}) 5)

(test (run `{let1 {add3 {lam x {+ x 3}}}
{add3 1}})

4)
(test (run `{let1 {add3 {lam x {+ x 3}}}

{let1 {add1 {lam x {+ x 1}}}
{let1 {x 3}

{add1 {add3 x}}}}}) 7)

(test (run `{let1 {identity {lam x x}}
{let1 {foo {lam x {+ x 1}}}

{{identity foo}
123}}}) 124)

lecture7/snippet-018.rkt


Naively failing tests, new evaluator

19 (test (run `{let1 {x 3}
{let1 {f {lam y {+ x y}}}

{let1 {x 5}
{f 4}}}}) 7)

(test (run `{{let1 {x 3}
{lam y {+ x y}}}

4}) 7)
(test (run `{{{lam x {x 1}}

{lam x {lam y {+ x y}}}}
123})

124)

lecture7/snippet-019.rkt


Fixing a Bug

I this version fixes a bug we had previously in the substitution
version of FLANG.

I bug is present for eager or lazy evaluator because of lam
I No change for correct code, but avoids name capture for code

with free identifiers.
20 (run `{let1 {f {lam y {+ x y}}}

{let1 {x 7}
{f 1}}})

lecture7/snippet-020.rkt


I compare with the substitution version (this highlights the
connection between functions and laziness)

21 (run `{let1 {f {lam y {+ x y}}}
{let1 {x 7}

{f 1}}})

lecture7/snippet-021.rkt

	Lexical Scope and Functions
	Closures
	An Interpreter with Closures

