
Inference Queues for Communicating
and Monitoring Declarative Information

between Web Services

Bruce Spencer and Sandy Liu

Institute for Information Technology – e-Business
National Research Council of Canada

46 Dineen Drive, Fredericton, New Brunswick, Canada E3B 9W4
Faculty of Computer Science, University of New Brunswick

P.O Box 4400, Fredericton, New Brunswick, Canada E3B 5A6
{Bruce.Spencer, Sandy.Liu}@nrc.gc.ca

http://iit-iti.nrc-cnrc.gc.ca/groups/il e.trx

Abstract. We introduce the inference queue as a mechanism for com-
municating and transforming data in Web services choreography. The
insert operation provides definite clauses to the inference queue, and the
remove operation generates output that is sound, complete, fair, and
irredundant. Both operations are thread safe and responsive. The infer-
ence queue can form part of a highly configurable data transformation
system. Rules can also monitor for events of interest based on the occur-
rence of certain conditions. Our suggestion of system wide monitoring of
communication is complementary to existing Web services proposals.

1 Introduction

Communication from one web service to another is the most basic task of two
important recent research efforts in e-business: Web Service Choreography[16]
and Semantic Web Services[15]. This information should be meaningful to both
parties; it is common in B2B e-business today that both parties will have a com-
mon format, perhaps a variant of XML, and will have a common understanding
of the intended meaning of each portion of the message, of each XML tag. But
for the future we want to consider doing business with automatically discovered
Web services, not previously known. Thus the information should be declara-
tive in nature, with meanings assigned from a standard ontology in the general
subject area, as suggested by the Semantic Web research effort[14].

RuleML[2] provides the basic syntactic structures from first order logic so
that the relations and functions/complex structures are apparent to both par-
ties. RuleML is also used for expressing data transformation rules, that convert
syntactic conventions used by one party to syntax understandable by the other
party. Such transformations will preserve meaning because the inferences are
sound. Beyond transformations, rules are suited to express preconditions that
declarative information must meet before its communication can be accepted

M. Schroeder and G. Wagner (Eds.): RuleML 2003, LNCS 2876, pp. 121–135, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

122 Bruce Spencer and Sandy Liu

by the intended recipient. Rule engines that mediate the communication serve
as monitors of communication within the overall system. They can report any
exceptional conditions to high level control systems, or intelligently transform
the message so that it becomes acceptable. Thus a rule engine can serve as both
a data transformation system and a monitor.

In this paper we introduce the inference queue as a mechanism for commu-
nicating and transforming data. We assume that we are reasoning about XML
messages sent from one web service to another. It is convenient to use RuleML
specifically for these messages as a single RuleML fact can contain the entire
message. The inference queue has several characteristics required in the situa-
tion we have described so far: it has asynchronous insert, remove and isEmpty
methods; it buffers information, allowing the producing process on the insert side
to occasionally exceed the capacity of the consuming process on the delete side,
so that the producer wastes less time waiting; it is an inference engine that is
responsive and fair in the way it generates the complete set of sound conclusions.
The inference system also eliminates reporting any results that are duplicates or
specializations of previous results.

The inference queue can form part of a highly configurable monitoring sys-
tem; rules can conclude that some exceptionally interesting event is taking place
based on the occurrence of certain conditions. As the evidence of that event
passes through the queue, the rule fires. The inference queue possibly has sev-
eral output ports so these can be configured to transmit reactions to the inter-
esting event. The inference queue also has possibly several input ports, so that
data from mixed sources can be combined. A rule may be added with multiple
conditions, and facts for these conditions are expected to arrive at distinct in-
put ports. The conclusion of this rule would be produced for the output port(s)
when all of its conditions are inserted at the input ports. Thus events arising in
separate locations can be monitored, arbitrary conditions on their combination
can be expressed and reactions taken when those conditions arise. This allows
us to trace information relevant to one business process through a network of
Web services, where the links in the network are inference queues.

The rest of the paper is organized as follows: We cover the necessary back-
ground on Web services and Web service choreography frameworks. We then
introduce the inference queue for transporting data from one web service to an-
other, we define the six properties they need for this task, and establish that
they are met by our architecture, which is described in some detail. To make the
discussion more concrete, we give an example of a Web service connected to a
client with two one-way inference queues, and illustrate an intelligent monitoring
system.

