
A Synthesis Method for MVL Reversible Logic*

 D. Michael Miller Gerhard W. Dueck Dmitri Maslov
 Department of Computer Science Faculty of Computer Science Department of Computer Science
 University of Victoria University of New Brunswick University of Victoria
 Victoria, BC, Canada V8W 3P6 Fredericton, NB, Canada E3B 5A3 Victoria, BC, Canada V8W 3P6
 mmiller@csr.uvic.ca gdueck@unb.ca dmaslov@uvic.ca

Abstract*

An r-valued m-variable reversible logic function maps
each of the rm input patters to a unique output pattern. The
synthesis problem is to realize a reversible function by a
cascade of primitive reversible gates.

In this paper, we present a simple heuristic algorithm
that exploits the bidirectional synthesis possibility inherent
in the reversibility of the specification. The primitive
reversible gates considered here are one possible extension
of the well-known binary Toffoli gates.

We present exhaustive results for the 9! 2-variable 3-
valued reversible functions comparing the results of our
algorithm to optimal results found by breadth-first search.
The approach can be applied to general m-variable, r-
valued reversible specifications. Further, we show how the
presented technique can be applied to irreversible
specifications. The synthesis of a 3-input, 3-valued adder
is given as a specific case.

1. Introduction

A binary or MVL circuit is reversible if it maps each
input pattern to a unique output pattern. Landauer [7]
proved that traditional binary irreversible gates lead to
power dissipation in a circuit regardless of its
implementation. Recently, Zhirnov et al. [14] calculated
that power dissipation in future CMOS (scaled for the year
2016 in accordance with the ITRS plan) leads to impossible
heat removal, and thus the impossibility of speeding up
CMOS technology devices. Bennett [2] showed that for
power not to be dissipated it is necessary that a binary
circuit be build from reversible gates. This suggests that
reversible technologies and the synthesis of reversible
circuits are potentially very promising areas of study as
regards further technological advances. Binary reversible
circuits have been studied for their potential application in

* This work was supported in part by research grants from the Natural
Sciences and Engineering Research Council of Canada.

low-power CMOS design, quantum computation [8][10] and
optical computing.

This paper addresses the problem of synthesizing an
MVL reversible specification in terms of basic MVL
reversible gates. Practical implementation will require a
suitable technology for implementation of those gates.
Possible implementation in quantum technology is
addressed by the authors in []. At present, quantum
implementation is limited to a small number of qubits.
MVL coding reduces the number of qubits required (lines in
the circuit) thus allowing for larger specifications in current
technology.

We do not elaborate further on technology issues but do
make the following assumptions:
(i) fan-out between gates is not permitted;
(ii) loops are not permitted; and
(iii) permutation of connections between gates is

permitted.
We employ MVL reversible gates that are extensions of

the binary reversible NOT, Feynman [4] and Toffoli gates
[13]. The gates considered are those introduced by De Vos
et al. [3] and simple extensions of those gates.

The gates considered here are not the only possible MVL
reversible gates nor are they the only possible extension to
the Toffoli gate. Picton [11][12] introduced an MVL
generalization of the binary Fredkin gate. Al-Rabadi [1] has
considered a generalization of the Toffoli gate where XOR
is replaced by mod-sum. Khan et al. [6] have considered
several MVL (ternary) reversible gates. The set of gates we
use here is of interest because of its relative simplicity and
consistency and because preliminary investigations indicate
that implementation should be relatively efficient. The
reader will observe that due to the simple nature of our
synthesis method it can be extended to other sets of
primitive reversible gates.

The methods and examples re presented for simplicity
presented for the ternary case. However, it will be clear
from the simplicity of the synthesis approach presented that
it is straightforward to apply it to higher-radix logic.

Synthesis of reversible logic is quite different from
conventional synthesis. Since loops are not permitted, a

reversible logic circuit can be specified as a simple sequence
of gates. Further, since fan-out is not permitted, and
assuming an appropriate technology, a reversible logic
circuit can realize the inverse specification simply by
applying the gates in the reverse order. Hence, synthesis
can be carried out from the inputs toward the outputs or
from the outputs toward the inputs. The method presented
here synthesizes the circuit by working in both directions
simultaneously. In addition, it is advantageous to synthesize
a circuit for a given specification and also for its inverse
taking the solution to be the simpler result. The synthesis
method presented here is based on the binary method
developed by the authors in [9] but there are certain novel
issues to deal with in the MVL case.

