
  

Using NS2 Presentation 2

tcl 
and 
otcl



  

tcl and otcl

 tcl is a language designed for use by an 
application developer

 Can be “embedded” (made “part of”) an application
 Could be used by an application in various ways, e. 

g. to allow a user to supply a custom initialization 
for the application

 otcl is tcl with “object-oriented” extentions
 ns2 uses otcl for the simulation programmer to 

create the network objects in memory and to 
insert initial events into the event queue



  

Scripting language

 tcl is a scripting language; it is executed by an 
interpretter

 Syntax is similar to simple scripting languages 
like a Unix/Linux shell, e. g. bash

 A statement is a series of “words” (non white 
space characters) separated by white space 
(spaces and tabs); “words” may be composed 
of most other characters

 The first word on a line must be a command 
name; the rest of the words are arguments



  

Variables

 The interpreter keeps a table of (variable) 
name/value pairs

 The set command causes the interpreter to set 
or modify the value of a name in the table

 Syntax:
 set name value

 Where name and value are single words



  

Variable examples

 Example:
 set a 1
 set b 2
 set c a+b
 puts “$a $b $c”

 Produces:
 1 2 a+b

 Remember: they're just words!



  

Those pesky dollar signs

 A tcl program has many “dollar signs” (“$”s)
 I wish they were money

 A “$” followed by a name causes the interpreter 
to just replace them by the value from the 
name/value table

 Interpreter algorithm
 Do the replacements in the line FIRST
 THEN treat the MODIFIED line as a command



  

Variable substitution example

 Example:
 set v1 1
 set v2 2
 set v3 v1
 set $v3 $v2
 puts “$v1 $v2 $v3”

 Produces:
 2 2 v1



  

Command substitution

 Uses brackets: “[“ and “]”
 Interpreter algorithm:

 FIRST do the command inside the brackets
 Replace the entire bracketed part with the value 

returned by the command
 Do the outer command
 In the case of multiple nested commands, work 

from the inner to the outer



  

Command substitution example

 Example:
 set r1 [ set r2 [ set r3 25 ] ] ]
 set r4 [ expr $r1 + 1 ]
 puts “$r1 $r2 $r3 $r4”

 Notes:
 set command returns value assigned
 expr command evaluates an expression and returns 

the result

 Produces:
 25 25 25 26



  

What about otcl

 Introduces classes
 Programmer can introduce their own classes, but 

we will mostly use those provided by ns2
 As usual, classes specify instance variables and 

methods

 Can “instantiate” a class, which gives an object
 Each object contains its own set of values for the 

instance variables
 Objects are used to represent the network, e. g. 

nodes, links, etc.



  

Object creatiion

 The “new” statement makes an object
 new ClassName

 The value returned is a “reference” to the created 
object

 The reference may be needed in a subsequent 
statement, e. g. creation of a link requires 
specification of the two nodes to which it connects

 “Simulator” is a class, and we need to make an 
instance of this class at the beginning of an ns2 
program

 Many ns2 methods return a class reference



  

Method invocation

 To invoke a method defined for the class of an 
object use:

 ObjectReference methodName arguments

 Note that object references are generated 
automatically by otcl when an object is created; 
because we don't know what the object reference 
will be in advance, we usually need to save the 
object reference value in a variable and use 
variable substitution



  

otcl example

 Example:
 set ns [new Simulator]
 puts "$ns"
 set n0 [$ns node]
 set n1 [$ns node]
 set link0 [$ns duplex-link $n0 $n1 
10Mb 1ms DropTail]

 set n2 [$ns node]
 puts "$n0 $n1 $n2 $link0"



  

otcl example result

 Produces:
 _o3
 _o10 _o13 _o28

 Note: the duplex-link method of the simulator 
returns a null value, not an object reference to a 
link object! 



  

Ns2 available classes and methods

 There are MANY methods provided by the 
classes provided by ns2

 Look at examples
 Look in the reference manual
 Search google


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