2 Web Services and Choreography Frameworks

Web services allow businesses to describe, publish, and invoke self-contained
modular software components over the Internet and therefore make distributed
computing available Internet-wide. However, a single Web service is often not

Inference Queues for Communicating 123

sufficient to accomplish a business process that involves multiple parties and/or
multiple activities. There is a need to compose a series of Web services together to
achieve a new or more useful service. For instance, in order to plan a trip, a user
may require the cooperation from a set of services including a flight-scheduling
service, a hotel booking service, a car-rental service, and a credit card payment
service. This set of services can be considered as a business process. The Business
Process Management (BPM) community has long been looking for solutions to
standardize the description, modeling, deploying, and monitoring of business
processes that contain services provided by heterogeneous vendors. There are
several specifications that can serve as candidates to streamline this process
including BPML[1], BPEL4WS[7], ebXML BPSS[9], WSCI[6], and DAML-S[4].

3 Inference Queues

An inference queue is a priority queue data structure into which we enqueue
(insert) input fomulas and from which we dequeue (remove) inferred output
formulas. Syntactic restrictions on both formulas are often imposed to simplify
the reasoning task. In this paper we restrict the input formulas to definite clauses
and the output to single literal positive clauses (facts) implied by those definite
clauses.

Inference queues have standard queue operations (insert, remove and
isEmpty) but adapt the standard operational semantics. In response to insert
requests, facts and rules are inserted at one end, the upstream end; and in re-
sponse to a remove request, these facts and any implied facts are removed from
the other downstream end. Unlike normal queues, the size of the output of an
inference queue is not necessarily equal to the size of the input.

We define the inference queue also to have four important properties relating
to logic and deduction: soundness, completeness, irredundancy and fairness, and
to have two properties relating to its simultaneous usage by separate threads:
thread safe (assessible by separately running thread or processes) and respon-
sive (no infinite computations are allowed between requests). In this section we
describe these six properties of the inference queue in detail, tell why these prop-
erties are relevant to communication among Web services, and explain how these
properties are guaranteed by our implementation.

3.1 Definitions of the Properties We Seek

Suppose definite clauses C1, . . . , Cn have been inserted into the queue, where
{C1, . . . Cn} |= F1, . . . , Fm, for facts F1, . . . , Fm. If the queue is capable of de-
livering, in response to m remove requests, all of these facts (or a covering set
of more general facts), then it is complete. If it is capable of delivering only
entailed facts, it is sound.

Suppose that the facts are removed from the queue in the order F1, . . . , Fm.
For every i ≥ 0 and every j > 0 fact Fi+j is delivered after fact Fi, and it is not
the case for any i that Fi |= Fi+j . In other words, no fact is more specific than
a previous fact. Then the output queue is irredundant.

124 Bruce Spencer and Sandy Liu

By fair we mean that no given conclusion will be infinitely deferred from
being produced for a dequeue. Every conclusion will eventually be found. We
use fairness to express priority among facts. Exceptional conditions can be given
priority, so they are guaranteed to be reported first.

We expect the inference queue to be used by several concurrent programs,
or threads, as opposed to a single program thread. A program that can interact
with other concurrent programs is thread safe. This means two threads cannot
interfere with each other’s tasks, and usually is done by defining a critical section
in the code where only one thread at a time is permitted to run. It also means
we have the option to force threads requesting data to wait. In our case a remove
request is defined with blocking semantics. This means the thread invoking the
remove request will be blocked if there is no element in the queue. The expec-
tation is that another thread will eventually call the insert method, making an
element available, and then the removing thread can be notified (re-activated)
and the remove request granted. The other requests, to insert a clause into the
queue and to ask if the queue is empty, are non-blocking operations.

The queue is also defined to be responsive which means that between any
pair of requests, no infinite computations are allowed. From a finite set of input
clauses, an infinite set of output clauses can arise:

{p(X)→ p(f(X)), p(a)} |= p(a), p(f(a)), p(f(f(a))),

Inference queues address this infinite list by requiring that an infinite sequence
of calls to dequeue be made to produce the infinitely many answers. Since the
operations are responsive, there will be no infinite operations between these
successive calls.

