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Reversible Cascades With Minimal Garbage
Dmitri Maslov and Gerhard W. Dueck, Member, IEEE

Abstract—The problem of minimizing the number of garbage
outputs is an important issue in reversible logic design. We start
with the analysis of the number of garbage outputs that must be
added to a multiple output function to make it reversible. We give
a precise formula for the theoretical minimum of the required
number of garbage outputs. For some benchmark functions, we
calculate the garbage required by some proposed reversible design
methods and compare it to the theoretical minimum. Based on the
information about minimal garbage, we suggest a new reversible
design method that uses the minimum number of garbage outputs.
We show that any Boolean function can be realized as a reversible
network in terms of this new approach by giving the theoretical
method of finding such a network. Using a heuristics synthesis
approach, we create a program and run it to compare results of
our synthesis to the previously reported synthesis results for the
benchmark functions with up to ten variables. Finally, we show
that the synthesis for the proposed model can be accomplished
with lower cost than the synthesis of EXOR programmable logic
arrays.

Index Terms—Logic synthesis, minimal garbage, quantum com-
puting, reversible logic.

I. INTRODUCTION

ENERGY loss is an important consideration in digital de-
sign. Part of the problem of energy dissipation is related to

nonideality of switches and materials. Higher levels of integra-
tion and the use of new fabrication processes have dramatically
reduced the heat loss over the last decades. The other part of the
problem arises from Landauer’s principle [9] for which there
is no solution. Landauer’s principle states that logic computa-
tions that are not reversible, necessarily generate heat
for every bit of information that is lost, where is Boltzmann’s
constant and the temperature. For room temperature the
amount of dissipating heat is small (i.e., joule), but
not negligible. The design that does not result in information
loss is called reversible. It naturally takes care of heating gen-
erated due to the information loss. This will become an issue as
the circuits become smaller.

Reversible logic has applications in nanotechnology,
quantum computing, low power CMOS, optical computing, and
DNA computing. One of the important applications of the re-
versible logic is quantum computation. Quantum computations
are known to solve some exponentially hard problems in poly-
nomial time [15]. All quantum computations are necessarily
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reversible. Therefore, research of reversible logic is beneficial
to the development of future quantum technologies: reversible
design methods might give rise to methods of quantum circuit
construction, resulting in much more powerful computers and
computations.

Most gates used in digital design are not reversible. For
example the AND, OR, and EXOR gates do not perform reversible
operations. Of the commonly used gates, only the NOT gate is
reversible. A set of reversible gates is needed to design reversible
circuits. Several such gates have been proposed over the past
decades. Among them are the controlled-not (CNOT) proposed
by Feynman [3], Toffoli [20], and Fredkin [4] gates. These
gates have been studied in detail. However, good synthesis
methods have not emerged. Shende et al. [17], [18] presented
an exhaustive method that produces a minimal circuit with up
to three input variables. In addition they presented a synthesis
method for larger functions that relies on gate libraries. Iwama
et al. [5] describe transformation rules for CNOT-based circuits.
These rules may be of use in a synthesis method. Miller [11]
uses spectral techniques to find near optimal circuits. Results
were reported for three and four variable reversible functions.
Mishchenko and Perkowski [14] suggest a regular structure
of reversible wave cascades and show that such a structure
would require no more cascades than product terms in an ESOP
realization of the function. In fact, one would expect that a
better method can be found. The algorithm sketched in [14]
has not been implemented. A regular symmetric structure has
been proposed by Perkowski et al. [16] to realize symmetric
functions. Khan and Perkowski [6], [7] introduce a new family
of gates and describe a synthesis method for this new family.
The aim of their method is to minimize the gate count.

Traditional design methods use, among other criteria, the
number of gates as complexity measure (sometimes taken
with some specific weights reflecting the area of the gate).
From the point of view of reversible logic, we have one more
factor, which is more important than the number of gates used,
namely, the number of garbage outputs. Since reversible design
methods use reversible gates, where the number of inputs is
equal to the number of outputs, the total number of outputs of
such a network will be equal to the number of inputs. Some
methods [6], [7], [14] propagate the input information to the
outputs, therefore introducing constant inputs and garbage
outputs—information that is not needed for the computation.
In some cases, garbage is unavoidable. For example, a single
output function of variables will require at least
garbage outputs, since the reversibility necessitates an equal
number of outputs and inputs.

