
CS4613 Lecture 8: Dynamic and Lexical Scope

David Bremner

March 21, 2023

Environments

I PLAI: Evaluating Functions (this part is closer to the book)
I Evaluating using substitutions is very inefficient
I To work around this, we want to use a cache of substitutions.
I We begin evaluating with no cached substitutions, then collect

them as we encounter bindings.
I When we reach an identifier it is no longer an error – we must

consult the substitution cache at that point.

Environments

I PLAI: Evaluating Functions (this part is closer to the book)
I Evaluating using substitutions is very inefficient
I To work around this, we want to use a cache of substitutions.
I We begin evaluating with no cached substitutions, then collect

them as we encounter bindings.
I When we reach an identifier it is no longer an error – we must

consult the substitution cache at that point.

20
23

-0
3-

21 CS4613 Lecture 8: Dynamic and Lexical Scope
Naive environments and dynamic scope

Environments

1. When evaluating with substitutions, at each scope, we copy a piece of the
program AST. This includes all function calls which implies an impractical
cost (function calls should be cheap!).

Formal Rules for (Naive) Cached Substitutions

I The formal evaluation rules are now different.
I Evaluation carries along a “substitution cache”

Our substitution rules are replaced by:
lookup(x,empty-subst) = error!
lookup(x,extend(x,E,sc)) = E
lookup(x,extend(y,E,sc)) = lookup(x,sc)

if `x' != `y'

Now we can write the new rules for ‘eval’…

The change to arithmetic and lam is small, just pass an extra
parameter.
eval(N,sc) = N
eval({+ E1 E2},sc) = eval(E1,sc) + eval(E2,sc)
eval({lam x E},sc) = {lam x E}

Identifiers need to be looked up:
eval(x,sc) = lookup(x,sc)

subst is replaced by extend and lookup

eval({let1 {x E1} E2},sc) =
eval(E2,extend(x,eval(E1,sc),sc))

eval({E1 E2},sc)
= eval(Ef,extend(x,eval(E2,sc),sc))

if eval(E1,sc) = {lam x Ef}
= error! otherwise

subst is replaced by extend and lookup

eval({let1 {x E1} E2},sc) =
eval(E2,extend(x,eval(E1,sc),sc))

eval({E1 E2},sc)
= eval(Ef,extend(x,eval(E2,sc),sc))

if eval(E1,sc) = {lam x Ef}
= error! otherwise

20
23

-0
3-

21 CS4613 Lecture 8: Dynamic and Lexical Scope
Naive environments and dynamic scope

1. the whole point is that we don’t really do substitution, but use the cache
instead. The ‘lookup’ rules, and the places where ‘extend’ is used replaces
‘subst’, and therefore specifies our scoping rules.

2. Also note that the rule for ‘call’ is still very similar to the rule for ‘with’,
but it looks like we have lost something – the interesting bit with
substituting into ‘fun’ expressions.

Evaluating calls with substitution caches

[(Call fun-expr arg-expr)
(let ([fval (interp fun-expr sc)]

[aval (interp arg-expr sc)])
(type-case FLANG fval

[(Lam bound-id bound-body)
(interp bound-body (extend bound-id aval sc))]

[else (error 'eval
(string-append "non-function: "

(to-string fval)))]))]

Testing the new evaluator
First, some fairly fancy looking things work:

11 (test (run `{{lam x {+ x 1}} 4}) 5)

(test (run `{let1 {add3 {lam x {+ x 3}}}
{add3 1}})

4)

(test (run `{let1 {add3 {lam x {+ x 3}}}
{let1 {add1 {lam x {+ x 1}}}

{let1 {x 3}
{add1 {add3 x}}}}})

7)

lecture8/snippet-011.rkt

By tracing, we see the substution cache acts like a stack

12 (trace lookup)
(test (run `{let1 {identity {lam x x}}

{let1 {foo {lam x {+ x 1}}}
{{identity foo}

123}}})
124)

lecture8/snippet-012.rkt

OTOH, we have three failing tests; the reasons look different, but
turn out to be related.