The combined properties of being complete, responsive and fair mean that
not only are all conclusions generated (completeness) with no infinite delays
(responsiveness), but also that this remains true as new information is being
dynamically added or inferred. Thus if a specific fact has been inferred but has
not yet been delivered to a remove request, and a sequence of facts is being
inferred, such as the infinite computation in the previous paragraph, then even-
tually that undelivered fact will be delivered, before the infinitely many other
facts are all delivered. To accomplish this we depend on the existence of a par-
tial order � (preceeds) between facts. Suppose the inference queue delivers the
facts F1, . . . , Fm in this order. Then this order must be consistent with the given
partial order. In other words Fi+j �� Fi.

Beyond the fixed set of clauses, if new facts are being inserted or inferred
between remove operations, the partial order is still observed. For example, sup-
pose the fact Fi has been recently removed and Fi+1 is next in line to go, and a
new fact G is inserted or inferred before Fi+1 is removed, such that G � Fi+1.
Then G will be removed before Fi+1. It may also be the case that G � Fi, but
clearly G cannot be removed before Fi because G was not available at the time
Fi was removed. While this appears to disrupt the precedence ordering of the
output facts, it is not contrary to the definition. Among the facts available when
the remove request is made, a smallest fact is always removed.

Inference Queues for Communicating 125

Given Clause1C1, . . . Cm → A and Clause2A1, . . . , An → B such that there exists i
and a substitution θ that unifies A with Ai,
Produce (A1, . . . , Ai−1, C1, . . . , Cm, Ai+1, . . . , An → B)θ

Note that Robinson’s resolution[12] would also allow multiple Aj to be resolved at
once, but this is not necessary for completeness of resolution with definite clauses.
Here we restrict the application so that m0, to enforce unit clause resolutions, and
so that i1 to select goals in textual order.

Fig. 1. Robinson’s resolution applied to definite clauses

We must also assume that the partial order has no infinite strata. In other
words, for any given element there is a finite number of elements that are greater
than it. This property of no infinite strata is easy to guarantee. For instance if
the � relation is based on the number of symbols in the atom, i.e. its length,
and there is a finite set of symbols to draw from, then there will be only a finite
number of atoms shorter than any given atom.

3.2 A Theorem Prover with the Logic Properties We Seek

The above six properties, as far as the authors know, have not been combined
into one theorem prover before, but we have found it is entirely feasible to do so.
The ideas are these: (1) allow the theorem prover to incrementally accept new
clauses, (2) turn the basic theorem proving loop from an autonomous producer
of formula into a demand-driven, or lazy, producer of one fact at a time, and
(3) after either operation (a new clause is inserted or a new fact is selected),
run part of the theorem prover’s machinery to infer all the conclusions that are
needed to restore the system to a state ready to service the next request.

The two essential features of any theorem prover are its rule(s) of inference
and its strategy for applying those rules, examples of which are shown in Fig-
ures 1 and 2, respectively. For the inference queue, we use Robinson’s resolution
applied to definite clauses. Since this is the only rule of inference and since it is
well-known to be sound, soundness of the inference queue follows immediately.

Negative literals are selected in clauses in the order in which they appear,
which is sufficient since it is well known that resolution’s literal selection within
a clause is don’t-care nondeterministic. In other words, if a proof exists with
a specific condition selected first, then the same proof exists with any of the
conditions selected first. Thus the general rule of Figure 1 is specialized to select
the first condition.

The application strategy is related to those found in theorem provers such as
Otter [10], in that the most important strategies and design decisions are repre-
sented: The set of support restriction [8] is reflected in the fact that the positive
clauses are resolved against mixed ones, so the facts form the set of support.
Forward subsumption is applied when the a new fact is selected, and it is ap-
plied lazily on selection rather then eagerly as facts are generated. This decision
requires storing potentially many more new facts, but far fewer subsumption

126 Bruce Spencer and Sandy Liu

Three data structures are defined: NewFacts, OldFacts and Rules.

NewFacts: This is a priority queue for storing single literal definite clauses (facts),
ordered by �, for that have not yet been processed. Initially it is populated with
the facts from the input clases.

OldFacts: This is a list for storing single literal definite clauses that have already
been processed.