The background on reversible logic necessary for this
paper is outlined in Section 2. The interested reader is
referred to [10] for extensive background. The MVL
reversible gates used in this work are described in Section 3.
Section 4 presents our synthesis algorithm. An example
illustrating the operation of the algorithm is worked in some
detail in Section 5. Experimental results are given in
Section 6 and an irreversible example, the 3-valued full
adder, is shown in Section 7. The paper concludes with
observations and ideas for further research in Section 8.

2. Background

Definition 2.1 An m-input, m-output, (written m×m)
totally-specified MVL function is reversible if it maps each
input assignment to a unique output assignment.

A reversible function thus defines a permutation of the
input patterns and there are clearly rm! r-valued, m×m
reversible functions.

Definition 2.2 An n-input, n-output gate is reversible if it
realizes a reversible function.

The synthesis problem is how to realize a given
reversible specification using a basic set of reversible gates.

A variety of binary reversible gates have been
considered. The common NOT gate realizes a reversible
function. Another binary reversible gate is the Fredkin gate
[5] which has three inputs and three outputs. The first input
is passed through unaltered. The second and third pass
through unaltered if the first input is 0 and are exchanged if
the first input is 1.

There is also the family of Toffoli gates [13] defined as
follows:

Definition 2.3 An n×n Toffoli gate passes the first n-1
lines (control) through unchanged, and inverts the nth line
(target) if the control lines are all 1.

The 2×2 Toffoli gate and the 3×3 Toffoli gate have been
named the controlled-NOT (Feynman) and controlled-
controlled-NOT gates, respectively.

3. MVL Reversible Gates

A. De Vos et al. [3] have considered the cycle and
negation operations in Table 1, denoted C1 and N
respectively, and the controlled versions of those gates,
denoted CC1 and CN, given in Table 2, as generators of the
group of all 2×2 3-valued reversible logic functions. The
notation used here is that symbols such as x and y denote the
line values on one side of a reversible gate while x+ and y+
denote the corresponding values on the other side of the
gate.

x
C1

x+
N

x+
0 1 2
1 2 1
2 0 0

Table 1

x

y

CC1
x+ y+

CN
x+ y+

0 0 0 0 0 0
0 1 0 1 0 1
0 2 0 2 0 2
1 0 1 0 1 0
1 1 1 1 1 1
1 2 1 2 1 2
2 0 2 1 2 2
2 1 2 2 2 1
2 2 2 0 2 0

Table 2

gates C1-
CN

C1
CC1-CN

C1-N
CC1-CN

C1-C2-N
CC1-CC2-CN

0 1 1 1 1
1 4 6 8 12
2 13 31 52 93
3 39 130 280 597
4 115 498 1,342 3,224
5 326 1,777 5,692 15,042
6 897 5,924 20,992 57,951
7 2,395 18,089 63,292 144,039
8 6,107 47,849 128,159 127,056
9 14,660 99,576 118,635 14,750

10 32,268 126,981 23,516 115
11 62,145 58,192 906
12 96,237 3,795 5
13 97,705 31
14 43,902
15 5,816
16 243
17 7

Avg. 11.97 9.39 8.11 7.16
Table 3

x

C2
x+

0 2
1 0
2 1

x

y

CC2
x+ y+

0 0 0 0
0 1 0 1
0 2 0 2
1 0 1 0
1 1 1 1
1 2 1 2
2 0 2 2
2 1 2 0
2 2 2 1

Table 4

We have written a program to determine the number of
gates for circuits realizing the 9! = 362,880 2×2 3-valued
reversible logic functions for different sets of basic
reversible gates. The program performs a breadth-first
search so the first circuit found for each function uses the
minimal number of gates. Results are shown in Table 3.

Cyclic inversion (C1) together with controlled negation
(CN) is the only operation pair that can realize all 362,880
functions. As shown, the circuits can be quite long.
Adding, controlled cycle (CC1) and negation (N) in turn
both improve the results. The latter is the set of operators
suggested by De Vos et al. [3].

