
GIT
John DeDourek
Professor Emeritus
Faculty of Computer Science
University of New Brunswick



2

What is Git?

● A source code control system
– Implies program code

● A version control system
– Implies any sort of files



3

And what is a version control 
system?

● A time machine
– Maintains a history of project development 

in a repository

– Allows one to go back in time and extract 
previous states of the project from the 
repository



4

Why?

● Find where a regression error was 
introduced

● Support multiple versions of a project
● Safely integrate contributions to a project 

from others
● Can you think of other reasons?



5

Types of version control systems:

● Local
– Local repository to track personal files

● Centralized
– One repository for a project is shared by all 

developers

● Distributed
– Each developer has a local repository 

periodically synchronized with others



6

Distributed

server
repository

developer B
repository

developer A
repository

may be a “bare” repository
without working files

synchronize synchronize

synchronize



7

How to proceed

● Learn to use git as a local version control 
system

● Learn to synchronize repositories among 
computers



8

Git

● Does not solve all problems
● Makes some assumptions



9

Assumptions I

● Project is composed of files
● Files are under one root directory, optionally 

with subdirectories
● Files are of two types:

– Originally created, eg program source code

– Derived, eg compiled object code

– These two types can be distinguished by file 
name pattern



10

Assumptions II

● Most original files are text files
● Development proceeds by repeating 

forever:
– Repeat until satisfied

● Create and edit files
● Test the results

– Commit the results to the history repository

● However, GIT is a set of tools and does not 
specify a workflow



11

GIT repository

● A hidden subdirectory under the project root 
directory (“.git” in Linux)

● Contains a content addressable memory of 
“objects” or “blobs”

● Also contains some miscellaneous other 
stuff



12

Content addressable memory

● In principle, the contents of an object are its 
name

● In practice, the name is a 20 byte (160 bit) 
SHA-1 hash

– Shown as 40 hex digits



13

Objects I

● File 
– Header with some identifying stuff, eg your 

name for the file, followed by the contents 
of the file

● Tree
– Corresponds to a directory (root or 

subdirectory)

– Contains your name for the directory and 
then the hashes of the files and 
subdirectories contained in it



14

Objects II

● Commit
– Date, committer name, description, hash of 

the root directory, hash of the previous 
commit, etc.



15

A commit

subdir1
tree

object

root
tree

object

file2
file

object

file1
file

object

subdir2
tree

object

previous
commit commit

object



16

Finally, lets use it

● I will be demonstrating GIT on Linux using 
the command line, which is GIT's “native” 
interface

● Adapt this to whatever you use; the 
concepts are the same



17

Installation

● Linux: usually there; otherwise install for the 
distro repository

● Windows: try http://msysgit.github.io/
– Note: msysgit was moved from Google 

Code to github

● MAC: temporarily try 
https://code.google.com/p/git-osx-installer/ 
but note that downloads have moved to 
sourceforge; not sure where the project will 
be moving

http://msysgit.github.io/
https://code.google.com/p/git-osx-installer/


18

A bit about configuration

● There are four sources of configuration; 
each later one in the list over rides the 
previous one



19

Configuration sources

● Defaults built into git itself
● A system-wide configuration for the 

installation; modifiable only by the system 
administrator

● A global configuration for each user (in 
$HOME/.gitconfig on Linux)

● A local configuration for each repository, 
contained in the repository itself



20

Suggestion:

● After installation, set the “global” 
configuration to the one you use most often

● For any projects for which your standard 
global configuration is unsuitable, set the 
“local” configuration to over ride

– Set “local” configuration after initializing the 
project's GIT repository and while in the 
projects directory



21

Some configuration examples

git config --global user.name "jane smith"
git config --global user.email js@example.com
git config --global core.editor vi
git config --list
git config core.editor

mailto:js@example.com


22

Now we are set up to create 
projects; Example I

mkdir exampleproject
cd exampleproject

git init

echo "line one" > filea.txt
echo "line two" >> filea.txt
echo "line three" >> filea.txt
echo "hello world" > fileb.txt

git status

What happened?
We have “nothing to commit”!
We have “2 untracked files”