Rules: This is a list for storing definite clauses with at least one negative literal
(condition). These are indexed by one of these negative literals, called the selected
goal. Assume that the first negative literal is the index. Initially it is populated
with the rules from the input clauses.

main loop
select and remove a new fact fnew from NewFacts
while fnew is subsumed by some member of OldFacts

select and remove another fnew from NewFacts
end while
for each rule r whose first condition unifies with fnew

resolve r against fnew producing r1

process(r1)
end for each
add fnew to OldFacts

end main loop

process(c)
if c is a rule

for each old fact fold unifying with the selected goal of c
resolve c with fold to produce new result n
process(n)
add c to Rules

end for each
else

add c to NewFacts
end if

end process

Fig. 2. An application strategy for definite clause reasoning

tests are attempted. Backward subsumption is not applied for similar reasons;
the list of old facts would potentially be less redundant if it were applied, in that
old facts could not be more specific than new ones, but a far greater number
of subsumptions tests would be attempted. Furthermore, forward subsumption
guarantees that the list of old facts is absolutely irredundant when the facts are
ground. We expect that the inference queue will often be in this situation. The
stored facts are separated into two lists: OldFacts and NewFacts so that we can
ensure unification attempts are never tried more than once for any given pair of
literal occurrences. The reason is this: For every potentially unifiable pair con-
sisting of a fact and a condition that occurs as the selected condition (the first

Inference Queues for Communicating 127

condition) in a rule, either the fact is selected from NewFacts before the rule is
created, or the rule is produced before the fact is selected. There are two cases
to consider: Suppose the fact is selected before the rule is created. Since the rule
does not yet exist, the fact will be put into OldFacts without the resolution
being performed. Later when the rule is produced, process is called and the
resolution against the old fact will be performed. Alternately, suppose the rule is
created before the fact is selected. Later, when the fact is selected, it is resolved
in the main loop against all existing rules including the one of interest. Then it
is put into the old facts and is never resolved against any existing rules, only
against new rules. Thus, there is exactly one point in time when any given fact is
attempted to be resolved against any given rule condition. No redundant search-
ing is done. This argument also serves to convince the reader of the completeness
of the search precedure: all proofs will be built because all possible resolutions
are tried. Combined with the notion of completeness of the resolution rule of
inference for generating single literal conclusions, we can now conclude that the
system is complete for generating facts. Note that resolution is not complete
in the sense of generating all logical consequences, because it does not generate
weaker conclusions like A ∨ B, which are logical consequences of single literal
conclusions like A.

There is one point of caution about the theorem prover in Figure 2. The
number of stored clauses, both rules and facts, will grow. Since a ground rule
with n conditions in its body may give rise to n stored clauses (with n−1, n−2,
..., to 0 conditions) there is a quadratic effect on the size of stored clauses. For
non-ground clauses the affect, naturally, may be worse.

The set NewFacts is a priority queue, ordered on � defined on atomic
formulas. Of all of the new facts that can be selected a minimal one is chosen
next. When control in the procedure is at the select statement of the main loop,
the set NewFacts contains all of the facts that have been inferred but not
yet reported. It does not necesarily contain all of the facts that are implied by
the set of clauses. So it is important to point out that the sequence of selected
facts is not necessarily arranged in � order. What is true and important for our
purposes, is that no single fact will be left unselected indefinitely long, and that
the � order allows us to express heuristically the order in which we would prefer
to receive our conclusions – in effect, our order of importance. Thus the system
displays fairness.

3.3 An Inference Queue with All the Properties We Seek

While the theorem prover in Figure 2 has some of the properties we need, it
cannot be used in a multithreaded environment in this form. We need to convert
it so that explicit insert and remove operations are defined that are thread safe
and responsive. By thread safe, we mean that its internal state will not be
disturbed by any set of simultaneous external requests from client processes. By
responsive we mean that the system cannot go into an infinite loop in response
to requests, even though the clause set may imply an infinite set of atoms.

128 Bruce Spencer and Sandy Liu

The main inference queue operations are shown in Figure 3. This program has
many features in common with Figure 2. The main difference is the subsystem for
background processing. Background processing performs the inferences needed
after a new fact is selected, and corresponds to the second half of the code in
the main loop of Figure 2. Before any other insert and remove operations are
done, the status variables are checked to see if this background processing is
yet undone. The background processing is separated for two reasons. First the
inference queue should react to remove requests as quickly as possible, so it
returns a result as soon as one is found, deferring the background processing.
Second, since requests are made asynchronously from client threads, there will
sometimes be opportunities when there are no requests pending, so the inference
queue can do this processing on its own time. Thus there is expected to be a
background process, or daemon, that monitors the requests and the state of
backgroundProcessingIsComplete. It does the background processing while the
queue is otherwise idle.