The rightmost column in Table 3 shows the further
improvement gained by adding cycle by 2 (C2) and
controlled cycle by 2 (CC2) defined in Table 4. Clearly, N
and CN are self-inverse. C1 and C2 are the inverse of each
other. Hence, CC1 and CC2 are the inverse of each other.

Negation can be extended to any r-valued logic as x =
(r-1)-x. There are r-1 cyclic inversions for r-valued logic
defined in the obvious way. Controlled cycles and
controlled negation can be generalized to the n×n cases for
r-valued logic as specified in the following definition.

Definition 3.1 An n×n r-valued controlled unary gate
passes the first n-1 lines (control) through unchanged, and
applies a specified operation to the nth line if the control
lines are all r-1, otherwise the target line is passed through
unaltered.

The Fredkin gate can clearly be extended to the MVL
case, but we do not consider that in this paper.

4. A Synthesis Method
An m×m reversible MVL specification is a mapping
 :F Q Q→

where Q is the set of mr m-tuples of r values. We only
consider the totally-specified case in this paper. As F is
reversible, there is of course a corresponding inverse
mapping

 1 :F Q Q− →

x
D

x+
E

x+
0 0 1
1 2 0
2 1 2

Table 5

We will write ()F =x y (conversely 1()F− =y x)
where , Q∈x y and shall denote the elements of Q as the
ordered set { }0 1 1, , , mrq q q −… hence iq is the m-ary r-valued
expansion of i.

Our synthesis method operates by finding a sequence of
MVL reversible gates whose effect is to transform F (and
of course 1F−) to the identity mapping. It is based on the
binary synthesis approach we developed in [9].

There are two aspects of our approach which must be
noted at this point. First while the discussion so far has
assumed control values are always r-1 (2 for ternary), our
algorithm allows control values to be any value ≠ 0. The
reason will become obvious in the description of the
algorithm. Extra cycles or negations can always be inserted
so that only r-1 control values are necessary, but we
anticipate that in many implementations of the basic
reversible gates, arbitrary control values will be available.
This extension leads to the following:

Definition 4.1 A generalized n×n r-valued controlled
unary gate passes the first n-1 lines (control) through
unchanged, and applies a specified operation to the nth line if
each of the control lines equals the control value
(0 v r< <) specified for that line; otherwise the target line
is passed through unaltered.

Also, because our algorithm processes the specification
in a fixed order, we need an additional operation D (see
Table 5) which we assume is also available as a controlled
gate.

Definition 4.2 Given a reversible specification F, the
distance between F and the identity is given by

1

0
() (, ())

mr

j j
j

F q F qδ
−

=
∆ = ∑

where for two r-valued m-tuples a and b

1

0
(,) | |

m

k k
k

a b a bδ
−

=
= −∑

Synthesis Procedure
Input: reversible specification 0F
Output: an ordered set of gates mrG that implements the
initial reversible specification
1. i = 0 and 0G φ=
2. if (()i i iF q q=) skip to step 9
3. let S = ordered set of gates to map ()i iF q to iq
4. let T = ordered set of gates to map 1()i iF q− to iq
5. for j = 0 to i set 1()i j jF q q+ =

6. if |S| < |T|
 (a) for j = i+1 to 1mr − set 1()i jF q+ the result of

applying the gates in S (in order) to ()i jF q
 (b) set 1iG + to 1 0| , ,iG S S< >… (note | denotes

concatenation)
7. if |S| > |T|
 (a) for j = i+1 to 1mr − set 1

1()i jF q−
+ the result of

applying the gates in T (in order) to 1()i jF q−
 (b) set 1iG + to 0 1, , | iT T G< >…
8. if |S| = |T| we apply either 6(a) and (b) or 7(a) and (b)

whichever yields the smallest ()iF∆ (in the event of a
tie, 6(a) and (b) are applied)

9. i = i + 1
10. if (1mi r< −) go to step 2

The following notes clarify the steps of the algorithm.

1. Initialization step.
2. If ()i iF q q= no transformation is required for this

pass.
3. The gates to map ()i iF q to iq are chosen to (a)

minimize the number of gates and to (b) ensure that
when they are applied they have no affect for any j < i.
The actual procedure for choosing the gates is given in
detail below.

