The Design of |-DREW.
a Deductive Reasoning Engine for the
Semantic Web

Bruce Spencer
National Research Council Canada
and
University of New Brunswick
Fredericton, New Brunswick

riginal I dea:
train people to build the Semantic Web

e Courses on systems employing rule engines an
Internet applications

—Writing deduction engines in Java/C/C++
— Interfacing with Internet API
— Old techniques (Prolog 30 years ago)
—New techniques from CADE System
Competition
 Meier and Warren’s book: Programming in Logic,
1988
— Updated in Java?
— Specific to Prolog at low level

W -

11l such a course work?

* NO
— Guts of Prolog, Internet API's, how to program
In logic
— At least three courses here
e Yes
— Students understand recursion

—How to build a tree
how to search a space

* Propositional theorem prover
—how to interface to Internet

e Architecture for building deduction systems

—first order

—easily configured

« forward or backward

—embedded

—supports calls to and from rest of system
e Tour of internals

—backward & forward engines

—tree/proof

—terms

—Dbindings

—discrimination tree
e Prototypes

d
Choose the right abstractions
e Goal, Unifier, ProofTree
e USe Java iterators: pay as you go
—for finding the next proof

 Make every Goal responsible for its list o
matching clauses

—hasNextMatchingClause()
— attachNextMatchingClause()

 Place Goals in stack of backtrack points
—popped in reverse chronological order

Propositional Prover: 1 T —

Initially proofTree has an open Goal
loop
If(proofTree.nasNoOpenGoal())
halt('success');
else
Goal g = proofTree.selectOpenGoal();
g.createMatchingClauselList();
If(g.hasMoreMatchingClauses())
g.attachNextMatchingClause ();
choicePoints.push(g);
else
chronologicalBacktrack ();

P

ropositional Prover: 2

chronologicalBacktrack
while(not choicePoints.empty())
Goal g = choicePoints .pop();
g.removeAttachedClause();
If(g.hasMoreMatchingClauses())
return
halt('failure’);

M -

oving to First Order Logic

e Students struggle with variables
— Unification
— Composition of substitutions
—Unbinding on backtrackin

e Can we hide the hard stuff?
— Powerful abstractio

: |

Iding the hard stuff
 When attaching a clause to a Goal Proof tree v
. goal p(a1)
— Matching clause must be a

Instance of input clause _ t

e« Semi-unification creates the 'npu X b) :-
: clause P(X,b):-...
Instance

— Bindings to variables in goal clause
may be propagated through tree d p@@, b):-...

now or later Instance
 When removing the clause propagated y _p
—relax any propagated variable binding

bindings

il

Qia”ow or aeep variables? e ——

e Shallow
—variable binding is a list of replacements
—traverse list for each lookup

—undoing: remove most recent replacements
{X « f(Y)} e {Y ~ &}

e Deep
—an array of (all) variables and their curren
values
[X ~ 1(a)
Y « a

n

—undoing: pop stack of previous values (trail)

.
Choosing between shallow and deep T
e Shallow
—pay for each lookup
—unbinding is cheap
e Deep
—lookup is cheap

—may need many large arrays of possible
variables

* |-DREW uses local deep

—each clause has own array of just local
variables, named -1, -2, ...

—Sscope is clause-wide
— SO propagation necessary

Goal Tree and flatterms N

e Each node has head and
body atoms

« Body atoms form goals
—attach children
* resolved p, from

d - Py -y Py
against q from
d < dq --- Q5

e resolved p,, againstr .

e |-DREW uses flatterms
— Array of pairs:
 symbol table ref
* length of subterm
—Not structure sharing

e Flatterms save theorem
provers time and space
(de Nivelle, 1999)

e Data transfer between
deduction engine and
rest of application

Symbol Table

name

arity

oy O P L0 B =

D
f
g1

go
h

h

2

(el e e [e R

Flatter MsSto represenf atot h S e ——

Flatterm for
p(f(gl)ihi h(gi)igl)

symbol [length
1 1 (f
2] 2 2
3 3 1
41 b 1
5] 6 2
6| 4 1
7| 3 1

Variables are clause-specific

 Variables use
negative
Indexes

e Bindings are
references to
flatterm &
position

e Unifier
X « 0,

Y « 1(9,)
W h(gy)

Z ~ 1(g,)

symbol

Flatterm for left
p(f(R(X)), WY), f(X),Y)

length

w00 =] O G Wb =

9

— o DN N = BN

[position | side

symbol

Flatterm for right
p(f(w)ah(f(g2)): Z, Z)

length

-1
-2

6
5

00 =] O &G W =

8

— = = B Y = DD

[position | side

right
right

-1
-2

3
5

left
right

C -

omposing and undoing Bindings

 Local deep bindings currently do not allow
composition
—Dbindings must be done to a flatterm
—new binding on ane flatterm

e Backtracking is integrated with unbinding

—for quick unbinding, we use a stack of
flatterms for each goal.