To establish that the system is thread safe, one needs to ensure that the
mutual exclusion lock is in force anytime the remove operation is running. This
lock prevents any other thread from entering code that can affect the internal
data structures. Likewise the thread performing the insert operation claims the
mutual exclusion lock, preventing another thread from entering either the insert
or the remove operation. We use the convention that any procedure that claims
ownership of the mutual exclusion lock is declared synchronized.

We need the system to be responsive, which means there is no chance
that any step will take infinitely long. While process may appear to contain
a potentially infinite loop because of the inner call to itself, each call to it is
guaranteed to terminate. Note that for a given parameter in a call to process,
the argument provided to each inner call is smaller by one literal. Since there
will be a finite number of inner calls, limited by the finite number of stored rules,
there is no chance for an infinite loop. Similarly background processing will never
take infinitely long. Neither insert nor remove has any infinite loops, either.

Although we have not shown it, the operation to tell if the inference queue
is empty first ensures that all background processing is done, and then returns
true if and only if the NewFacts priority queue is empty.

3.4 Variations of the Inference Queue

We allow several input ports to be opened to an inference queue. There is no state
information associated with the insert process, so there is no essential difference
between having one or many input ports.

It may be of interest for an inference queue client to receive consequences that
match a certain pattern only, instead of receiving all consequences. This is easily
handled by invoking a unification step as part of the output port’s operation;
facts that do not meet the pattern are not transferred out of that port.

There may also be several output ports receiving consequences from an in-
ference queue, and the queue services remove requests from each. New output
ports can be opened at any time. Suppose that a recently initialized inference

Inference Queues for Communicating 129

�� �������� �� ��� ��	�� ����
�	����	�
 	�� ����	� �� ��������� 	
������ ��� �
���
���	� �	� ��� ��������� ��	�����
�

� � �������
���� ��	����� �������������������������
��� 	�����
 ������	 �	��
��

��� ��
 ���� ����
���� ��� ��
� 	����� ������� �� �
 ��������� �	���
� � ��� ����������
������������ ��
 � ����� ����� ���� ����������������������

����
��� �
 ��
��

����	������ ������	�

�� ��� �������������������������
���

��	�	���� �	����!	���

���"����������
������������#
�����
�	���

"�#
�����

��� ������

����	������ ���� ������
�� ��� �������������������������
���

��	�	���� �	����!	���

���"����������
������������#
�����
���� �������� �
 �����

����
��� ����

����� ��� 	����� � ��� ��� ���� 	�� ��������

���� ���� �

��
���� ��
��� �����	 � 	
������

����� ��� 	����� ������	 ���� 	�� ��������

��� ����

�� �������������������������
��� �� ��
�

�� ����������
������������ �� ����
������ ����

��� ������

����	������ ���������������������������	����

��� ���� 	��� � ���
� $	
� ��������� ���$�
 ���� ����

	�
���� � �����
� ���� �	������� ��
�	���

"��#

��� ��� ����

�� �������������������������
��� �� �	��
��� ���� �� 	
������

��� ���������������������������

�������"�#
�� � �
 � 	���

��� ���� ��� ��� ���� ������� ���� ���
������� ���� � �
	�
���� � ���� ���� �� �	����� ��� 	�
��� �
�	���

"�#
��� � �� ����	

��� ��� ����
����

��� � �� ��������

��� ��
��� �������

Fig. 3. Inference Queue Operations: insert and remove

130 Bruce Spencer and Sandy Liu

queue has delivered several facts to its single output port. Then a second output
port is opened. The first several requests from the second port will be serviced
by replaying the OldFacts list, until it catches up with the first port. If the newer
port then makes more requests, the inference machinery will be used to calculate
the consequences. Then requests from the original output port will be serviced
by replaying these recently inferred facts, which were lately added to OldFacts.

This mechanism allows at any time an inference queue to service a request
for a full disclosing of what has transpired, and in what order. Thus the OldFacts
lists doubles as a log file.

We may need a monitoring service whose main interest in an inference queue
is not what can be concluded, but what has been sent to other output ports.
This need can be met by opening an observation port, which is an output port
that is not allowed to advance the state of the inference engine. Thus once the
remove requests from an observation port are given all of the old facts, further
remove requests are blocked and these threads are made to wait. When a dequeue
request is made from another (non-observation) port it is serviced with a new
fact, and the thread waiting on the observation port is notified and delivered the
same fact.

