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What is Git?

● A source code control system
– Implies program code

● A version control system
– Implies any sort of files
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And what is a version control 
system?

● A time machine
– Maintains a history of project development 

in a repository

– Allows one to go back in time and extract 
previous states of the project from the 
repository



4

Why?

● Find where a regression error was 
introduced

● Support multiple versions of a project
● Safely integrate contributions to a project 

from others
● Can you think of other reasons?
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Types of version control systems:

● Local
– Local repository to track personal files

● Centralized
– One repository for a project is shared by all 

developers

● Distributed
– Each developer has a local repository 

periodically synchronized with others
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Distributed
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How to proceed

● Learn to use git as a local version control 
system

● Learn to synchronize repositories among 
computers
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Git

● Does not solve all problems
● Makes some assumptions
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Assumptions I

● Project is composed of files
● Files are under one root directory, optionally 

with subdirectories
● Files are of two types:

– Originally created, eg program source code

– Derived, eg compiled object code

– These two types can be distinguished by file 
name pattern
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Assumptions II

● Most original files are text files
● Development proceeds by repeating 

forever:
– Repeat until satisfied

● Create and edit files
● Test the results

– Commit the results to the history repository

● However, GIT is a set of tools and does not 
specify a workflow
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GIT repository

● A hidden subdirectory under the project root 
directory (“.git” in Linux)

● Contains a content addressable memory of 
“objects” or “blobs”

● Also contains some miscellaneous other 
stuff
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Content addressable memory

● In principle, the contents of an object are its 
name

● In practice, the name is a 20 byte (160 bit) 
SHA-1 hash

– Shown as 40 hex digits
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Objects I

● File 
– Header with some identifying stuff, eg your 

name for the file, followed by the contents 
of the file

● Tree
– Corresponds to a directory (root or 

subdirectory)

– Contains your name for the directory and 
then the hashes of the files and 
subdirectories contained in it
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Objects II

● Commit
– Date, committer name, description, hash of 

the root directory, hash of the previous 
commit, etc.
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Finally, lets use it

● I will be demonstrating GIT on Linux using 
the command line, which is GIT's “native” 
interface

● Adapt this to whatever you use; the 
concepts are the same
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Installation

● Linux: usually there; otherwise install for the 
distro repository

● Windows: try http://msysgit.github.io/
– Note: msysgit was moved from Google 

Code to github

● MAC: temporarily try 
https://code.google.com/p/git-osx-installer/ 
but note that downloads have moved to 
sourceforge; not sure where the project will 
be moving

http://msysgit.github.io/
https://code.google.com/p/git-osx-installer/
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A bit about configuration

● There are four sources of configuration; 
each later one in the list over rides the 
previous one
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Configuration sources

● Defaults built into git itself
● A system-wide configuration for the 

installation; modifiable only by the system 
administrator

● A global configuration for each user (in 
$HOME/.gitconfig on Linux)

● A local configuration for each repository, 
contained in the repository itself
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Suggestion:

● After installation, set the “global” 
configuration to the one you use most often

● For any projects for which your standard 
global configuration is unsuitable, set the 
“local” configuration to over ride

– Set “local” configuration after initializing the 
project's GIT repository and while in the 
projects directory
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Some configuration examples

git config --global user.name "jane smith"
git config --global user.email js@example.com
git config --global core.editor vi
git config --list
git config core.editor

mailto:js@example.com
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Now we are set up to create 
projects; Example I

mkdir exampleproject
cd exampleproject

git init

echo "line one" > filea.txt
echo "line two" >> filea.txt
echo "line three" >> filea.txt
echo "hello world" > fileb.txt

git status

What happened?
We have “nothing to commit”!
We have “2 untracked files”
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A bit about the cache (aka index)

● A file to be committed must be added to the 
index

– this makes it a tracked file

– this places a copy of the file in the index

● A commit operation always takes the files 
from index to create the committed state

– even if the index copy is different from the 
working copy
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States of a file I

● Ignored: the file exists in the working 
directory but GIT ignores the file and does 
not track or report changes

● Untracked: the file exists in the working 
directory and GIT does report the presence 
of the file, but does not track changes
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States of a file II

● Modified and not staged for commit; copies 
of the file exist in the working directory, in 
the index, and in the most recent commit; 
thus it must have been added to the index 
previously and is therefore being tracked; 
the copy in the index and the copy in the 
most recent commit are identical; however 
the copy in the working directory is different
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States of a file III

● Modified and staged; again, copies of the 
file exist in the working directory, in the 
index, and in the most recent commit; the 
copies in the working directory and in the 
index are identical; however, these differ 
from the copy in the most recent commit; a 
copy of the file in the index will be part of the 
next commit
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States of a file IV

● both an unstaged and a staged modified 
copy of the file exist; again copies exist in 
the working directory, in the index, and in 
the most recent commit; however, all three 
copies are different; the copy in the index 
will become part of the next commit
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Example II

git add filea
git add fileb

git status

git commit -m "The first commit"

git status
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Example III

echo "And everyone in it" >> fileb

git status

git add fileb
git commit -m "second commit"

git status
git log 
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Ignoring files

echo "*~" >> .gitignore

git status
git add .gitignore
git commit -m "ignore editor backup files"

git status
git log
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Git branching

● A branch is simply a pointer to a commit
● One branch is normally the "current branch"
● After “git init” we have one branch named 

“master” and it is the current branch
● A commit “advances” the current branch
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Branch example I

git branch treble
git checkout treble

git checkout -b treble

or

then

git status
echo "Every Good Boy Does Fine" > filetreble
git add filetreble
git commit -m "Treble"
git status
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Branch example II

3c52 bd0f 6e96

9e4e

master

*treble
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Branch example III

git checkout master
git merge treble
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Branch example IV

3c52 bd0f 6e96 9e4e
*master

treble

master just moved ahead from 6e96 to 9e4e

this is a fast forward merge
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Branch example V

echo "Good Boys Do Fine Always" > filebass
echo "All Cows Eat Grass" >> filebass
git add filebass
git commit -m "Bass"
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Branch example VI

3c52 bd0f 6e96 9e4e
*master

treble

5cc6
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Branch example VII

git checkout treble
echo "F A C E" >> filetreble
git commit -a -m "Extend file treble"

git status
git log
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Branch example VIII

3c52 bd0f 6e96 9e4e
master

*treble

5cc6

22d8
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Branch example IX

git status
git log --graph

a real merge, not fast forward
there are no conflicts in this case

git checkout master
git merge treble
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Branch example X

3c52 bd0f 6e96 9e4e

*master

treble

5cc6

22d8

089c
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Conflict example I
git checkout master
echo "I add line" >> filetreble

git checkout treble
echo "You added line" >> filetreble

git checkout master
git merge treble

Auto-merging filetreble
CONFLICT (content): Merge conflict in filetreble
Automatic merge failed; fix conflicts and then 
                        commit the result.

Oh! Oh! Trouble!!!
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Conflict example II

git status

# On branch master
# Unmerged paths:
#   (use "git add/rm <file>..." as appropriate to 
#                               mark resolution)
#
# both modified:      filetreble
#
no changes added to commit (use "git add" and/or 
                            "git commit -a")
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Conflict example III
cat filetreble

Every Good Boy Does Fine
F A C E
<<<<<<< HEAD
I add line
=======
You added line
>>>>>>> treble

Every Good Boy Does Fine
F A C E
We both added lines

I changed this to

and then

git commit -a
git status
git log --graph



45

Next episode...

● Synchronizing repositories on multiple 
machines
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