4. This is analogous to step 3 but is being applied in the
opposite direction.

5. Due to the gate selection process 1iF + is identical to
iF for 0q to iq .

6., 7. and 8. S is a set of gates that map an output pattern to
match the corresponding input pattern. T is a set of
gates that map that input pattern to match the output
pattern. The algorithm selects the smaller set and in the
case of a tie the set that results in a specification with
smallest distance to the identity mapping. Note that
gates mapping an output pattern to match the input
pattern are appended to the end of G and in reverse
order (step 6b). Conversely, gates mapping an input
pattern to match the output pattern are appended to the
beginning of G in order.

9. and 10. are iteration control.
The key to the synthesis algorithm is the selection of a set

of gates to map an m-tuple kq to another iq . By
construction, k > i. Also, the gates must be chosen so that
they have no affect on any ,jq j i< . Both of these
stipulations arise from the fact the algorithm goes through
the specification in order. The gate selection subprocedure
is given below in terms of a generic reversible specification
F which of course can be the inverse of another
specification.

Gate Selection Subprocedure
Input: a reversible specification F and an i for which we

want to select gates to transform ()iF q to iq
Output: an ordered set of gates G performing the required

transformation
1. For ease of notation let a = ()iF q and let b = iq . Set
G φ= .

2. k = 0
3. if (k ka b=) skip to step 6
4. Select a gate g that transforms ka to kb with control

values (if needed) being the smallest number of
, ,pa p k≠ so that the value of the control set when

treated as a single value is b≥ . The gate chosen in the
event of a choice is the one that yields a transformed
specification tF such that ()tF∆ is minimal.

5. set G to |G g
6. 1k k= +
7. if(k m<) go to step 3

Step 4 is the core of the above procedure. A difference
between the binary and the MVL situations is the variety of
choice for mapping one value to another. For example, the
case for ternary (r = 3) is shown in Table 6. In the event
there is a choice in constructing the control set, we choose
higher control values.

It is very important to note that in Table 6 we do not use
C1 for 1 → 2 or C2 for 2 → 1 as these would always modify
an entry earlier in the specification. This is an artifact of our
simple algorithm processing the specification in order. We
include E in Table 6 for completeness but note that it is not
used in our current implementation.

We can further exploit reversibility by applying the
algorithm to F and then to F-1. Even though the algorithm
itself exploits reversibility, it is heuristic and applying it to
both the original and the inverse can produce a different
circuit. The circuit for F-1 can of course simply be applied
in reverse to realize F.

Both the synthesis and gate selection procedures are
greedy in that they make choices to optimize the circuit
based on only local information. No backtracking or look-
ahead is used.

transform choic
e

0 → 1 C1, E
0 → 2 C2, N
1 → 0 C2, E
1 → 2 D
2 → 0 C1, N
2 → 1 D

Table 6

5. Example

A trace of a 2-variable, 3-valued example will illustrate
the operation of the synthesis algorithm. The initial
specification is given in Table 7(a). The choice is to map
output pattern 21 to 00 or input pattern 21 to 00. While
these seem equivalent, they are not. The synthesis
procedure chooses to map the input pattern 21 as this yields
the resulting specification with smaller ()F∆ . The gates
required are N(x) and C2(y). The resulting specification is
given in Table 7(b) with bold type denoting the changes
which in this case are to the input.

(a) (b) (c)

xy x+y+ xy x+y+ xy x+y+

00 21 22 21 22 22
01 20 20 20 20 20
02 22 21 22 21 21
10 12 12 12 12 12
11 10 10 10 10 10
12 11 11 11 11 11
20 02 02 02 02 02
21 00 00 00 00 00
22 01 01 01 01 01

Table 7

The entries 00, 01, …, 20 are properly aligned. The next
choice is to map 21 to 22 on either the input or the output
side. Both require a single gate which is a controlled D
applied to y with control x = 2. The resulting specification
is given in Table 7(c) and is the identity so the process is
complete. The circuit is shown in Figure 1.

Figure 1

6. Experimental Results

We have implemented the synthesis method described in
Section 4 in C. Even on a 750MHz PC with 256MB RAM
running Windows XP, the computation time for functions of
a few variables is negligible. The exhaustive enumeration
described below takes a few minutes.