4 Use Cases

The inference queue complements existing Web service choreography proposals,
such as WSCI, DAML-S and BPEL4WS. It offers services not currently imple-
mented in those proposals, but mentioned as future work[5](p. 3). We view Web
services choreography as the configuration of communicating networks where
nodes are instances of Web services; we see the role of the inference queues as
the links between these nodes. By using an inference queue for communication
among Web services, data transformation and format conversion are possible. In
the following sections we offer a small example to illustrate potential advantages
of using inference queues for this communication. We further the example to
illustrate that an inference queue can provide a monitoring service for tracing
the steps of a specific business process in the Web services network. Since the in-
ference queue stores in OldFacts all of the messages that have been transmitted,
the data is available later for forensic analysis.

4.1 Mediating Communication between Web Services

Suppose a travel agent Web service mediates between a traveller and various
agents for flights, events, and hotel reservations for example. This is illustrated
in Figure 4.

In this use case, the human client (1) requests a Travel Agent Web service (2)
to help him/her purchase a ticket that meets his needs. The Travel Agent service
uses Canadian conventions for encoding dates, exclusively. It deals with various
Ticket Agent Web services, some of which use different local conventions for
encoding data, such as dates. Suppose there is little flexibility in the interfaces of

Inference Queues for Communicating 131

Travel Agent
Web Service

Ticket Agent
Web Service

Inference
queues

1

7

2 3 4

56

Fig. 4. Web services mediation in two directions

these Ticket Agent services – and they do not support Canadian date encoding,
day-month-year. Then the inference queue (3) connecting the Travel Agent to
the Ticket Agent can have some rules for date transformation: (Here we use the
Prolog convention for displaying rules.)

requestOut(Flight, LocalDate, CustomerNumber) ←
requestIn(Flight, CanadianDate, CustomerNumber),
dateConversion(CanadianDate, LocalDate).

When the inference queue receives a request, such as the fact

requestIn(‘Delta861’, ‘23-06-2003’, ‘Traveler229’),

following rule is added to Rules:

requestOut(‘Delta861’, LocalDate, ‘Traveler229’) ←
dateConversion(‘23-06-2003’, LocalDate).

This is eventually used to conclude the fact: requestOut(‘Delta861’, ‘06-23-
2003’, ‘Traveler229’). Note that the date is now month-day-year. This fact is
delivered at the next remove request from the downstream service (4), or to an
agent that has the initiative to pass such facts to the input of the Ticket Agent
service. Web services may need such an active process since they are usually
reactive and not initiators.

When the Ticket agent is ready to issue a purchase order number, which will
tell the customer what he needs to know to actually purchase the ticket, it issues
the response fact to the return inference queue (5): responseOut(‘Delta861’,
‘Traveller229’, ‘06-23-2003’, ‘PO1242’). That inference queue has the task of
insulating the Travel Agent from non-Canadian dates, so it contains the rules.

responseOut(Flight, CanadianDate, CustomerNumber, PurchaseOrderNumber)
←
responseIn(Flight, LocalDate, CustomerNumber, PurchaseOrderNumber),
dateConversion(CanadianDate, LocalDate).

The fact responseOut(‘Delta861’, ‘Traveller229’, ‘23-06-2003’, ‘PO1242’) is
eventually issued to the Travel Agent (6) and some appropriate response is given
to the Customer (7).

132 Bruce Spencer and Sandy Liu

4.2 Monitoring and Exception Handling

Of all of the Web service choreography proposals, BPEL4WS deals most with
exceptions; an exception can be thrown by a Web service and caught by a BPEL
fault handler. The error handling framework can compensate by attempting
to roll back the latest step in the business process. Complementary to this,
the inference queue allows faults to be defined and monitored outside of the
Web service, so it is possible to have robust processing using Web services that
do not incorporate fault handling. In Figure 5 we have extended the example
from Figure 4 so that several Web services are being invoked. Each Web service
is connected to another Web service by an inference queue, perhaps with a
return queue. Each inference queue links to a monitor via an observation output
port, represented in the figure by thin lines and described in Section 3.4. In
principle there could be a network of Web services linked by inference queues
that send information back to a common monitor, which would have access to
all communicated facts across the system.

