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Abstract* 

An r-valued m-variable reversible logic function maps 
each of the rm input patters to a unique output pattern.  The 
synthesis problem is to realize a reversible function by a 
cascade of primitive reversible gates. 

In this paper, we present a simple heuristic algorithm 
that exploits the bidirectional synthesis possibility inherent 
in the reversibility of the specification.  The primitive 
reversible gates considered here are one possible extension 
of the well-known binary Toffoli gates. 

We present exhaustive results for the 9! 2-variable 3-
valued reversible functions comparing the results of our 
algorithm to optimal results found by breadth-first search.  
The approach can be applied to general m-variable, r-
valued reversible specifications.  Further, we show how the 
presented technique can be applied to irreversible 
specifications.   The synthesis of a 3-input, 3-valued adder 
is given as a specific case. 

1. Introduction 

A binary or MVL circuit is reversible if it maps each 
input pattern to a unique output pattern.  Landauer [7] 
proved that traditional binary irreversible gates lead to 
power dissipation in a circuit regardless of its 
implementation.  Recently, Zhirnov et al. [14] calculated 
that power dissipation in future CMOS (scaled for the year 
2016 in accordance with the ITRS plan) leads to impossible 
heat removal, and thus the impossibility of speeding up 
CMOS technology devices.  Bennett [2] showed that for 
power not to be dissipated it is necessary that a binary 
circuit be build from reversible gates.  This suggests that 
reversible technologies and the synthesis of reversible 
circuits are potentially very promising areas of study as 
regards further technological advances.  Binary reversible 
circuits have been studied for their potential application in 
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low-power CMOS design, quantum computation [8][10] and 
optical computing.   

This paper addresses the problem of synthesizing an 
MVL reversible specification in terms of basic MVL 
reversible gates.  Practical implementation will require a 
suitable technology for implementation of those gates.  
Possible implementation in quantum technology is 
addressed by the authors in [].  At present, quantum 
implementation is limited to a small number of qubits.  
MVL coding reduces the number of qubits required (lines in 
the circuit) thus allowing for larger specifications in current 
technology. 

We do not elaborate further on technology issues but do 
make the following assumptions:  
(i) fan-out between gates is not permitted;  
(ii) loops are not permitted; and  
(iii) permutation of connections between gates is 

permitted.  
We employ MVL reversible gates that are extensions of 

the binary reversible NOT, Feynman [4] and Toffoli gates 
[13].  The gates considered are those introduced by De Vos 
et al. [3] and simple extensions of those gates. 

The gates considered here are not the only possible MVL 
reversible gates nor are they the only possible extension to 
the Toffoli gate.  Picton [11][12] introduced an MVL 
generalization of the binary Fredkin gate.  Al-Rabadi [1] has 
considered a generalization of the Toffoli gate where XOR 
is replaced by mod-sum.  Khan et al. [6] have considered 
several MVL (ternary) reversible gates.  The set of gates we 
use here is of interest because of its relative simplicity and 
consistency and because preliminary investigations indicate 
that implementation should be relatively efficient.  The 
reader will observe that due to the simple nature of our 
synthesis method it can be extended to other sets of 
primitive reversible gates. 

The methods and examples re presented for simplicity 
presented for the ternary case.  However, it will be clear 
from the simplicity of the synthesis approach presented that 
it is straightforward to apply it to higher-radix logic. 

Synthesis of reversible logic is quite different from 
conventional synthesis. Since loops are not permitted, a 



 

reversible logic circuit can be specified as a simple sequence 
of gates. Further, since fan-out is not permitted, and 
assuming an appropriate technology, a reversible logic 
circuit can realize the inverse specification simply by 
applying the gates in the reverse order.  Hence, synthesis 
can be carried out from the inputs toward the outputs or 
from the outputs toward the inputs.  The method presented 
here synthesizes the circuit by working in both directions 
simultaneously.  In addition, it is advantageous to synthesize 
a circuit for a given specification and also for its inverse 
taking the solution to be the simpler result.  The synthesis 
method presented here is based on the binary method 
developed by the authors in [9] but there are certain novel 
issues to deal with in the MVL case. 

