CS 6795 Semantic Web Techniques; Nov 2006
Practice Exam

Family Name First Name Student ID Signature

1) Consider these XML elements for the 'prefix' and 'infix' application of a binary function, here add, to its two variable arguments, here x and y:

<prefix>

 <fun> add </fun>

 <arg1> x </arg1>

 <arg2> y </arg2>

</prefix>

<infix>

 <larg> x </larg>

 <fun> add </fun>

 <rarg> y </rarg>

</infix>

Complete the following XSLT template - by just filling in the seven versions of "___" - for the (XML-to-XML) transformation of 'prefix' applications into 'infix' applications:

 <xsl:template match="prefix">

 <________>

 <______><xsl:value-of select="_____"/></______>

 </________>

 </xsl:template>
Could this transformation be 'inverted' - mapping 'infix' applications to 'prefix' applications - without information loss (write in only "yes" or "no" here)?

2) Consider this simple DTD:

 <!ELEMENT earth (country*)>

 <!ELEMENT country (name,language)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT language (#PCDATA)>

Circle, and when possible correct, all tags where this instance is not valid w.r.t. the DTD:

<nations>

 <country>

 <nom>France</nom>

 <language>French</language>

 </country>

 <country>

 <name>USA</name>

 <language>English</language>

 <language2>Spanish</language2>

 </country>

</nations>
Generalise the above DTD such that language expands into 1 or more official languages followed by 0 or more second languages. Put changed/new DTD lines here:

 <!ELEMENT language _________________________>

 <!ELEMENT official _____________>

 <!ELEMENT second _____________>

Complete this instance such that it remains valid w.r.t. your generalised DTD:

<earth>

 <country>

 <name>Canada</name>

 <language>

 __

 __

 </language>
 </country>

</earth>
3) Consider the following RuleML program (<Implies …> reflects “:-” in Prolog):

<And>

 <Implies closure=”universal”>

 <head>

 <Atom>

 <Rel>p</Rel>

 <Var>x</Var>

 <Var>y</Var>

 </Atom>

 </head>

 <body>

 <And>

 <Atom>

 <Rel>q</Rel>

 <Var>y</Var>

 </Atom>

 <Atom>

 <Rel>r</Rel>

 <Var>x</Var>

 </Atom>

 </And>

 </body>

 </Implies>

 <Atom>

 <Rel>r</Rel>

 <Ind>1</Ind>

 </Atom>

 <Atom>

 <Rel>q</Rel>

 <Ind>2</Ind>

 </Atom>

 </And>

Complete the corresponding Prolog program by just filling in the four versions of "___":

p(X,Y) :- _____, _____.

______.

______.
What would be implied by the program (write in here using Prolog syntax)?

4) Using Prolog or any other logic notation, give a program that expresses that an ancestor is either (1) a parent or (2) a parent of an ancestor.

Add facts representing two of the parent relations in your own family or in a fictitious family, mentioning you or a fictitious person, one of their parents, and one of his or her parents. Show a query that asks for all of the known ancestors, and a proof using at least one occurrence of the rule (2).

Finally, consider whether or not the bottom-up inference system that we studied
(jDREW BU), using subsumption tests, could run into an infinite loop with this program.

5) Consider the following:

· Lox is cured smoked salmon.

· Gravalax is cured salmon that has not been smoked.

· Crème brulée is glazed custard.

What are the basic sets (“base symbols”)?

​​​​​​​​​​​​​​​​​​​​​​​​​​​

What are the other defined sets (“name symbols”)?

​​​​​​​​​​​​​​​​​​​​​​​​​​​

Translate these three sentences into ALC Description Logic.

You are offered this additional information;
· Dishes d1, d2 and d3 are cured dishes.

· Dishes d1, d2 and d4 are salmon dishes.

· Dishes d2, d3 and d4 are smoked dishes.

· Dishes d5 and d6 are custard.

· Dish d6 is glazed.

Show a Venn diagram for this situation, where individual dishes are in their appropriate sets.

On a menu, dish d2 has dessert d6, dish d3 has dessert d5 and dish d4 has dessert d5. We use the property hasDessert to represent this.

Compute the following sets:

(hasDessert.Glazed

Cured (((hasDessert.Custard

((Lox ((Gravalax)

True or false: “Every cured salmon dinner has a custard dessert.” Justify your answer.

10% BONUS QUESTION: Set up a tableau proof of the following:

Lox (((Gravalax is subsumed by Cured

It is not necessary to complete the tableau proof, but bring it to the stage where you are about to apply the completion rules.

Will the proof succeed or fail?

What is the outcome: Is Lox (((Gravalax is subsumed by Cured?