13 (test (run `{let1 {x 3}
{let1 {f {lam y {+ x y}}}

{let1 {x 5}
{f 4}}}}) 7)

(test (run `{{let1 {x 3}
{lam y {+ x y}}}

4}) 7)
(test (run `{{{lam x {x 1}}

{lam x {lam y {+ x y}}}}
123})

124)

lecture8/snippet-013.rkt

Dynamic and Lexical Scope
Static (aka Lexical) Scope each identifier gets its value from the

scope of its definition, not its use.
Dynamic Scope each identifier gets its value from the scope of its

use, not its definition.
What should the following evaluate to:

{let1 {x 3}
{let1 {f {lam y {+ x y}}}

{let1 {x 5}
{f 4}}}}

Substitution-based evaluator was ? New
evaluator is ?

Dynamic and Lexical Scope
Static (aka Lexical) Scope each identifier gets its value from the

scope of its definition, not its use.
Dynamic Scope each identifier gets its value from the scope of its

use, not its definition.
What should the following evaluate to:

{let1 {x 3}
{let1 {f {lam y {+ x y}}}

{let1 {x 5}
{f 4}}}}

Substitution-based evaluator was ? New
evaluator is ?20

23
-0

3-
21 CS4613 Lecture 8: Dynamic and Lexical Scope

Scope

Dynamic and Lexical Scope

1. Scope has been problem for *many* language implementors, including the
first version of Lisp.

2. As a side-remark, Lisp began its life as a dynamically-scoped language. The
artifacts of this were (sort-of) dismissed as an implementation bug. When
Scheme was introduced, it was the first Lisp dialect that used strictly
lexical scoping, and Racket is obviously doing the same. (Some Lisp
implementations used dynamic scope for interpreted code and lexical scope
for compiled code!) In fact, Emacs Lisp is one of the only live dialects of
Lisp that is still dynamically scoped by default. That default is changing as
2021, although there still exists a large body of dynamically scoped elisp.

Which scope do existing Lisps use?
Compare a version of the above code in Racket:

15 (let ((x 3))
(let ((f (lambda (y) (+ x y))))

(let ((x 5))
(f 4))))

and the Emacs Lisp version (which looks almost
the same):

16 (let ((x 3))
(let ((f (lambda (y) (+ x y))))

(let ((x 5))
(funcall f 4))))

lecture8/snippet-015.rkt
lecture8/snippet-016.el

Which scope do existing Lisps use?
Compare a version of the above code in Racket:

15 (let ((x 3))
(let ((f (lambda (y) (+ x y))))

(let ((x 5))
(f 4))))

and the Emacs Lisp version (which looks almost
the same):

16 (let ((x 3))
(let ((f (lambda (y) (+ x y))))

(let ((x 5))
(funcall f 4))))

20
23

-0
3-

21 CS4613 Lecture 8: Dynamic and Lexical Scope
Scope

Which scope do existing Lisps use?

In Emacs 24, emacs-lisp acquires optional lexical scope, on a file by file basis. In
Emacs 27

lecture8/snippet-015.rkt
lecture8/snippet-016.el

Racket plai-dynamic

16a #lang plai-dynamic
(let ((x 3))

(let ((f (lambda (y) (+ x y))))
(let ((x 5))

(f 4))))

I demonstrates maleability of Racket
I internally uses parameters
I is a quick and dirty hack

lecture8/dynamic-let.rkt

What happens when we use another function on the way?:
17 (define (blah func val) (func val))

(let ([x 3])
(let ([f (λ (y) (+ x y))])

(let ([x 5])
(blah f 4))))

Note that renaming identifiers can lead to different
results

18 (define (blah func x) (func x))

(let ([x 3])
(let ([f (λ (y) (+ x y))])

(let ([x 5])
(blah f 4))))

lecture8/snippet-017.rkt
lecture8/snippet-018.rkt

Dynamic versus Lexical Scope

I Leaving aside the question of whether dynamic scope is good
for your mental health, what matches our original substitution
semantics?

I Consider our nemesis again, under the slow substitution
evaluator:

22 (trace interp)
(run `{let1 {x 3}

{let1 {f {lam y {+ x y}}}
{let1 {x 5}

{f 4}}}})

lecture8/snippet-022.rkt

Dynamic versus Lexical Scope

I Leaving aside the question of whether dynamic scope is good
for your mental health, what matches our original substitution
semantics?