The importance of minimizing the number of garbage outputs
is illustrated with the following example. Say we want to realize
a five-input three-output function as a reversible circuit for a
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quantum computer, but the design requires seven additional
garbage outputs, resulting in a ten-input ten-output reversible
function. In 2003, the best quantum computer we have is a
seven qubit computer [1], therefore it will not be possible to
implement such a design. In other words, in case of choosing
between increase of the number of garbage outputs and increase
of the number of gates to be used in a reversible implementation,
the preference should be given to the design method delivering
the minimum garbage. In this case, we will be able to build
the device, while it is impossible with the other method.

We propose a structure and a systematic design method that
require the minimal number of garbage outputs. This work
focuses on analyzing the conditions for minimal garbage, and
introduces and analyzes the model. The synthesis of reversible
functions differs from the conventional logic synthesis, the
following restrictions apply: fanout and feedback are not per-
mitted [15].

The results of this paper may be applied in any of the tech-
nologies that support reversible computations. However, in a
few places, we mention quantum technologies as information
on it is easily accessible, which makes it possible to do some
calculations that help to estimate the real cost of an implemen-
tation. Our algorithm would only be applicable to quantum min-
imization if the set of building blocks is restricted to Toffoli
gates. Additional concerns might be of interest for quantum
computing, in particular minimizing the critical path gate count.
In general, the paper is not tied to any specific technology.

The remaining part of the paper is organized as follows. In
Section II, we give basic definitions of reversible logic theory.
In Section III, we analyze conditions for minimal garbage
and inspect the number of garbage bits in existing reversible
synthesis methods of multiple output functions. We introduce
a new reversible synthesis model in Section IV and show some
theoretical results, such as a regular synthesis procedure. The
theoretical synthesis method is likely to produce large circuits.
Therefore, a heuristic synthesis method is developed and tested
on some benchmark functions in Section V. We conclude the
paper by showing that the optimal reversible synthesis in our
model is beneficial in comparison to the synthesis of EXOR

polynomials.

II. BASIC DEFINITIONS

Definition 1: The -input, -output Boolean function
(referred to as function) is called

reversible if: 1) the number of outputs is equal to the number
of inputs and 2) each input pattern maps to a unique output
pattern.

In other words, reversible functions are those that perform
permutations of the set of input vectors. We illustrate the need
for garbage outputs and/or constant inputs with the following
example.

Example 1: Consider function (where concate-
nation denotes the logical AND operation). It is impossible to
make it reversible by adding a single output. One of the ways to
make it reversible is adding one input and two outputs so that
the function becomes as shown in Table I. The output vector of
the desired function can be observed in the third output column

TABLE I
REVERSIBLE FUNCTION COMPUTING THE LOGICAL AND

of the table when the value of variable (shown in bold
font). To realize the function, the input must be the constant
zero, and two garbage outputs are present. The Toffoli gate [20]
realizes this function.

The previous example shows the necessity of adding inputs
and/or outputs to make a function reversible. This leads to the
following definition.

Definition 2: Garbage is the number of outputs added to
make an function reversible.

Our definition of garbage differs from [4], [6], [7], and [14],
where the set garbage outputs does not include the inputs of the
function if they are passed unchanged. However, for the anal-
ysis in this paper, our definition is more practical. Let us illus-
trate this with the following example. Given information on the
number of garbage outputs and the number of outputs of the
function, with our definition the total number of variables can be
easily found. In terms of the other garbage definition the values
of the outputs and garbage bits have to be computed for all pos-
sible inputs in order to calculate the total number of variables in
the circuit.

We use the term “constant inputs” to denote the inputs that are
added to an function to make it reversible. In the previous
example, a single constant input was added, namely the variable

. The meaning of the prefix “constant” of the term is easy to
see from the same example. The target output is realized when
the constant input is 0.

The following simple formula shows the relation between
garbage outputs and constant inputs:

input + constant inputs = output + garbage bits

There are many ways of making a multiple-output Boolean
function reversible, each requiring a different number of
garbage outputs to be created. We start by analyzing the condi-
tions for the number of garbage outputs. We analyze the number
of garbage bits for existing synthesis methods. A conclusion of
this analysis can be summarized in a few words: the number
of garbage is excessive, therefore, a different approach/model
should be created. There are some restrictions on the new
model. First, and very important, is few garbage outputs (in
fact, it will be the theoretically minimum number). Second,
the model gates should have a reasonable cost if implemented
in at least one of the technologies that support reversible logic
implementations. Finally, the results of the actual synthesis
should not be large in comparison to the other synthesis method
results. If such a model is created, it may be very important
for evolving further reversible logic theory and bringing its
theoretical results to an actual technology.
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Fig. 1. Two reversible design structures. (a) Reversible wave cascades. (b) RPGA.

