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Abstract. The rank/activity restriction on binary resolution is intro-
duced. It accepts only a single derivation tree from a large equivalence
class of such trees. The equivalence classes capture all trees that are
the same size and differ only by reordering the resolution steps. A proof
procedure that combines this restriction with the authors’ minimal re-
striction of binary resolution computes each minimal binary resolution
tree exactly once.

1 Introduction

A new restriction of binary resolution is proposed in this paper. The restriction is
complete in a strong sense, in that every binary resolution proof, up to reordering
the resolution steps, is allowed. On the other hand, the restriction prevents
multiple versions of the same proof from being constructed. If a given proof is
allowed, then no other proof that can be obtained from it by reordering the steps
is allowed.

Consider an automated reasoning procedure that takes a set of clauses as
input, and resolves pairs of clauses containing complementary literals to generate
new clauses. The possible resolutions must be restricted somehow. To do this,
let each literal in a clause be either active or inactive, and only let pairs of active
complementary literals resolve. Since at the beginning we have no idea which
resolution it is best to perform first, all literals in all input clauses are active.

As resolutions occur, some of the literals in newly generated clauses must
become inactive. Since we want to have only one acceptable order in which the
literals are resolved, the literals in each clause are ordered by a rank function
which assigns an integer value to each literal. This rank function must be consis-
tent between a parent clause and a child clause, in that if rank(a) < rank(b) in a
parent clause, then rank(a) < rank(b) in the child clause as well. When a clause
is resolved on a literal of a given rank, in the newly created child clause all liter-
als of a lesser rank (rank as defined in the parent clause) become inactive, and
hence are not allowed to be resolved again. This activity condition also must be
inherited from parent literal to child literal, with the following exception. When
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two literals that come from different parents merge (or factor) in a child clause,
the literal becomes active, regardless of whether the literals in the parent clauses
are active or inactive. This exception is very important as completeness is lost
if this is not done.

Instead of just keeping the clauses produced, it is important to remember
also how a clause is derived. This can be done using clause trees [5], which is
where this material was first derived. In this paper we develop the ideas in binary
resolution trees [7], which are much more closely related to the proof trees seen
in many papers on resolution.

One simple rank function is to assign ranks from 1 to n arbitrarily in an
n-literal input clause. When two clauses are resolved, the ranks of the literals
in the clause containing the negative resolved literal are the same in the child
clause as in the parent clause. The rank of a literal from the parent containing
the positive resolved literal receives in the new clause a rank equal to its old
rank plus the number of leaf literals in the binary resolution tree containing the
negative resolved literal. This method guarantees that the rank function on every
clause is one-to-one, and remains between one and the number of leaf literals in
every binary resolution tree. In fact if the rank function is applied to the “history
path” of every leaf literal, then the rank function remains one-to-one on the set
of history paths. We must also specify the rank of merged literals. When two
literals are merged, the new literal gets the smaller of the ranks of the literals
being merged.

In this example, superscripts denote rank values and a superscript asterisk
denotes an inactive literal. When the clause a1 ∨ b2 ∨ d3 ∨ e4 resolves against
a1 ∨ c2 ∨¬d3 ∨ f4 the result is a1 ∨ b6∗ ∨ c2∗ ∨ e8 ∨ f4. Resolving this against ¬e1

results in a clause that is completely inactive and can never resolve. Note that
the rank and activity of the literals in the original clauses are unaffected.

The only requirement on the procedure is that the choice of which resolution
to do next has to be fair. If a resolution can be done, then it must be done
eventually, at some time in the future, unless one of the resolving clauses is
rejected. No resolution can be put off forever. Likewise, no resolution needs to
be done more than once. Then the above restriction guarantees that every proof
will be found by the procedure, and only once.

