
The Design of j-DREW:
a Deductive Reasoning Engine for the

Semantic Web

Bruce Spencer
National Research Council Canada

and
University of New Brunswick
Fredericton, New Brunswick

Original Idea:
train people to build the Semantic Web
• Courses on systems employing ru le engin es an

Internet appl ications
– Writing deduction engines in Java/C/C++
– Interfacing with Internet API
– Old techniques (Prolog 30 years ago)
– New techniques from CADE System

Competition
• Meier and Warren’s book: Programming in Logic,

1988
– Updated in Java?
– Specific to Pro log at low level

Will such a course work?

• No
– Guts of Prolog, Internet API’s, how to program

in logic
– At least three courses here

• Yes
– Students understand recursion
– How to build a tree

how to search a space
• Propositional theorem prover

– how to interface to Internet

This talk
• Architecture for building deduction systems

– first order
– easily configured

• forward or backward
– embedded
– supports calls to and from rest of system

• Tour of internals
– backward & forward engines
– tree/proof
– terms
– bindings
– discrimination tree

• Prototypes

Choose the right abstractions
• Goal, Unifier, ProofTree
• use Java iterators: pay as you go

– for finding the next proof
• Make every Goal responsible for its list o

matching clauses
– hasNextMatchingClause()
– attachNextMatchingClause()

• Place Goals in stack of backtrack points
– popped in reverse chronological order

Propositional Prover: 1
initially proofTree has an open Goal
loop

if(proofTree.hasNoOpenGoal())
halt('success') ;

else
Goal g = proofTree.selectOpenGoal();
g.createMatchingClauseList ();
if(g.hasMoreMatchingClauses())

g.attachNextMatchingClause ();
choicePoints.push(g);

else
chronologicalBacktrack ();

Propositional Prover: 2

chronologicalBacktrack
while(not choicePoints.empty())

Goal g = choicePoints .pop();
g.removeAt tachedClause();
if(g.hasMoreMatchingClauses())

return
halt('failure');

Moving to First Order Logic

• Students struggle with variables
– Unification
– Composition of substitutions
– Unbinding on backtrackin

• Can we hide the hard stuff?
– Powerful abstractio

Hiding the hard stuff
• When attaching a clause to a Goal

– Matching clause must be a
instance of input clause
• Semi-unification creates the

instance
– Bindings to variables in goal

may be propagated through tree
now or later

• When removing the clause
– relax any pr opagated variable

bindings

proof tree
goal p(a, Y)

input
clause p(X, b) :- …

clause
instance

p(a, b) :- …

propagated
binding

Y←←←←b

Shallow or deep variables?

• Shallow
– variable binding is a list of replacements
– traverse list for each lookup
– undoing: remove most recent replacements

{X ←←←← f(Y)} •••• {Y ←←←← a}

• Deep
– an array of (all) variables and their curren

values
[X ←←←← f(a)
Y ←←←← a
…]

– undoing: pop stack of previous values (trail)

Choosing between shallow and deep
• Shallow

– pay for each lookup
– unbinding is cheap

• Deep
– lookup is cheap
– may need many large arrays of possible

variables
• j-DREW uses local deep

– each clause has own array of just local
variables, named –1, -2, …

– scope is c lause-wide
– so propagation necessary

Goal Tree and flatterms

• Each node has head and
body atoms

• Body atoms form goals
– attach children

• resolved p1 from
d ←←←← p1, …, pm

against q from
q ←←←← q1, …, qn

• resolved pm against r ←←←←.

p

q

q1 qn

r

N

C D

p1 pm

Flatterms to represent atoms
• j-DREW uses flatterms

– Array of pairs:
• symbol table ref
• length of subterm

– Not structure sharing
• Flatterms save theorem

provers time and space
(de Nivelle, 1999)

• Data transfer between
deduction engine and
rest of application

Variables are clause-specific
• Variables use

negative
indexes

• Bindings are
references to
flatterm &
position

• Unifier
X ←←←← g2
Y ←←←← f(g2)
W ←←←← h(g2)
Z ←←←← f(g2)

Composing and undoing Bindings

• Local deep bindings currently do not allow
composition
– bindings must be done to a flatterm
– new binding on a ne flatterm

• Backtracking is integrated with unbinding
– for quick unbinding, we use a stack of

flatterms for each goal.

Evaluation of local deep bindings
• Disadvantage for backtrackin

– must propagate bindings to other nodes
• Advantage

– fast interaction with rest of system
– simple, no environments to pass aroun
– compact, no large arrays

• Appropriate
– for forward chaining

• no backtracking, no propagation
– Probably appropriate when backward chaining

function-free logic
• Design decision to revisit

Discrimination trees
• Given a goal we want to access matching clauses

quickl
• Every-argument addressin

– unlike Prolog’s first argument addressing
• Useful for RDF triples

– a pattern may have variable in first argument
– rd f(X, ownedb , ‘Ora Lassila’)

Discrimination trees
• Given a goal, want to access

input clauses with matching
heads quickly

• Index into clauses via a
structure built from heads

• Replace vars by *
– imperfect discrimination

• merge prefixes as much as
possible
– a tree arises

*

p q r

f

g1 h

*

h

h

g1 *

f

g2

*• We adde
p(f(g1),h(g2),g1)
p(f(h(X)),h(Y),f(Z, Z))