The background on reversible logic necessary for this 
paper is outlined in Section 2.  The interested reader is 
referred to [10] for extensive background.  The MVL 
reversible gates used in this work are described in Section 3. 
Section 4 presents our synthesis algorithm. An example 
illustrating the operation of the algorithm is worked in some 
detail in Section 5.  Experimental results are given in 
Section 6 and an irreversible example, the 3-valued full 
adder, is shown in Section 7.  The paper concludes with 
observations and ideas for further research in Section 8. 

2. Background 

Definition 2.1 An m-input, m-output, (written m×m) 
totally-specified MVL function is reversible if it maps each 
input assignment to a unique output assignment. 

A reversible function thus defines a permutation of the 
input patterns and there are clearly rm! r-valued, m×m 
reversible functions. 

Definition 2.2 An n-input, n-output gate is reversible if it 
realizes a reversible function. 

The synthesis problem is how to realize a given 
reversible specification using a basic set of reversible gates. 

A variety of binary reversible gates have been 
considered.  The common NOT gate realizes a reversible 
function.  Another binary reversible gate is the Fredkin gate 
[5] which has three inputs and three outputs.  The first input 
is passed through unaltered.  The second and third pass 
through unaltered if the first input is 0 and are exchanged if 
the first input is 1. 

There is also the family of Toffoli gates [13] defined as 
follows: 

Definition 2.3 An n×n Toffoli gate passes the first n-1 
lines (control) through unchanged, and inverts the nth line 
(target) if the control lines are all 1. 

The 2×2 Toffoli gate and the 3×3 Toffoli gate have been 
named the controlled-NOT (Feynman) and controlled-
controlled-NOT gates, respectively. 

3. MVL Reversible Gates 

A. De Vos et al. [3] have considered the cycle and 
negation operations in Table 1, denoted C1 and N 
respectively, and the controlled versions of those gates, 
denoted CC1 and CN, given in Table 2, as generators of the 
group of all 2×2 3-valued reversible logic functions.  The 
notation used here is that symbols such as x and y denote the 
line values on one side of a reversible gate while x+ and y+ 
denote the corresponding values on the other side of the 
gate. 

x 
C1 

x+ 
N 

x+ 
0 1 2 
1 2 1 
2 0 0 

Table 1 

 
x 

 
y 

CC1 
x+      y+ 

CN 
x+      y+ 

0 0 0 0 0 0 
0 1 0 1 0 1 
0 2 0 2 0 2 
1 0 1 0 1 0 
1 1 1 1 1 1 
1 2 1 2 1 2 
2 0 2 1 2 2 
2 1 2 2 2 1 
2 2 2 0 2 0 

Table 2 

gates C1-
CN 

C1 
CC1-CN 

C1-N 
CC1-CN 

C1-C2-N
CC1-CC2-CN 

0 1 1  1 1 
1 4 6 8 12  
2 13 31 52 93 
3 39 130 280 597 
4 115 498 1,342 3,224 
5 326 1,777 5,692 15,042 
6 897 5,924 20,992 57,951 
7 2,395 18,089 63,292 144,039 
8 6,107 47,849 128,159 127,056 
9 14,660 99,576 118,635 14,750 

10 32,268 126,981 23,516 115 
11 62,145 58,192 906  
12 96,237 3,795 5  
13 97,705 31    
14 43,902     
15 5,816     
16 243    
17 7     

Avg. 11.97 9.39 8.11 7.16 
Table 3 



 

 
x 

C2 
x+ 

0 2 
1 0 
2 1  

 
x 

 
y 

CC2 
x+      y+ 

0 0 0 0 
0 1 0 1 
0 2 0 2 
1 0 1 0 
1 1 1 1 
1 2 1 2 
2 0 2 2 
2 1 2 0 
2 2 2 1  

Table 4 

We have written a program to determine the number of 
gates for circuits realizing the 9! = 362,880 2×2 3-valued 
reversible logic functions for different sets of basic 
reversible gates. The program performs a breadth-first 
search so the first circuit found for each function uses the 
minimal number of gates.  Results are shown in Table 3. 