2 Background

We use standard definitions [2] for atom, literal, substitution, unifier and most
general unifier. Most of the rest of this section originated from [7,8]. In the
following a clause is an unordered disjunction of literals. We do not use set
notation because we do not want multiple occurrences of a literal to collapse to
a single literal automatically. Thus our clauses can be viewed as multisets. An
atom a occurs in a clause C if either a or ¬a is one of the disjuncts of the clause.
The clause C subsumes the clause D if there exists a substitution θ such that
Cθ ⊆ D as sets. A variable renaming substitution is one in which every variable
maps to a new variable (not in the expression in question), and no two variables
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map to the same variable. Two clauses C and D are equal up to variable renaming
if there exists a variable renaming substitution θ such that Cθ = D. Two clauses
are standardized apart if no variable occurs in both. Given two parent clauses
C1∨a1∨ . . .∨am and C2∨¬b1∨ . . .∨¬bn that are standardized apart (a variable
renaming substitution may be required), their resolvent is the clause (C1 ∨C2)θ
where θ is the most general unifier of {a1, . . . , am, b1, . . . , bn}. The atom resolved
upon is a1θ, and the set of resolved literals is {a1, . . . , am,¬b1, . . . ,¬bn}.

For each resolution operation we define the resolution mapping ρ from each
occurrence of a literal c in each parent clause to either the atom resolved upon
if c is a resolved literal, or otherwise to the occurrence of cθ in the resolvent. We
use ρ later to define history paths.

The reader may be missing the usual factoring operation on a clause, which
consists of applying a substitution that unifies two of its literals with the same
sign and then removing one of these literals. The original definition of resolution
[6] does not have this operation. By allowing several literals to be resolved on,
instead of merging them before the resolution, we have just one type of internal
node in our binary resolution tree, instead of two. De Nivelle uses resolution
nodes and factorization nodes [3]. Moreover, an implementation is free to merge
or factor literals if desired. Factoring may be seen as an optimization if the
factored clause can be used in several resolution steps, since the factoring is
done only once.

A binary resolution derivation is commonly represented by a binary tree,
drawn with its root at the bottom. Each edge joins a parent node, drawn above
the edge, to a child node, drawn below it. The ancestors (descendants) of a node
are defined by the reflexive, transitive closure of the parent (child) relation. The
proper ancestors (proper descendants) of a node are those ancestors (descendants)
not equal to the node itself. Thus the root is a descendant of every node in the
tree.

Definition 1. A binary resolution tree on a set S of input clauses is a labeled
binary tree. Each node N in the tree is labeled by a clause label, denoted cl(N).
Each node either has two parents and then its clause label is the result of a
resolution operation on the clause labels of the parents, or has no parents and is
labeled by an instance of an input clause from S. In the case of a resolution, the
atom resolved upon is used as another label of the node: the atom label, denoted
al(N). Any substitution generated by resolution is applied to all labels of the tree.
The clause label of the root of the binary resolution tree is called the result of
the tree, result(T ). A binary resolution tree is closed if its result is the empty
clause, 2.

For the binary resolution tree in Figure 1 S = {a∨ d,¬a ∨ b∨ ¬e, c ∨ ¬d, e ∨
f ∨ g, a∨ b∨¬c,¬a∨h,¬h,¬b,¬g}. The labels of a node N are displayed beside
the name of the node and separated by a colon if both labels exist. For example
the node N4 has atom label c, and clause label a∨b∨b∨f∨g. The order between
the parents of a node is not defined.

Using the resolution mapping ρ for each resolution operation in the tree, we
can trace what happens to a literal from its occurrence in the clause label of some
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Fig. 1. A binary resolution tree.

leaf, down through the tree until it is resolved away. If all literals are eventually
mapped to the atom label of some internal node, the clause label of the root is
empty. In this case by soundness of resolution, the clause labels of the leaves is
an unsatisfiable set of clauses. Thus we are primarily concerned about tracing
the “history” of a literal starting from its appearance in a leaf.