Finding heads for goal p(X,h(g2),Y)
• replace vars in goal by *

– p(*,h(g2),*)

• Find instances of goal
– * in goal, skip subtree

• Find generalizations of goal
–* in tree, skip term in goal

p(f(g1),h(g2),g1)
p(f(h(X)),h(Y),f(Z, Z))

p q r

f

g1 h

*

h

h

g1 *

f

g2

*
•Find unifiable

–combination of both

Iterator for matching clauses

• We use Java idioms where possible
• Java’s iterators give access to sequence

– next()
– hasNext ()

• Used for access to sequence of matchi
clauses
– used in d iscrimination tree for access to roots

leaves of skipped tree
(McCune’s term: jump-list)

Working Prototypes:

• Basic Prolog Engine
– Accepts RuleML, or Prolog, or mixture
– Iterator for instances of the top goal
– Main loop is same code as propositional

theorem prover (shown earlier)
– Builds, displays deduction tree

• available to rest of system
– Negation as failure

More working prototypes:
Variants of Top-Down Engine
• User directe

– User selects goals
– User chooses clauses

• keeps track of clauses still left to try
– Good teaching tool

• Bounded search
– iteratively increase bound
– every resolution in search space will

eventually be tried
– a fair selection strateg

• Original variable names supplied
– particularly important for RuleML

When to propagate bindings?
• When all subgoals closed (1)

– best option if selecting deepest
goal

• When new clause is attached
– to all delayed goals (2)

• best option if sound negation
or delaying goals

– to all open goals (3)
• best option if user selects

• Propagation o n demand (4)
– lazy propagation

• Currently (1) and (3) working

proof tree
goal p(a, Y)

input
clause p(X, b) :- …

clause
instance

p(a, b) :- …

propagated
binding

Y←←←←b

Not-yet-working:
Calls to user’s Java code
• Want this to incur little overhead
• Java programmer uses flatterms
• Interface to symbol table

– symbol lookup
– add new symbols

• Argument list: an array of symbols
• Works wi th backtracking

– User’s Java procedure is an iterator
• Works wi th forward reasonin

Dynamic additions

• Some asynchronous process loads new rules
– push technolog

• Backward chaining
– additions are unnatural
– Using iterative bounds

• look for additions between bounds
• Forward chaining (next)

Bottom-Up / Forward Chaining
• Set of support prover for definite clauses
• Facts are supports
• Theorem: Completeness preserved when definite

clause resolutions are only between first
negative literal and fact.
– Proof: completeness of lock resolution

(Boyer’s PhD)
• Use standard search procedure to reduce

redundant checking (next)
• Unlike OPS/Rete, returns proofs and uses first

order syn tax for atoms

Theorem Prover’sSearch Procedure

• 3 Definite Clause
Lists:
– new facts

(priority queue)
– old facts
– mixed

• 2 Discrimination
trees:
– used facts
– rules, indexed on

first goal

loop
select new fact
for each matching rule

resolve
process new result

process new result(C)
if C is rule

for each old fact matching first
resolve
process new result

add C to rules
else

add C to new facts

Event – Condition - Action

• Suppose theorem prover saturates
– may need datalog, subsumption
– new facts added from

• push process
• Java event listener

– adding a fact restarts saturation
• could generate new Java events

• ECA interaction with Java events

j-DREW sound and complete

• Sound unification
• Search complete variant

– fair search procedure rather than depth-first
– uses increasing bounds

• Sound negation
– delay negation-as-failure subgoals
– until ground or until only NAF goals remain

Related Work

• Prolog
– Not compiled
– More flexible

• Dynamic additions
• Web-ized
• Programmer’s API

– Performance requirements different
• j-DREW unlikely to yield megalips

Related Work

• Mandarax
– easy to use RuleML editor and engine

• CommonRules
– compiles priorities
– Datalog
– also top-down, bottom up

• shares view of single semantics for bot

Summary

• Architecture for Java-based reasoning engines
– forward & backward

• Backward: variable binding/unbinding automatic
– tied with choicepoints
– configurable

• Integrated with other Java APIs
• Small footprint

– Depolyed as thread, on server, on client, mobile
• Dynamic additions to rules

– Integration of RuleML and Prolog rules in same proofs
• Proofs available

Canada’s new e-Business national lab

• New Brunswick
– over 90 people planned, about 20 so far
– $38 million over 5 years
– 3 locations

• Fredericton 27 staff researchers, 13 support, 40
visitors, new building on UNB campus

• Moncton and Saint John 14 more
• http://www.iit.nrc.ca

– then follow“E -Business link”
– semantic web, e-procurement, interactive voice,

telehealth , e-learn ing, CRM, secur ity
• recru iting no

j-DREW Demo

Bruce Spencer
National Research Council Canada

and
University of New Brunswick

Fredericton

Architecture

RuleML
Parser

Clause
Parser

Symbol
Table

Discrimination
Tree

Backtrackin
Engine

Top Level
Iterator

Goal
Answer & Proof

Demo

• 1 combining RuleML and Prolog
2 User interaction