Cyclic inversion (C1) together with controlled negation 
(CN) is the only operation pair that can realize all 362,880 
functions.  As shown, the circuits can be quite long.  
Adding, controlled cycle (CC1) and negation (N) in turn 
both improve the results.  The latter is the set of operators 
suggested by De Vos et al. [3]. 

The rightmost column in Table 3 shows the further 
improvement gained by adding cycle by 2 (C2) and 
controlled cycle by 2 (CC2) defined in Table 4.  Clearly, N 
and CN are self-inverse.  C1 and C2 are the inverse of each 
other.  Hence, CC1 and CC2 are the inverse of each other. 

Negation can be extended to any r-valued logic as x = 
(r-1)-x.  There are r-1 cyclic inversions for r-valued logic 
defined in the obvious way.  Controlled cycles and 
controlled negation can be generalized to the n×n cases for 
r-valued logic as specified in the following definition. 

Definition 3.1 An n×n r-valued controlled unary gate 
passes the first n-1 lines (control) through unchanged, and 
applies a specified operation to the nth line if the control 
lines are all r-1, otherwise the target line is passed through 
unaltered. 

The Fredkin gate can clearly be extended to the MVL 
case, but we do not consider that in this paper. 

4. A Synthesis Method 
An m×m reversible MVL specification is a mapping 
 :F Q Q→   

where Q is the set of mr m-tuples of r values.  We only 
consider the totally-specified case in this paper.  As F is 
reversible, there is of course a corresponding inverse 
mapping 

 1 :F Q Q− →  
  

x 
D 

x+ 
E 

x+ 
0 0 1 
1 2 0 
2 1 2 

Table 5 

We will write ( )F =x y (conversely 1( )F− =y x ) 
where , Q∈x y and shall denote the elements of Q  as the 
ordered set { }0 1 1, , , mrq q q −… hence iq is the m-ary r-valued 
expansion of i. 

Our synthesis method operates by finding a sequence of 
MVL reversible gates whose effect is to transform F (and 
of course 1F− ) to the identity mapping.  It is based on the 
binary synthesis approach we developed in [9]. 

There are two aspects of our approach which must be 
noted at this point.  First while the discussion so far has 
assumed control values are always r-1 (2 for ternary), our 
algorithm allows control values to be any value ≠ 0.  The 
reason will become obvious in the description of the 
algorithm.  Extra cycles or negations can always be inserted 
so that only r-1 control values are necessary, but we 
anticipate that in many implementations of the basic 
reversible gates, arbitrary control values will be available.  
This extension leads to the following: 

Definition 4.1 A generalized n×n r-valued controlled 
unary gate passes the first n-1 lines (control) through 
unchanged, and applies a specified operation to the nth line if 
each of the control lines equals the control value 
( 0 v r< < ) specified for that line; otherwise the target line 
is passed through unaltered. 

Also, because our algorithm processes the specification 
in a fixed order, we need an additional operation D (see 
Table 5) which we assume is also available as a controlled 
gate. 

Definition 4.2 Given a reversible specification F, the 
distance between F and the identity is given by 

 
1

0
( ) ( , ( ))

mr

j j
j

F q F qδ
−

=
∆ = ∑  

where for two r-valued m-tuples a and b 

 
1

0
( , ) | |

m

k k
k

a b a bδ
−

=
= −∑  

Synthesis Procedure 
Input: reversible specification 0F  
Output: an ordered set of gates mrG  that implements the 
initial reversible specification 
1. i = 0 and 0G φ=  
2. if ( ( )i i iF q q= ) skip to step 9 
3. let S  = ordered set of gates to map ( )i iF q  to iq  
4. let T = ordered set of gates to map 1( )i iF q−  to iq  
5. for j = 0 to i set 1( )i j jF q q+ =  



 