Definition 2 (History Path). Let a be an occurrence of a literal in the clause
label of a leaf node N0 of a binary resolution tree T . Let P = (N0, N1, . . . , Nn)
be a path in T where for each i = 1, . . . , n, Ni is the child of Ni−1, ρi is the
resolution mapping into Ni, and ρi . . . ρ2ρ1a occurs in cl(Ni), so that a is not
resolved upon in P . Further suppose Nn either is the root of T , or has a child N
such that ρn . . . ρ1a is the atom resolved upon at N . Then P is a history path
for a in T . The history path is said to close at N if N exists. The node Nn is the
head, the leaf N0 is the tail and a is the literal of P , written head(P ), tail(P )
and literal(P ), respectively.

For example in Figure 1, (M1, N2, N3) is a history path for c which closes
at N4. The two history paths for b in Figure 1, corresponding to the two occur-
rences of b, are (M3, N4, N5) and (M0, N1, N2, N3, N4, N5). Both of these close
at N6. The only history path that does not close is the one for f , which is
(M2, N3, N4, N5, N6, N7).

A rotation of an edge in a binary tree is a common operation, for example
with AVL trees [1]. Before we apply it to binary resolution trees, we review the
operation on binary trees. Given the binary tree fragment on the left of Figure 2,
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Fig. 2. A binary tree rotation

a rotation is the reassignment of edges so that the tree on the right of Figure 2
is produced. The parent C of E becomes the child of E and the parent B of C
becomes the parent of E. If E has a child in T , then C takes that child in T ′.
In other words, the edges (B, C), (C, E) and (E, F ) if it exists, are replaced by
the edges (B, E), (E, C) and (C, F ) if necessary.

Operation 1 (Edge Rotation) Let T be a binary resolution tree with an edge
(C, E) between internal nodes such that C is the parent of E and C has two
parents A and B. Further, suppose that no history path through A closes at E.
Then the result of a rotation on this edge is the binary resolution tree T ′ defined
by resolving cl(B) and cl(D) on al(E) giving cl(E) in T ′ and then resolving
cl(E) with cl(A) on al(C) giving cl(C) in T ′. Any history path closed at C in T
is closed at C in T ′; similarly any history path closed at E in T is closed at E
in T ′. Also, the child of E in T , if it exists, is the child of C in T ′.

A rotation may introduce tautologies to clause labels of internal nodes. For
instance, if al(C) occurs in cl(D) then cl(E) in T ′ may be tautological.

Note that before the rotation, no history path through A closes at E. We do
not allow the rotation if history paths through both parents of C close at E. If
we did then after the rotation, one of them would not have the opportunity to
close, and thus the clause label of the root would change. Before showing that
the clause label of the root is not changed (Corollary 1), we prove a slightly more
general result, which is also used later.

Definition 3. Let T1 and T2 be two binary resolution trees defined on the same
set of input clauses. Then T1 and T2 close history paths similarly if there is a
one-to-one and onto mapping ν from nodes in T1 to those in T2, such that:

1. If N is a leaf then ν(N) is a leaf and both are labeled with instances of
the same input clause. Thus there is a natural one to one correspondence,
from literals in cl(N) to those in cl(ν(N)). Moreover this mapping of literals
provides a mapping from history paths in T1 to those in T2, defined so that
they start from the same literal in the input clause, up to variable renaming.
We represent these other two mappings also with ν. We require for all history
paths P in T1 that tail(ν(P )) = ν(tail(P )) and literal(ν(P )) = literal(P )
up to variable renaming.
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2. For every history path P of T1, P closes at a node N if and only if ν(P )
closes at ν(N).

Thus two binary resolution trees close history paths similarly if they resolve
the same literals against each other, albeit in a possibly different order.

Lemma 1. If two binary resolution trees T1 and T2 close history paths similarly,
the result of T1 and the result of T2 are the same, up to variable renaming.

Proof. Note that result(T1) and result(T2) are composed entirely of literals from
history paths that do not close, and since the same history paths are closed in
each, the same literals are not resolved away. Also the composition of mgu’s in
T1 and the composition of mgu’s in T2 are unique up to variable renaming since,
given a node N , the same literals are unified at N and ν(N), up to variable
renaming. 2

Corollary 1. Given a binary resolution tree T with an internal node C and
its child E, Operation 1 generates a new binary resolution tree and cl(C) in
T ′ = cl(E) in T , up to variable renaming.

