Using NS2 Presentation 3

Mobile nodes

Mobile nodes

- Similar to wired nodes
 - Use ns2 "node" method to create nodes
 - But FIRST, set appropriate parameters for the node generator
- Two important differences between wired nodes (as in the previous example) and wireless nodes
 - Links are not used; communication is via a wireless channel
 - Nodes have a location and may move during the simulation

Node initialization

- Use the Simulator object's node-config method before invoking the node method
 - See example
- Can set many parameters for all subsequent nodes generated

Wireless channel

- Mobile node uses a complex model for determining with which other nodes it can communicate
 - Link layer similar to wired LAN allowing multiple nodes to contend for the channel
 - Arp to map network to physical addresses
 - Priority queueing, giving priority to routing
 - Mac layer is 802.11 distributed coordination function

Wireless channel cont'd

- Continuing down the mobile node model:
 - Network interface approximates Direct Sequence Spread Spectrum radio interface
 - Radio propagation model is Friss-space model (1/r²) at near distances and two ray ground model (1/r⁴) at far distances
 - Antenna model is omni-directional with unity gain
- All of the above DETERMINE when the signal at a node from another node is sufficiently strong that a packet can be successfully received

Node movement

- Two methods are available:
 - Random movement built in to ns2
 - Explicitly setting node movement from the otcl script
- For both methods, the topology should be set first
 - Rectangular area to which the mobile nodes are restricted, for example
 - set topo [new Topography]
 - \$topo load_flatgrid 1000 1000

Built in node movement

- For each node which is to move use:
 - MobileNodeObjectReference start
- The node will be initially positioned at a random point in the topology
- The node will move at a randomly generated speed in a random direction
- The movement will be periodically updated
- The documentation is vague about details

Explicit movement

Set the initial position of the node:

- NodeObjectReference set X_ xCoordinate
- NodeObjectReference set Y_ yCoordinate
- NodeObjectReference set Z_ zCoordinate
- At appropriate times, set the node motion:
 - NodeObjectReference setdest xDestination yDestination speed
 - The node sets itself to move from its current position in a straight line toward the destination at the specified speed

Typical use of explicit motion

- The initial position of every node is set at the beginning of the simulation
- "at time" commands are used to schedule changes in motion of each node
- The motion change commands can be:
 - Pre-scheduled by executing a large number of "at time" commands before the simulation actually begins
 - Created while the simulator is running; typically each "at time" command would schedule the next one

External movement generators

- A movement generator is included in the ns2 sources and others are available on the Internet
- Typically these generate an otcl source file containing the commands to set initial position and to schedule movement direction changes
 - Typically the movement source code is kept in a separate file and "included" using a source command
 - It is ESSENTIAL that the nodes be created using the same naming convention as used by the generator