We have applied our synthesis algorithm to the 9! =
362,880 2×2 3-valued reversible logic functions. The
results are shown in Table 8. As noted above, the algorithm
allows control values of 1 and 2, and uses D operations. E
operations are not used. The Table shows the results for
applying the algorithm to F only, and the results for
applying the algorithm to F and F-1 and taking the shortest

circuit. For comparison, we include the optimal results
found by breadth-first search when control values of 1 and
2, and D operations are permitted.

gates Algorithm

F Only
Algorithm

F and F-1
Optimal

0 1 1 1
1 24 24 24
2 301 315 335
3 2,395 2,593 3,407
4 11,743 12,954 25,255
5 34,755 39,061 114,095
6 72,217 80,699 187,569
7 97,192 103,663 32,173
8 81,978 79,099 21
9 43,886 34,338

10 14,849 8,612
11 3,246 1,437
12 293 84

Avg. 7.11 6.92 5.60
Table 8

7. Irreversible Example

We present the case of a 3-valued full adder as an
example of applying the above reversible logic synthesis
technique to an irreversible specification. The full adder has
three inputs 0 1 2, ,x x x and two outputs which are the sum
and carry defined in the obvious way (Table 9).

To apply the above methods to this specification we must
embed it in a larger reversible specification. Looking at the
truth table for the full adder we see that output pattern 10
appears 7 times. Since all the output patterns in the
reversible specification must be unique, this requires we add
at least two ‘garbage’ outputs. The term garbage refers to
the fact those outputs are not part of the useful output set.

The reversible specification must have the same number
of inputs and outputs, so we must add at least one ‘constant’
input 3x which we add as the most significant entry in the
truth table and which we define so that setting it to 0 yields
the correct sum and carry functions.

The difficult part is how to define the two garbage
outputs so that the resulting specification is reversible and to
minimize the resulting circuit. We draw upon our
experience of the full adder in the binary case [9]. The
reversible specification is given by

0 1 20

1 21

22

0 1 2 33

(, ,)

(, ,)

x sum x x x

x x x

x x

x carry x x x x

+

+

+

+

=

= ⊕

=

= ⊕

where ⊕ denotes sum mod-3. Note that the ordering of the
outputs is important and that the two garbage outputs are
placed between the sum and carry. The circuit only
produces the correct carry when 3 0x = . Choosing the best
output ordering is in general difficult. Here it was done by
inspection. Our synthesis algorithm is sufficiently fast that
for small problems, one could consider all possible output
permutations. How to choose an output order for a large
problem is an open question.

Applying the synthesis method described above to the
specification given by (3) yields the circuit shown in Figure
2. Sixteen gates are required. Each shows the type of gate,
the target line and any control lines and values applicable.
The algorithm gives 27 gates for the inverse specification.

8. Conclusion

This paper introduces a simple heuristic algorithm for the
synthesis of MVL reversible circuits composed of MVL
reversible gates based on the ideas of De Vos et al. [3] that
are one possible generalization of binary Toffoli gates [13].
While the initial results are quite promising there is
considerable need and scope for further research.

2x 1x 0x carry sum

0 0 0 0 0
0 0 1 0 1
0 0 2 0 2
0 1 0 0 1
0 1 1 0 2
0 1 2 1 0
0 2 0 0 2
0 2 1 1 0
0 2 2 1 1
1 0 0 0 1
1 0 1 0 2
1 0 2 1 0
1 1 0 0 2
1 1 1 1 0
1 1 2 1 1
1 2 0 1 0
1 2 1 1 1
1 2 2 1 2
2 0 0 0 2
2 0 1 1 0
2 0 2 1 1
2 1 0 1 0
2 1 1 1 1
2 1 2 1 2
2 2 0 1 1
2 2 1 1 2

2 2 2 2 0
Table 9

In earlier binary work [9], we presented a similar

heuristic algorithm and then gave a template-based
reduction procedure that can significantly reduce the size of
the circuit. We are currently working on templates for the
MVL case. Also, while we were able to find quite a
reasonable circuit for a ternary full adder as a reversible
circuit, work is needed to identify a general procedure for
embedding an irreversible specification within a larger
reversible specification so that the resulting reversible
circuit is minimal, or at least near-minimal. This is an open
question for both binary and MVL problems.