Proof. Observe that Operation 1 produces a tree which closes history paths
similarly.2

A rotation changes the order of two resolutions in the tree. Rotations are
invertible; after a rotation, no history path through D closes at C, so another
rotation at (E, C) can be done, which generates the original tree again. We say
that two binary resolution trees are rotation equivalent if one can be generated
from the other by a sequence of rotations. For instance, the first binary resolution
tree in Figure 3 is produced by rotating the edge (N4, N5) in Figure 1. The second
tree in Figure 3 is then produced by rotating the edge (M4, N5). Thus both
trees are rotation equivalent to Figure 1. Rotation equivalent is an equivalence
relation. It is not surprising that rotation equivalent binary resolution trees must
close history paths similarly, but the converse is true as well.

Theorem 2. Two binary resolution trees T1 and T2 are rotation equivalent if
and only if they close history paths similarly.

Proof. Since one rotation of T1 creates a binary resolution tree that closes history
paths similarly to it, so too does the sequence of rotations creating T2.

The converse is proved by induction on the number of internal nodes. Suppose
T1 and T2 close history paths similarly. Then they must have the same number
n of internal nodes since they have the same number of leaves. If n = 0 or n = 1
then no rotation is possible and the theorem holds. Let N be a node in T1 with
parents L1 and L2 that are leaves. Then in T2, ν(N) has proper ancestors ν(L1)
and ν(L2), which also are leaves, and ν(N) closes only history paths with tails
ν(L1) and ν(L2). We create T ′

2 by rotating edges so that ν(L1) and ν(L2) are
parents of ν(N), if this is not already the case. Let C be either parent of ν(N)



418 J. D. Horton and Bruce Spencer

and let A and B be the parents of C. If ν(L1) and ν(L2) are both ancestors of
C then neither is an ancestor of the other parent of ν(N). But ν(N) must close
a history path from that other parent, contradiction. Thus the edge (C, ν(N))
can be rotated, since it is not possible that both A and B contain a history path

Fig. 3. From Figure 1 rotate (N4, N5), then (M4, N5)

closing at ν(N). This rotation reduces the total number of non-leaf ancestors of
ν(N). After a finite number of such rotations, both parents of ν(N) are leaves.
Call this tree T ′

2.
Let T ∗

1 be T1 with leaves L1 and L2 deleted, and let T ∗
2 be T ′

2 with leaves
ν(L1) and ν(L2) deleted. Then T ∗

1 and T ∗
2 close history paths similarly since
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T1 and T ′
2 close history paths similarly. By induction T ∗

1 and T ∗
2 are rotation

equivalent. The sequence of rotations to convert T ∗
1 to T ∗

2 will also convert T1

to T ′
2, which is rotation equivalent to T2. 2

3 The Rank/Activity Calculus

A rank function must assign a value to every literal in the clause at each node
in a given binary resolution tree, in such a way that it orders history paths
consistently. Moreover it must assign values to sets of literals if they are unified
by a resolution closer to the root of the binary resolution tree. In the following
definition a rank function is required to assign values to every set of unifiable
literals, even if they are not unified later in the tree. In the informal discussion
in the introduction, the rank of a set of literals was given as the minimum of
the ranks of the literals unified, but this is not a requirement. The maximum or
any other number could be used instead. In the following, if H is a set of history
paths in a binary resolution tree T such that (1) some node occurs on all these
paths and (2) the literals of these paths are unifiable, then let literal(H) be the
multiset of these literals.

Definition 4 (Rank function). Let F be a set of binary resolution trees, closed
under taking subtrees. Let r assign an integer value to every set of unifiable
literals at every node of every tree. Then r is a rank function for F if r satisfies
the following condition in every binary resolution tree T :

For every pair of disjoint sets H1 and H2 of history paths that have two nodes
N1 and N2 in common:

r(literal(H1), N1) < r(literal(H2), N1) ⇐⇒
r(literal(H1), N2) < r(literal(H2), N2).