Travel Agent
Web Service Monitor

Ticket
Reservation
Web Service

Car Rental
Web Service

Inference
queues

Fig. 5. Web services fault detection and forensic analysis

5 Related Work

The existing Web Service Description Language (WSDL) only defines operations
in terms of incoming/outgoing messages and binding details at the syntactic
level without outlining the relationship of the messages in a service that encom-
passes multiple operations. The Web Service Choreography Interface (WSCI)
describes how WSDL operations are choreographed and which properties these
choreographies expose, such as transaction and correlation. As a result, WSCI
complements the shortfalls of WSDL by providing a detailed description of the
behaviours in different states for a given Web service described by WSDL. WSCI
also describes the collective message exchange among interacting Web services,
providing a global, message-oriented view of a process involving multiple Web
services.

Inference Queues for Communicating 133

Note that WSCI only describes a one-sided interface for a Web services. In
other words, the message exchange is described from the point of view of one
Web service[11]. To compose a set of Web services, we need standards to model
the workflow of services. A few emerging standards taking different approaches
are attempting to fill in this gap.

The Web Services Modeling Framework (WSMF) propose a comprehensive
conceptual model for developing, describing, and composing Web services by
appointing the principles of maximal de-coupling and a scalable mediation ser-
vice. The WSMF defines four main elements: ontologies, goal repositories that
define the problems to be solved by Web services, Web services descriptions, and
mediators to overcome the interoperability problem.

While WSMF provides a very high-level model for integrating Web services,
others are aiming to offer grounded models to realize the vision described by
WSMF for Web services orchestration and choreography. Early endeavors in this
path include IBM’s Web Services Flow Language (WSFL) evolved from Petri
Nets and Microsoft’s XLANG based on the Pi-Calculus model[3]. These two pro-
posals have since converged into a single specification called BPEL4WS (Busi-
ness Process Execution Language for Web Services), which unifies the essence of
graph-oriented processes from WSFL and structural constructs from XLANG to
enable the aggregation of Web services into a process execution model. “As an
executable process implementation language, the role of BPEL4WS is to define
a new Web service by composing a set of existing services.[17].” Hence, the com-
position (called the process in BPEL4WS) indicates how the service interface fits
into the overall execution of the composition.

As BPEL4WS uses WSDL portType information for service description, it
inherits the limitation of WSDL, which does not describe side effects, pre- or
post-conditions of services, and the expressiveness of service behavior and in-
puts/outputs are constrained by XML and XML Schema. In contrast, DAML-S,
a semantic markup specification for Web services, employs a complementary
approach to describe Web services. Indeed, DAML-S is a DAML-OIL ontology
for describing Web services. It aims to enable automated Web services discov-
ery, invocation, composition, and execution monitoring by providing sufficient
semantic description. A DAML-S document comprises a ServiceProfile, a Ser-
viceModel, and a Service Grounding. The ServiceProfile describes the properties
of a service such as input and output types, pre-conditions and post-conditions,
and binding patterns to facilitate automatic service discovery where the Service-
Model together with ServiceGrounding provide information for an agent to make
use of a service.

One of the important aspects of modeling a business process is to have a
mechanism for exception handling, such that when an exception is raised during
the course of a business process, the model allow appropriate recovery actions
(such as roll-back) to be performed. Web services provide a basis for passing mes-
sages between participants in collaboration-based processes. Nevertheless, most
of the current proposals do not provide this much-needed monitoring service.
DAML-S has the notion of execution monitoring, but has not yet been defined

134 Bruce Spencer and Sandy Liu

in the current release; BPEL4WS claims to have exceptions (faults) built into
the language via the <throw> and <catch> constructs, the fault concept on
BPEL4WS is directly related to the fault concept on WSDL and builds on it. As
a result, the fault has to be defined explicitly when describing the messages in a
Web service. In WSDL, the optional fault elements specify the abstract message
format for any error messages that may be output as the result of the operation.
To bridge the gap, the inference queue can be placed between two Web services.
Process rules can be stored in the queue, such that the outputs of one service
can be input to the queue as facts before they are fed into the next Web service.
The inference mechanism can then determine if a Web service has performed the
task and has generated results in expected fashion, based on the facts and a set
of pre-defined rules.

6 Current Status, Future Work, and Conclusions

The current inference queue system is implement using the jDREW tool kit [13]
in Java. We have deployed it as a Web service as well. It accepts input and
generates output either in a Prolog-like syntax, or RuleML. We plan to offer it
as open source.

In the future we plan to study how declarative descriptions of Web services
and the links between them, as in BPEL4WS, may be transformed into run-
ning networks of Web services with inference queues proving the communication
between them. Each inference queue could be loaded with rules that check the
preconditions, in the sense of DAML-S, of the downstream service and monitor
the effects of the upstream service.