C1(x3;x0=2;x1=1)
C1(x3;x0=2;x1=2)
C1(x3;x0=2;x1=2;x2=2)
C2(x3;x1=2;x2=2)
C2(x3;x0=2;x1=1;x2=2)
C2(x3;x1=1;x2=2)
C2(x3;x0=2;x2=2)
C1(x1;x2=2)
C2(x3;x0=2;x1=2;x2=1)
C2(x3;x1=2;x2=1)
C1(x3;x0=2;x1=1;x2=1)
C2(x3;x0=2;x2=1)
C2(x1;x2=1)
C2(x3;x0=1;x1=2)
C1(x0;x1=2)
C2(x0;x1=1)

Figure 2

The basic reversible gates considered here are only one
possible generalization of Toffoli gates, and there are many
other MVL reversible gates that could be considered. We
next plan to consider MVL generalizations of the Fredkin
gate [5]. Mod-sum based reversible gates may also be
considered.

Application of this work depends on the efficient
realization of the basic reversible gates in a suitable
technology. Our studies reported in [] show that the C1, C2
and N gates and their controlled counterparts will have quite
reasonable quantum logic realizations. The D and E gates
are somewhat more expensive. As noted earlier, while the
procedure and examples are given for the ternary case, the
work is readily extended to higher radices.

Finally, the synthesis algorithm presented here is greedy
and heuristic. We are extending the approach to use back-
tracking to further improve the quality of the solution. We

are also considering an approach which does not necessarily
process the input/output patterns in order.

References

[1] Al-Rabadi, A., “New Multiple-Valued Galois Field
Sum-of-Product Cascades and Lattices for Multiple-
Valued Quantum Logic Synthesis,” 6th International
Symposium on Representations and Methodology of
Future Computing Technologies, March 2003, pp. 171-
182.

[2] Bennett, C., “Logical Reversibility of Computation,”
IBM Jour. of Research and Development, 17, 1973, pp.
525-532

[3] De Vos, A., B. Raa and L. Storme, “Generating the
Group of Reversible Logic Gates,” J. of Physics A:
Mathematical and General, 35, 2002, pp. 7063-7078.

[4] Feynman, R., “Quantum Mechanical Computers,”
Optics News,11, 1985, pp. 11-20.

[5] Fredkin, E., and T. Toffoli, “Conservative Logic,”
International Jour. Theoretical Physics, 1982, pp. 219-
253.

[6] Khan, Mozammel H. A., Marek A. Perkowski and
Pavel Kerntopf, “Multi-output Galois Field Sum of
Products (GFSOP) Synthesis with New Quantum
Cascades,” Proc. International Symposium on Multiple-
Valued Logic, May 2003, pp. 146-153.

[7] Landauer, R., “Irreversibility and Heat Generation in
the Computational Process,” IBM Journal of Research
and Development, 5, 1961, pp. 183-191.

[8] Milburn, Gerard J., The Feynman Processor, Perseus
Books, 1998.

[9] Miller, D. M., D. Maslov, and G. W. Dueck, “A
Transformation Based Algorithm for Reversible Logic
Synthesis,” Proc. 2003 Design Automation Conference,
June 2003, pp. 318-323.

[10] Nielsen, M. A., and I. L. Chuang, Quantum
Computation and Quantum Information, Cambridge
Univ. Press, 2000.

[11] Picton, P., “A Universal Architecture for Multiple-
Valued Reversible Logic,” MVL Journal, 5, 2000, pp.
27-37.

[12] Picton, P., “Modified Fredkin Gates in Logic Design,”
Microelectronics Journal, 25, 1994, pp. 437-441.

[13] Toffoli, T., “Reversible Computing,” in Automata,
Languages and Programming, Springer-Verlag, pp.
632-644, 1980.

[14] Zhirnov, V. V., R. K. Cavin, J. A. Hutchby, and G. I.
Bourianoff, “Limits to Binary Logic Switch Scaling – A
Gedanken Model,” Proc. of the IEEE, 91, no. 11, 2003,
pp. 1934-1939.