Thus r is a rank function if it orders the sets of history paths consistently. In
fact the reflexive transitive closure of this relation between sets of history paths,
is a partial order.

For example, let T0 be a binary resolution tree containing a node N1 and its
child N2. cl(N) = s ∨ p(x) ∨ p(y) ∨ q(u) ∨ q(v) where x, y, u and v are variables.
At N1, let r map s to 2, {p(x), p(y)} to 4 and {q(u), q(v)} to 6. The resolution
at N2 resolves away the s so that cl(N2) = p(x) ∨ p(y) ∨ q(u) ∨ q(v). If r at N2

maps {p(x), p(y)} to 12, then it must map {q(u), q(v)} to a value greater than
12 if r is to be a rank function. In this example H1 is the history paths for p(x)
and p(y) so literal(H1) is {p(x), p(y)}, while literal(H2) is {q(u), q(v)}.

Next we want to define those binary resolution trees that can be built using
the rank/activity restriction. Let N be a node other than the root of a binary
resolution tree T . Let H(N) be the set of history paths with N as their head.
Then these paths close at the child of N .

Definition 5 (r-compliant). Let r be a rank function for a binary resolution
tree and all its subtrees. Then T is r-compliant if the following condition is true.
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Let N and M be any two nodes such that H(N) also have M in common. Thus
M is an ancestor of N . Then r(literal(H(M)), M) ≤ r(literal(H(N)), M).

Returning to the example T0, let N2 = M and suppose that a new node
N is made the child of M . Both p(x) and p(y) are resolved away at N so
cl(N) = q(u) ∨ q(v). Thus H(M) = H1, the history paths for p(x) and p(y),
so r(literal(H(M)), M) = 12. Then suppose the child of N resolves away the
remaining literals so that literal(H(N)) = {q(u), q(v)}. Call the resulting tree
T1. We have already assumed that r(literal(H(M)), M) < r(literal(H(N)), M)
to make r a rank function. This condition also makes T1 r-compliant. Note that
if one rotates the edge between N and the root, one gets a tree which is rotation
equivalent to T1 but resolves away the q’s before the p’s. Since r still ranks the
p’s in M lower than the q’s, this tree is not r-compliant. The resolution on the
q’s has deactivated the p’s.

In the general case, the resolution at M ’s child does not deactivate the set of
history paths with head at N . Moreover, this set of history paths is not affected
by what happens before they are drawn together at some node by a resolution.
Therefore it is created as an active set of literals, which justifies the re-activation
of literals when they are merged together. Hence the set is active in N and can
be resolved by a rank/activity procedure at N ’s child. Thus the r-compliant
binary resolution trees are precisely those trees that can be constructed using
the rank/activity restriction of binary resolution, using the function r as the
rank function.

Theorem 3 (Completeness and uniqueness). Let T be a binary resolution
tree. Let r be a rank function for the set of all binary resolution trees that are
rotation equivalent to T . Then there is a binary resolution tree T ′ that is rotation
equivalent to T and is r-compliant. Moreover, if the rank function r maps disjoint
sets of literals at any given node to different values, then T ′ is unique.

Proof. First we prove the existence of T ′, which implies that the rank/activity
restriction is complete. The proof is an induction on the number of nodes in T .
If T consists of a single node, then T itself is r-compliant for any rank function
defined on T .

We now consider the case in which T has more than one node. Consider any
leaf L. The literals of L correspond to history paths that either close at some
internal node of T , or pass through to the root of T . Let N1, N2, ..., Nk be the
nodes that are the heads of history paths with L as the tail, excluding those
paths whose heads are the root. Let Pi be the set of history paths with L as
the tail and Ni as the head, for i = 1, 2, ..., k. We define a pointer P (L), which
points from L at some internal node of T . P (L) is the child of the Nj where:

1. Pj = H(Nj);
2. r(literal(Pj), L) ≤ r(literal(Pi), L) for all i such that Pi = H(Ni).

The first condition asserts that the literals of Pj are not merged or factored with
literals from any other leaf, before being resolved. The second condition asserts
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that this set of literals has the minimum rank of all sets of literals that satisfy
condition (1). If there is more than one choice for P (L) because r is not one-
to-one, then any choice of the nodes that satisfy the conditions can be made.
Note that if the rank function satisfies the condition of the second part of the
theorem, then P (L) must necessarily be unique, even if r itself is not one-to-one.
There is some Pi that satisfies condition Pi = H(Ni), since L itself is one of the
Ni, as at least one literal of cl(L) must close at L’s child, and thus cannot be
merged with literals from other clauses first.