 
6. if |S| < |T| 
 (a) for j = i+1 to 1mr − set 1( )i jF q+ the result of 

applying the gates in S (in order) to ( )i jF q  
 (b) set 1iG +  to 1 0| , ,iG S S< >…   (note | denotes 

concatenation) 
7. if |S| > |T| 
 (a) for j = i+1 to 1mr − set 1

1( )i jF q−
+ the result of 

applying the gates in T (in order) to 1( )i jF q−  
 (b) set 1iG +  to 0 1, , | iT T G< >…   
8. if |S| = |T| we apply either 6(a) and (b) or 7(a) and (b) 

whichever yields the smallest ( )iF∆  (in the event of a 
tie, 6(a) and (b) are applied) 

9. i = i + 1 
10.  if ( 1mi r< − ) go to step 2 

 
The following notes clarify the steps of the algorithm. 

1. Initialization step. 
2. If ( )i iF q q=  no transformation is required for this 

pass. 
3. The gates to map ( )i iF q  to iq are chosen to (a) 

minimize the number of gates and to (b) ensure that 
when they are applied they have no affect for any j < i.  
The actual procedure for choosing the gates is given in 
detail below. 

4. This is analogous to step 3 but is being applied in the 
opposite direction. 

5. Due to the gate selection process 1iF + is identical to 
iF for 0q to iq . 

6., 7. and 8. S is a set of gates that map an output pattern to 
match the corresponding input pattern.  T is a set of 
gates that map that input pattern to match the output 
pattern.  The algorithm selects the smaller set and in the 
case of a tie the set that results in a specification with 
smallest distance to the identity mapping.  Note that 
gates mapping an output pattern to match the input 
pattern are appended to the end of G  and in reverse 
order (step 6b).  Conversely, gates mapping an input 
pattern to match the output pattern are appended to the 
beginning of G in order. 

9. and 10. are iteration control. 
The key to the synthesis algorithm is the selection of a set 

of gates to map an m-tuple kq to another iq .  By 
construction, k > i.  Also, the gates must be chosen so that 
they have no affect on any ,jq j i< .  Both of these 
stipulations arise from the fact the algorithm goes through 
the specification in order.  The gate selection subprocedure 
is given below in terms of a generic reversible specification 
F which of course can be the inverse of another 
specification. 

 
 
 

 
Gate Selection Subprocedure 
Input: a reversible specification F and an i for which we 

want to select gates to transform ( )iF q to iq  
Output: an ordered set of gates G performing the required 

transformation 
1. For ease of notation let a = ( )iF q  and let b = iq . Set 
G φ= . 

2. k = 0 
3. if ( k ka b= ) skip to step 6 
4. Select a gate g that transforms ka to kb with control 

values (if needed) being the smallest number of 
, ,pa p k≠ so that the value of the control set when 

treated as a single value is b≥ .  The gate chosen in the 
event of a choice is the one that yields a transformed 
specification tF  such that ( )tF∆ is minimal. 

5. set G  to |G g  
6. 1k k= +  
7. if(k m< ) go to step 3 

 

Step 4 is the core of the above procedure.  A difference 
between the binary and the MVL situations is the variety of 
choice for mapping one value to another.  For example, the 
case for ternary (r = 3) is shown in Table 6.  In the event 
there is a choice in constructing the control set, we choose 
higher control values. 

It is very important to note that in Table 6 we do not use 
C1 for 1 → 2 or C2 for 2 → 1 as these would always modify 
an entry earlier in the specification.  This is an artifact of our 
simple algorithm processing the specification in order.  We 
include E in Table 6 for completeness but note that it is not 
used in our current implementation. 

We can further exploit reversibility by applying the 
algorithm to F and then to F-1.  Even though the algorithm 
itself exploits reversibility, it is heuristic and applying it to 
both the original and the inverse can produce a different 
circuit.  The circuit for F-1 can of course simply be applied 
in reverse to realize F. 