Evaluation of local deep blalng\s

 Disadvantage for backtrackin
—must propagate bindings to other nodes
 Advantage
—fast interaction with rest of system
—simple, no environments to pass aroun
—compact, no large arrays
 Appropriate
—for forward chaining
* no backtracking, no propagation

— Probably appropriate when backward chaining
function-free logic

e Design decision to revisit

D -

IScrimination trees

e Given a goal we want to access matching clauses
quickl

 Every-argument addressin
—unlike Prolog’s first argument addressing

o Useful for RDF triples
—a pattern may have variable in first argument
—rdf(X, ownedb , ‘Ora Lassila’)

il

lminatio

. T
e Given a goal, want to access 0o g
input clauses with matching |
heads.qumkly | /f\
 Index into clauses via a g, h
structure built from heads o
 Replace vars by *
—Imperfect discrimination %
 merge prefixes as much as 9
possible ¢
—atree arises
 We adde i
pP(f(9:1).h(9,).9,))

p(i(h(X)).h(Y).1(Z, 2))

e replace vars in goal by *

— p,h g.)

* Find instances of goal
—*1n goal, skip subtree

* Find generalizations of goal
—*In tree, skip term in goal

Find unifiable |
—combination of both |

| B

terator for matching clauses

 We use Java idioms where possible

e Java’s Iterators give access to sequence
—next()
—hasNext()

 Used for access to sequence of matchi
clauses

—used indiscrimination tree for access to roots
leaves of skipped tree
(McCune’s term: jump-list)

W -

orking Prototypes.

 Basic Prolog Engine
— Accepts RuleML, or Prolog, or mixture
— Iterator for instances of the top goal

—Main loop is same code as propositional
theorem prover (shown earlier)

— Builds, displays deduction tree
« available to rest of system
—Negation as failure

Variants of Top-Down Engine

e User directe
— User selects goals
— User chooses clauses
e keeps track of clauses still left to try
— Good teaching tool
« Bounded search
—Iteratively increase bound

—every resolution in search space will
eventually be tried

—a fair selection strateg
* Original variable names supplied
— particularly important for RuleML

==When to propagate Bmﬁmﬁ’\ .

 When all subgoals closed (1) proof tree

—best option if selecting deepest goal p(a, Y)
goal |
« When new clause is attached Input

—to all delayed goals (2) clause P(X,b):-...

e best option if sound negation
or delaying goals clause p(a, b):- ...

—to all open goals (3) Instance
e best option If user selects
 Propagation on demand (4) propagated y _p
— lazy propagation binding

e Currently (1) and (3) working

Callsto user’s Java code

« Want this to incur little overhead
e Java programmer uses flatterms
 Interface to symbol table

—symbol lookup

—add new symbols
« Argument list: an array of symbols
 Works with backtracking

—User’s Java procedure is an iterator
 Works with forward reasonin

D B

ynamic additions

« Some asynchronous process loads new rules
—push technolog
« Backward chaining
—additions are unnatural
—Using iterative bounds
* look for additions between bounds
e Forward chaining (next)

Bottom-Up / Forward Chaining T
o Set of support prover for definite clauses
Facts are supports

Theorem: Completeness preserved when definite
clause resolutions are only between first
negative literal and fact.

—Proof: completeness of lock resolution
(Boyer’s PhD)

Use standard search procedure to reduce

redundant checking (next)

Unlike OPS/Rete, returns proofs and uses first
order syntax for atoms

neqagem rrova

e 3 Definite Clause
Lists:

—new facts

(priority queue)
—old facts
—mixed

e 2 Discrimination
trees:

— used facts

—rules, iIndexed on
first goal

loop
select new fact
for each matching rule
resolve
process new result

process new result(C)
If Cisrule

for each old fact matching first
resolve

process new result
add C to rules
else
add C to new facts

E -

vent — Condition - Action

e Suppose theorem prover saturates
—may need datalog, subsumption
—new facts added from

e push process
e Java event listener
—adding a fact restarts saturation
e could generate new Java events
« ECA interaction with Java events

B ———

]-DREW sound and complete

e Sound unification
e Search complete variant
—fair search procedure rather than depth-first
—uses increasing bounds
e Sound negation
—delay negation-as-failure subgoals
—until ground or until only NAF goals remain

Related Work B

* Prolog

—Not compiled

— More flexible
« Dynamic additions
 Web-ized
* Programmer’s API

— Performance requirements different
* |-DREW unlikely to yield megalips

Related Work B

« Mandarax
—easy to use RuleML editor and engine
« CommonRules
—compiles priorities
— Datalog
—also top-down, bottom up
e shares view of single semantics for bot

Su -

mmary

Architecture for Java-based reasoning engines

— forward & backward

Backward: variable binding/unbinding automatic
— tied with choicepoints

— configurable

Integrated with other Java APIs

Small footprint

— Depolyed as thread, on server, on client, mobile
Dynamic additions to rules

— Integration of RuleML and Prolog rules in same proofs
Proofs available

il

Canaddsnew e-Business national lab————

 New Brunswick
— over 90 people planned, about 20 so far
— $38 million over 5 years
— 3 locations

* Fredericton 27 staff researchers, 13 support, 40
visitors, new building on UNB campus

e Moncton and Saint John 14 more
e http://www.iit.nrc.ca
— then follow“E -Business link”

— semantic web, e-procurement, interactive voice,
telehealth, e-learning, CRM, security

e recruiting no

-
j-DREW Demo I

Bruce Spencer
National Research Council Canada
and
University of New Brunswick
Fredericton

A

rchitecture

Goal

Top Level

lterator

Ans;/ver & Proof

Discrimination
Tree

Backtrackin
Engine

Symbol
Table

RuleML
Parser

Clause
Parser

D -

emo

e 1 combining RuleML and Prolog
2 User interaction