Now P (L) is a function that points from the leaves of T into the interior
nodes of T . Since the number of leaves is one more than the number of interior
nodes, by the pigeon hole principle there must be some node N pointed at by
two different leaves, L1 and L2. Then P (L1) = P (L2) = N .

If either parent of N is not L1 or L2, then N can be rotated with that parent,
since the literals closing at N through that parent cannot come from distinct
grandparents of N . Since the set of literals closing at N are not changed by
rotation, N can be rotated upward in the tree until its parents are L1 and L2

themselves. Now remove L1 and L2 from the tree, making N a leaf of a new
smaller tree T1. The function r, restricted to the nodes of T1 and all its rotation
equivalent binary resolution trees, is still a rank function for T1. By induction T1

is rotation equivalent to a binary resolution tree T ′
1 that is r-compliant. Replace

the leaf N in T ′
1 by the subtree with leaves L1 and L2, and root N , to get another

binary resolution tree T ′. T ′ is rotation equivalent to T , since the rotations of
T1 to T ′

1 can be mirrored by rotations in binary resolution trees with N replaced
by the L1 − N − L2 subtree.

It remains to show that T ′ is r-compliant. The only nodes that must be
checked are the new nodes L1 and L2, as a possible M in the definition of r-
compliant. Consider any non-root node N ′ such that the history paths H(N ′)
have L1 in common. Then by the choice of P (L1), r(literal(H(L1)), L1) ≤
r(literal(H(N ′)), L1) by the definition of P (L1), so that the r-compliant con-
dition is always satisfied at L1. The same situation applies at L2. Thus T ′ is
r-compliant. Hence the rank/activity restriction is complete.

If the condition is added that the rank function r does not map two dis-
joint sets of literals at any node to the same value, then the pointer func-
tion chooses a unique node P (L) for any leaf L. Let L, Ni, Pi, be as de-
fined above. Let T ∗ be any binary resolution tree that is r-compliant and ro-
tation equivalent to T . The history paths of H(L) close at the child of L.
Then r(literal(H(L)), L) ≤ r(literal(Pi), L) for i = 1, 2, ..., k, because T ∗ is
r-compliant. But by the uniqueness condition on r, these ranks must all be dis-
tinct. Thus there is a unique j such that H(L) = Pj , and P (L) = the child of
Nj , by the definition of P (L). Hence Nj = L, and P (L) must be the child of L
in T ∗.

This argument shows that each leaf of T ∗ has a unique child. The argument
can be extended to all the nodes of T ∗, by inducting on the height of the subtree
above the node. Thus every node, other than the root node, has a uniquely
defined child node. It follows that the binary resolution tree T* is unique. 2
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Consider any bottom up binary resolution proof procedure that keeps all
clauses that it generates, and uses the rank/activity restriction. It only con-
structs proofs that correspond to r-compliant binary resolution trees, where r
is the rank function used. One consequence of this theorem is that as long as
the proof procedure is fair, in that if a resolution is allowed then it will eventu-
ally be performed once, the procedure must construct every possible proof, up
to reordering the resolutions. That is, the procedure is refutationally complete.
Moreover it will produce a binary resolution tree of minimal size (number of
nodes), if it is not halted after the first is found. However only one binary res-
olution tree is produced for each possible proof, if the rank function is distinct
on disjoint sets of literals. As the number of reorderings is typically exponential
in the size of the binary resolution tree, this amounts to a considerable saving
of work compared to a proof procedure that does not use this restriction.