Both the synthesis and gate selection procedures are 
greedy in that they make choices to optimize the circuit 
based on only local information.  No backtracking or look-
ahead is used. 

transform choic
e 

0 → 1 C1, E 
0 → 2 C2, N 
1 → 0 C2, E 
1 → 2 D 
2 → 0 C1, N 
2 → 1 D 

Table 6 



 

5. Example 

A trace of a 2-variable, 3-valued example will illustrate 
the operation of the synthesis algorithm.   The initial 
specification is given in Table 7(a).  The choice is to map 
output pattern 21 to 00 or input pattern 21 to 00.  While 
these seem equivalent, they are not.  The synthesis 
procedure chooses to map the input pattern 21 as this yields 
the resulting specification with smaller ( )F∆ .  The gates 
required are N(x) and C2(y).  The resulting specification is 
given in Table 7(b) with bold type denoting the changes 
which in this case are to the input. 

 
(a) (b) (c) 

xy x+y+ xy x+y+ xy x+y+ 

00 21 22 21 22 22 
01 20 20 20 20 20 
02 22 21 22 21 21 
10 12 12 12 12 12 
11 10 10 10 10 10 
12 11 11 11 11 11 
20 02 02 02 02 02 
21 00 00 00 00 00 
22 01 01 01 01 01 

Table 7 

The entries 00, 01, …, 20 are properly aligned.  The next 
choice is to map 21 to 22 on either the input or the output 
side.  Both require a single gate which is a controlled D 
applied to y with control x = 2.  The resulting specification 
is given in Table 7(c) and is the identity so the process is 
complete.  The circuit is shown in Figure 1. 

 
 

 

Figure 1 

6. Experimental Results 

We have implemented the synthesis method described in 
Section 4 in C.  Even on a 750MHz PC with 256MB RAM 
running Windows XP, the computation time for functions of 
a few variables is negligible.  The exhaustive enumeration 
described below takes a few minutes. 

We have applied our synthesis algorithm to the 9! = 
362,880 2×2 3-valued reversible logic functions.  The 
results are shown in Table 8.  As noted above, the algorithm 
allows control values of 1 and 2, and uses D operations.  E 
operations are not used.  The Table shows the results for 
applying the algorithm to F only, and the results for 
applying the algorithm to F and F-1 and taking the shortest 

circuit. For comparison, we include the optimal results 
found by breadth-first search when control values of 1 and 
2, and D operations are permitted. 

 
gates Algorithm

F Only 
Algorithm 

F and F-1 
Optimal 

0 1 1 1 
1 24 24 24 
2 301 315 335 
3 2,395 2,593 3,407 
4 11,743 12,954 25,255 
5 34,755 39,061 114,095 
6 72,217 80,699 187,569 
7 97,192 103,663 32,173 
8 81,978 79,099 21 
9 43,886 34,338  

10 14,849 8,612  
11 3,246 1,437  
12 293 84  

Avg. 7.11 6.92 5.60 
Table 8 

7. Irreversible Example 

We present the case of a 3-valued full adder as an 
example of applying the above reversible logic synthesis 
technique to an irreversible specification.  The full adder has 
three inputs 0 1 2, ,x x x and two outputs which are the sum 
and carry defined in the obvious way (Table 9). 

To apply the above methods to this specification we must 
embed it in a larger reversible specification.  Looking at the 
truth table for the full adder we see that output pattern 10 
appears 7 times.  Since all the output patterns in the 
reversible specification must be unique, this requires we add 
at least two ‘garbage’ outputs.  The term garbage refers to 
the fact those outputs are not part of the useful output set.  

The reversible specification must have the same number 
of inputs and outputs, so we must add at least one ‘constant’ 
input 3x which we add as the most significant entry in the 
truth table and which we define so that setting it to 0 yields 
the correct sum and carry functions. 