23

A bit about the cache (aka index)

● A file to be committed must be added to the 
index

– this makes it a tracked file

– this places a copy of the file in the index

● A commit operation always takes the files 
from index to create the committed state

– even if the index copy is different from the 
working copy



24

States of a file I

● Ignored: the file exists in the working 
directory but GIT ignores the file and does 
not track or report changes

● Untracked: the file exists in the working 
directory and GIT does report the presence 
of the file, but does not track changes



25

States of a file II

● Modified and not staged for commit; copies 
of the file exist in the working directory, in 
the index, and in the most recent commit; 
thus it must have been added to the index 
previously and is therefore being tracked; 
the copy in the index and the copy in the 
most recent commit are identical; however 
the copy in the working directory is different



26

States of a file III

● Modified and staged; again, copies of the 
file exist in the working directory, in the 
index, and in the most recent commit; the 
copies in the working directory and in the 
index are identical; however, these differ 
from the copy in the most recent commit; a 
copy of the file in the index will be part of the 
next commit



27

States of a file IV

● both an unstaged and a staged modified 
copy of the file exist; again copies exist in 
the working directory, in the index, and in 
the most recent commit; however, all three 
copies are different; the copy in the index 
will become part of the next commit



28

Example II

git add filea
git add fileb

git status

git commit -m "The first commit"

git status



29

Example III

echo "And everyone in it" >> fileb

git status

git add fileb
git commit -m "second commit"

git status
git log 



30

Ignoring files

echo "*~" >> .gitignore

git status
git add .gitignore
git commit -m "ignore editor backup files"

git status
git log



31

Git branching

● A branch is simply a pointer to a commit
● One branch is normally the "current branch"
● After “git init” we have one branch named 

“master” and it is the current branch
● A commit “advances” the current branch



32

Branch example I

git branch treble
git checkout treble

git checkout -b treble

or

then

git status
echo "Every Good Boy Does Fine" > filetreble
git add filetreble
git commit -m "Treble"
git status



33

Branch example II

3c52 bd0f 6e96

9e4e

master

*treble



34

Branch example III

git checkout master
git merge treble



35

Branch example IV

3c52 bd0f 6e96 9e4e
*master

treble

master just moved ahead from 6e96 to 9e4e

this is a fast forward merge



36

Branch example V

echo "Good Boys Do Fine Always" > filebass
echo "All Cows Eat Grass" >> filebass
git add filebass
git commit -m "Bass"



37

Branch example VI

3c52 bd0f 6e96 9e4e
*master

treble

5cc6



38

Branch example VII

git checkout treble
echo "F A C E" >> filetreble
git commit -a -m "Extend file treble"

git status
git log



39

Branch example VIII

3c52 bd0f 6e96 9e4e
master

*treble

5cc6

22d8



40

Branch example IX

git status
git log --graph

a real merge, not fast forward
there are no conflicts in this case

git checkout master
git merge treble



41

Branch example X

3c52 bd0f 6e96 9e4e

*master

treble

5cc6

22d8

089c



42

Conflict example I
git checkout master
echo "I add line" >> filetreble

git checkout treble
echo "You added line" >> filetreble

git checkout master
git merge treble

Auto-merging filetreble
CONFLICT (content): Merge conflict in filetreble
Automatic merge failed; fix conflicts and then 
                        commit the result.

Oh! Oh! Trouble!!!



43

Conflict example II

git status

# On branch master
# Unmerged paths:
#   (use "git add/rm <file>..." as appropriate to 
#                               mark resolution)
#
# both modified:      filetreble
#
no changes added to commit (use "git add" and/or 
                            "git commit -a")



44

Conflict example III
cat filetreble

Every Good Boy Does Fine
F A C E
<<<<<<< HEAD
I add line
=======
You added line
>>>>>>> treble

Every Good Boy Does Fine
F A C E
We both added lines

I changed this to

and then

git commit -a
git status
git log --graph



45

Next episode...

● Synchronizing repositories on multiple 
machines


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