4 Combining with Minimality

The rank/activity restriction combines well with minimality, another restriction
of binary resolution. Minimality [5,7,8] is an extension of the better known reg-
ularity restriction [9]. A binary resolution tree is regular if, for every internal
node N , the atom label of N is not in the clause label of any descendant of N .

The tree in Figure 1 is irregular because al(N1) is a and a occurs in cl(N4).
Irregular trees are never necessary. Why resolve away the a twice? One could
choose to leave out the resolution at N1, leaving the a in the clause, do the other
resolutions as necessary (not all will be necessary) and later resolve a away, as
was done at N5. We call this operation surgery [7,8].

A binary resolution tree is minimal if it is not rotation equivalent to a ir-
regular binary resolution tree. There is a linear time (in the size of the tree)
algorithm to detect whether the resolution of two binary resolution trees creates
binary resolution tree that is minimal or is non-minimal [7].

Theorem 4. Let C be an unsatisfiable set of clauses. Let r be a rank function
defined on the binary resolution trees that can be constructed with C as the clauses
of the leaves. Then there is a minimal r-compliant binary resolution tree with an
empty clause at its root. Moreover, one of the smallest binary resolution trees on
C with the empty clause at the root is minimal and r-compliant.

Proof. An irregular binary resolution tree can be manipulated by surgery so
that the second identical literal on a branch is resolved away at the same time as
the first identical literal. The resulting binary resolution tree is smaller, and the
resulting clause at the root subsumes the clause of the original binary resolution
tree. (See [8] for a proof.) Thus the smallest binary resolution tree that results in
the empty clause must be regular. Since every binary resolution tree is rotation
equivalent to one that is r-compliant, so is the smallest one. Rotating nodes
cannot turn a minimal binary resolution tree into one that is non-minimal, for if
the resulting tree can be rotated into an irregular proof, so too can the original
tree. Moreover rotating nodes does not change the size of the binary resolution
tree. The theorem follows. 2
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Corollary 2. A fair binary resolution procedure that uses both the rank/activity
and the minimality restrictions and that keeps all other clauses produced, is refu-
tationally complete.

Proof. Any subtree of a minimal binary resolution tree is also minimal, since if
a subtree can be rotated to be irregular, so can the supertree. Thus to produce
a given minimal tree, only minimal trees have to be resolved. By the same proof
as Theorem 3, every minimal tree must be rotation equivalent to some tree
produced by this procedure. 2

5 A Simple Example

The rank/activity restriction, like resolution itself, does not require any specific
procedure or approach, so any example is rather arbitrary. However an example
may clarify some points. The procedure used below is not recommended as a
efficient theorem prover, but has been chosen because it is simple and straight-
forward.

The procedure grows a list of clauses, starting from a list of the input clauses.
The clauses are processed from top to bottom. Each clause in the list, when
its turn comes, is resolved in all possible ways with the clauses above it. The
generated clauses, if they contain an active literal, are added to the bottom of
the list. Those clauses with no active literals are discarded. This procedure is fair
so it is complete with the rank/activity restriction. Subsumption is not used.

The rank of a literal is denoted by a superscript following it. If a literal
is inactive, an asterisk is placed after the rank. Ranks are kept as discussed
in the introduction, so a “size” must be kept for each clause, representing the
number of literals in the corresponding binary resolution tree. When a clause
that consists only of inactive literals would be generated by a given resolution,
the word “inactive” is placed in the diagram where the clause would otherwise
appear, but the clause itself is not inserted into the list, and in fact does not even
need to be generated. The clause will be inactive if the two resolving literals are
the highest ranked active literals in the parent clauses, there are other literals
and no merging of literals is possible.

The clauses and literals resolved upon for each new clause are indicated by
the notation clause1#:literal-position - clause2#:literal-position.

# Clause Size Source
1. p1 1 input
2. ¬s1 1 input
3. s1 ∨ ¬r2 2 input
4. ¬q1 ∨ ¬p2 2 input
5. q1 ∨ ¬p2 ∨ r3 3 input

Processing clauses 1 and 2 generates no clauses.
Processing clause 3 generates one clause.