I Consider our nemesis again, under the slow substitution
evaluator:

22 (trace interp)
(run `{let1 {x 3}

{let1 {f {lam y {+ x y}}}
{let1 {x 5}

{f 4}}}})20
23

-0
3-

21 CS4613 Lecture 8: Dynamic and Lexical Scope
Scope

Dynamic versus Lexical Scope

1. Subsitution caching is a very important optimization, which without it lots
of programs become too slow to be feasible, so you might claim that you’re
fine with the modified semantics...

lecture8/snippet-022.rkt

I Dynamic scope means no closures, no partial evaluation.
I In a dynamic scoped language, you don’t even know if this is

valid code until run time:

23 (define (foo) x)

Racket uses the same rule for evaluating a function
as well as its values. This makes dynamic scope
more powerful/dangerous:

24 (define (add x y)
(+ x y))

(let ([+ -])
(add 1 2))

lecture8/snippet-023.rkt
lecture8/snippet-024.rkt

I Dynamic scope means no closures, no partial evaluation.
I In a dynamic scoped language, you don’t even know if this is

valid code until run time:

23 (define (foo) x)

Racket uses the same rule for evaluating a function
as well as its values. This makes dynamic scope
more powerful/dangerous:

24 (define (add x y)
(+ x y))

(let ([+ -])
(add 1 2))20

23
-0

3-
21 CS4613 Lecture 8: Dynamic and Lexical Scope

Scope

1. Lisp-2’s uses a different name-space for functions

lecture8/snippet-023.rkt
lecture8/snippet-024.rkt

Scope in Scripting languages
I Many so-called “scripting” languages begin their lives with

dynamic scoping.

I In languages without first-class functions,
problems of dynamic scope are not as obvious.
bash has ‘local’ variables, but they have
dynamic scope:

25 x="the global x"
print_x() { echo "current x is \"$x\""; }
foo() {

local x="x from foo"; print_x; }
print_x; foo; print_x

lecture8/snippet-025.sh

Scope in Scripting languages
I Many so-called “scripting” languages begin their lives with

dynamic scoping.

I In languages without first-class functions,
problems of dynamic scope are not as obvious.
bash has ‘local’ variables, but they have
dynamic scope:

25 x="the global x"
print_x() { echo "current x is \"$x\""; }
foo() {

local x="x from foo"; print_x; }
print_x; foo; print_x

20
23

-0
3-

21 CS4613 Lecture 8: Dynamic and Lexical Scope
Scope

Scope in Scripting languages

1. The main reason for starting with dynamic scope, as we’ve seen, is that
implementing it is extremely simple (no, nobody does substitution in the
real world! (Well, almost nobody...)).

lecture8/snippet-025.sh

Function scope in JavaScript
Pre-ES2015, JavaScript only had function scope.

26 function f1() {
var x = 1;
{

var x = 2;
}
console.log(x);

}
f1();

I Python had something similar pre-2.1
I These days JavaScript has let, which behaves

sanely.

lecture8/function-scope.js

There are some advantages for dynamic scope.

I Dynamic scope makes it easy to have a “configuration
variable” easily change for the extent of a calling piece of code.

I Optional dynamically scoped variables are useful

I the problem of dynamic scoping is that all
variables are modifiable.

I It is sometimes desirable to change a function
dynamically (for example, see “Aspect
Oriented Programming”), but if all functions
can change, no code can be reliable.

I Dynamic scoping makes recursion immediately available – for
example, dynamic scope gives us easy loops:

{let1 {f
{lam x

{f x}}}
{f 0}}

I We’ll see later that adding recursion with lexical scope is less
trivial.

Controlled Dynamic Scope
racket provides “parameters” for dynamic scope, internally used
by plai-dynamic

34 (define location (make-parameter "here"))
(define (foo)

(location))
(parameterize ([location "there"])

(foo))
(foo)
(parameterize ([location "in a house"])

(list (foo)
(parameterize

([location "with a mouse"])
(foo))

(foo)))
(location)

lecture8/snippet-034.rkt

	Naive environments and dynamic scope
	Scope