This paper introduces the inference queue as a means of communicating
meaningful information among Web services. It is based on a thread-safe pri-
ority queue data structure. It contains first order definite clauses and it inserts
inferred facts into the queue, so that the output is sound, complete, fair, and
irredundant. The insert and remove operations are responsive; even if there is an
infinite set of inferred facts, no operation will need to wait forever. We propose
to use the inference queue for transporting information between pairs of Web
services; data from one service to the next can be mediated and transformed by
the rules in the queue. Most Web services choreography specifications do not
support comprehensive monitoring of systems built up from individual Web ser-
vices, although a need for this is identified in WSMF and DAML-S. We suggest
how the inference queues can use their rules to detect exceptional conditions,
and pass these exceptions to a monitor receiving information from all inference
queues in the system. Proposals for handling exceptions in Web services, such
as in BPEL4WS, depend on the Web service detecting problems and throwing
exceptions. But if a system architect seeks to incorporate a third-party Web
service, s/he cannot depend on that Web service to throw faults appropriate for
the rest of the system.

Inference Queues for Communicating 135

References

1. A. Arkin. Business Process Modeling Language.
“http://www.bpmi.org/bpml-spec.esp”, 2002.

2. Harold Boley. The rule markup initiative. http://www.ruleml.org, 2003.
3. BPMI.org. BPML‖BPEL4WS: A Convergence Path toward a Standard BPM

Stack. “www.bpmi.org/downloads/BPML-BPEL4WS.pdf”, 2002.
4. DAML-S Coalition. DAML Services. “http://www.daml.org/services/”, 2003.
5. The DAML Services Coalition. DAML-S: Semantic Markup for Web Services.

In Proceedings of SWWS’01 The First Semantic Web Working Symposium, pages
404–411, 2003.

6. Assaf Arkin et al. Web Services Choreography Interface (WSCI)1.0.
“http://www.w3.org/TR/wsci”, 2002.

7. T. Andrews et al. Business Process Execution Language for Web Services version
1.1.
“ftp://www6.software.ibm.com/software/developer/library/ws-bpel11.pdf”, 2003.

8. L. Wos, D. Carson and G. Robinson. Efficiency, completeness and the set of support
strategy in theorem proving. J. ACM, 12:536–541, 1965.

9. Paul Levine. ebXML business Process Specification Schema Version 1.01.
“http://www.ebxml.org/specs/ebBPSS.pdf”, 2001.

10. W. W. McCune. Otter 3.0 users guide. Technical Report ANL-94/6, Mathemat-
ics and Computer Science Division, Argonne National Laboratories, Argonne, IL,
1994.

11. Sun Microsystems. WSCI 1.0 Specification - FAQs.
“http://wwws.sun.com/software/xml/developers/wsci/faq.html”, 2003.

12. J. A. Robinson. A machine-oriented logic based on the resolution principle. J.
ACM, 12:23–41, 1965.

13. Bruce Spencer. The design of j-drew: a deductive reasoning engine for the web. In
Kung-Kiu Lau Manuel Carro, Claudio Vaucheret, editor, First Colognet Workshop
on Component-based Software Development and Implementation Technology for
Computational Logic Systems, pages 155–166. Universidad Politécnica de Madrid,
September 2002. CLIP4/02.0.

14. W3C. Semantic Web. “http://www.w3.org/2001/sw/”, 2001.
15. W3C. Semantic Web Web Services. “http://www.w3.org/2001/11/11-semweb-

webservices”, 2001.
16. W3C. Web Services Choreography Working Group.

“http://www.w3.org/2002/ws/chor/”, 2003.
17. S. Weerawarana and F. Curbera. Business Process with BPEL4WS: Understand-

ing BPEL4WS, Part 1. “http://www-106.ibm.com/developerworks/library/ws-
bpelcol1”, 2002.

	1 Introduction
	2 Web Services and Choreography Frameworks
	3 Inference Queues
	3.1 Definitions of the Properties We Seek
	3.2 A Theorem Prover with the Logic Properties We Seek
	3.3 An Inference Queue with All the Properties We Seek
	3.4 Variations of the Inference Queue

	4 Use Cases
	4.1 Mediating Communication between Web Services
	4.2 Monitoring and Exception Handling

	5 Related Work
	6 Current Status, Future Work, and Conclusions
	References