6. ¬r3 3 3:1-2:1
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Processing clause 4 generates a clause with no active literals, ¬q1∗.
Such inactive clauses are discarded.

inactive 4:1-1:1

Processing clause 5 generates three clauses, one of which is inactive, and
another has a merge.

7. q1∗ ∨ r3 4 5:2-1:1
inactive 5:3-3:2

8. ¬p2 ∨ ¬p4 ∨ r5 5 5:1-4:1
merged to ¬p2 ∨ r5

Processing clause 6 generates one inactive clause.

inactive 6:1-5:3

In processing clause 7, only the active literal needs to be resolved.

inactive 7:2-3:2
inactive 7:2-6:1

Processing clause 8:

9. r6 6 8:1-1:1
inactive 8:2-3:2
inactive 8:2-6:1

Processing clause 9 ends the procedure.

inactive 9:1-3:2
10.2 8 9:1-6:1

The resulting binary resolution tree is in Figure 4.
In all the procedure has done five resolutions, only one of which, #7, is not

used in the proof. A total of eight resolutions were not done because the resulting
clause would be inactive. There are nine rotation equivalent binary resolution
trees; there is only one r-compliant one, unless the merge is clause 8 is optional.

6 Discussion

This paper presents a canonical form for a large equivalence class of binary
resolution trees. For a rank function r that gives different values to disjoint sets
of literals, there is a unique r-compliant binary resolution tree that is rotation
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Fig. 4. The example’s unique r-compliant binary resolution tree

equivalent to a given binary resolution tree. Rotation equivalent trees do the
same resolutions in a different order so this is a natural class to study. The
restriction leads to an exponential reduction in the number of proofs in the
search space. Implementations need only store an integer rank and a one-bit
activity status with each literal, and the check is inference local so it adds little
to the overall execution time. Meanwhile it does not eliminate the proof tree of
minimum size. Most restrictions of resolution, such as linear, selection function,
A-ordered, and lock, do not have all of these properties. Moreover, the minimal
restriction [5], an extension of the regular restriction, can be combined with
rank/activity.

A-ordered resolution appears to be a somewhat closely related restriction;
it makes the smallest atom in the A-ordering the only active atom. However,
A-ordering cannot consistently order the literals in first-order logic and all their
instances. The rank/activity restriction applies directly to first order logic, since
the rank of an occurrence of a literal is not affected by taking instances. In effect,
rank/activity resembles an A-ordering restriction that sometimes allows literals
to be skipped over, and brought back into the order after they are factored.

In one sense the rank/activity restriction is just a subrestriction of subsump-
tion, because every unclosed binary resolution tree that is prevented from being
formed by rank/activity, would eventually rejected by subsumption too. But it
is much easier to check activity than it is to check subsumption since subsump-
tion depends on the, often large, size of the set of retained clauses. This work
addresses a problem posed by Wos [10]:

If a strategy could be found whose use prevented a reasoning program
from deducing redundant clauses, we would have a solution far preferable
to our current one of using subsumption.

Full scale subsumption cannot be combined with the rank/activity restric-
tion, since totally separate proofs of the same clause need not have the same rank
orderings of the literals or activity conditions on the literals. However it is pos-
sible to combine a considerable portion of subsumption with the rank/activity
restriction. To use rank activity completely, one can delete a subsumed clause D
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if the subsuming clause C corresponds to a “smaller” binary resolution tree than
D does. It is also possible to combine a good deal of the rank/activity restric-
tion with full subsumption while maintaining completeness. To use subsumption
fully, one can activate all of the literals of a clause if that clause subsumes an-
other clause, thus treating the subsuming clause like a new input clause. Of
course subsumption guarantees uniqueness of clauses, but in a sense uniqueness
is lost in this latter combination, in that proof of a clause can be constructed
and then subsumed by a rotation equivalent proof of the same clause. This has
been investigated more fully using clause trees [4].
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