The difficult part is how to define the two garbage 
outputs so that the resulting specification is reversible and to 
minimize the resulting circuit.  We draw upon our 
experience of the full adder in the binary case [9].  The 
reversible specification is given by 

 

0 1 20

1 21

22

0 1 2 33

( , , )

( , , )

x sum x x x

x x x

x x

x carry x x x x

+

+

+

+

=

= ⊕

=

= ⊕

  



 

where ⊕ denotes sum mod-3.   Note that the ordering of the 
outputs is important and that the two garbage outputs are 
placed between the sum and carry.  The circuit only 
produces the correct carry when 3 0x = .  Choosing the best 
output ordering is in general difficult.  Here it was done by 
inspection.  Our synthesis algorithm is sufficiently fast that 
for small problems, one could consider all possible output 
permutations.  How to choose an output order for a large 
problem is an open question. 

Applying the synthesis method described above to the 
specification given by (3) yields the circuit shown in Figure 
2.  Sixteen gates are required.  Each shows the type of gate, 
the target line and any control lines and values applicable.  
The algorithm gives 27 gates for the inverse specification. 

8. Conclusion 

This paper introduces a simple heuristic algorithm for the 
synthesis of MVL reversible circuits composed of MVL 
reversible gates based on the ideas of De Vos et al. [3] that 
are one possible generalization of binary Toffoli gates [13].  
While the initial results are quite promising there is 
considerable need and scope for further research. 

 
2x  1x  0x  carry  sum  

0 0 0 0 0 
0 0 1 0 1 
0 0 2 0 2 
0 1 0 0 1 
0 1 1 0 2 
0 1 2 1 0 
0 2 0 0 2 
0 2 1 1 0 
0 2 2 1 1 
1 0 0 0 1 
1 0 1 0 2 
1 0 2 1 0 
1 1 0 0 2 
1 1 1 1 0 
1 1 2 1 1 
1 2 0 1 0 
1 2 1 1 1 
1 2 2 1 2 
2 0 0 0 2 
2 0 1 1 0 
2 0 2 1 1 
2 1 0 1 0 
2 1 1 1 1 
2 1 2 1 2 
2 2 0 1 1 
2 2 1 1 2 

2 2 2 2 0 
Table 9 

 
In earlier binary work [9], we presented a similar 

heuristic algorithm and then gave a template-based 
reduction procedure that can significantly reduce the size of 
the circuit.  We are currently working on templates for the 
MVL case.  Also, while we were able to find quite a 
reasonable circuit for a ternary full adder as a reversible 
circuit, work is needed to identify a general procedure for 
embedding an irreversible specification within a larger 
reversible specification so that the resulting reversible 
circuit is minimal, or at least near-minimal.  This is an open 
question for both binary and MVL problems. 

 
 
 

 
 

C1(x3;x0=2;x1=1) 
C1(x3;x0=2;x1=2) 
C1(x3;x0=2;x1=2;x2=2) 
C2(x3;x1=2;x2=2) 
C2(x3;x0=2;x1=1;x2=2) 
C2(x3;x1=1;x2=2) 
C2(x3;x0=2;x2=2) 
C1(x1;x2=2) 
C2(x3;x0=2;x1=2;x2=1) 
C2(x3;x1=2;x2=1) 
C1(x3;x0=2;x1=1;x2=1) 
C2(x3;x0=2;x2=1) 
C2(x1;x2=1) 
C2(x3;x0=1;x1=2) 
C1(x0;x1=2) 
C2(x0;x1=1) 

Figure 2 

The basic reversible gates considered here are only one 
possible generalization of Toffoli gates, and there are many 
other MVL reversible gates that could be considered.  We 
next plan to consider MVL generalizations of the Fredkin 
gate [5].  Mod-sum based reversible gates may also be 
considered. 

Application of this work depends on the efficient 
realization of the basic reversible gates in a suitable 
technology.  Our studies reported in [] show that the C1, C2 
and N gates and their controlled counterparts will have quite 
reasonable quantum logic realizations.  The D and E gates 
are somewhat more expensive.  As noted earlier, while the 
procedure and examples are given for the ternary case, the 
work is readily extended to higher radices. 

Finally, the synthesis algorithm presented here is greedy 
and heuristic.  We are extending the approach to use back-
tracking to further improve the quality of the solution.  We 



 

are also considering an approach which does not necessarily 
process the input/output patterns in order. 
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