III. MINIMAL GARBAGE

Before we analyze the number of garbage outputs in other
models, we need to show a formula to calculate the minimum
number of garbage bits required for any reversible synthesis pro-
cedure independently of its nature.

Theorem 1: For an function the minimum number of
garbage bits required to make it reversible is , where

is the maximum of number of times an output pattern is
repeated in the truth table.

Proof: The output of a reversible function is a permutation
of its input. Therefore, the obstacle in having a multiple-output
function being reversible is that some output pattern appears
more than once. In order to separate these outputs, we have to in-
troduce new inputs to assign additional bits to the output vector.
If an output has the largest occurrence in the
output vector and it appears times, then in order to sepa-
rate different occurrences of it we need to introduce
new output bits. new bits will be capable of creating

new patterns. Since the output
had the largest occurrence among all other outputs, all other
outputs can be easily separated from one another by means of

bits.

A. Analysis of Garbage in Existing Methods

In this section, we analyze number of garbage bits in proposed
reversible designs for nonreversible multiple-output functions.
Several of the proposed design methods (for example, [8], [17],
[18], and [11]) start with a reversible function, we will not deal
with them. The garbage bits are introduced in a preprocessing
phase, during which the function is made reversible. Note that
there are many ways in which the value of the garbage out-
puts can be set. Different settings of these variables will lead
to results with varying complexity. Below, we concentrate on
the analysis of the garbage in reversible synthesis methods for
multiple output functions.

Mishchenko and Perkowski [14] suggest a reversible wave
cascade. The design is shown in Fig. 1(a). For the purposes
of garbage analysis, here, we concentrate only on the number
of garbage outputs added. Trivial analysis of the number of

TABLE II
NUMBER OF GARBAGE OUTPUTS IN DIFFERENT MODELS

garbage bits shows that in the proposed model the garbage size
will be , where is the number of inputs of the mul-
tiple output function and is the number of cascades (Maitra
terms) in the particular realization of a function.

Perkowski et al. [16] suggest a regular structure for a sym-
metric function-reversible design, called reversible pro-
grammable gate array (RPGA) [Fig. 1(b)]. The synthesis for
a symmetric function, as it is easy to see from the structure
Fig. 1(b), will require a number of garbage bits that is equal to
the sum of the number of inputs and the number of gates used
(additional wires are reserved for the outputs), which gives

Khan and Perkowski [6], [7] propose a method that has a
similar structure to the one described in [14]. The synthesis
and garbage results for these methods are essentially the same,
although later work has, on average, worse results both in the
number of gates and the number of garbage bits.

We calculated the number of garbage bits in the proposed
models for some benchmark functions. Table II summarizes
the result for the methods suggested in [7], [14], and [16] for
some benchmark functions used in [14]. The first column shows
the name of the function, the second and third are the num-
bers of input and output bits, respectively. The fourth column
(RWCG) is the number of garbage bits in the wave cascade
model. Column RPGAG shows the number of garbage bits for
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Fig. 2. Horizontal line types.

the RPGA method given by the formula described above. Since
every nonsymmetric function can be made symmetric by adding
new outputs, the procedure of making the function reversible
can be done prior to the usage of the algorithm as suggested
by Perkowski et al. [16]. In general, such a procedure requires
many additional inputs, each resulting in a high garbage price
for their introduction. In cases where the function is not sym-
metric, we use the sign “ ” to represent that the actual garbage
output count is higher. Numbers in the sixth column (KPG) rep-
resent the garbage cost for the Khan family gates synthesis. The
seventh column shows the maximal output occurrence, the log-
arithm of which added to the function input size forms the last
column: the minimal number of garbage bits to be added to
make the corresponding function reversible.

We conclude this section with the observation that all three
regular methods analyzed have garbage that is far from the theo-
retical minimum. In the next section, we introduce a new regular
structure with better garbage characteristics; in fact, the number
of garbage outputs is the theoretical minimum.

IV. NEW STRUCTURE: REVERSIBLE CASCADES

WITH MINIMAL GARBAGE

A. Definition of the Model

We consider the set of model gates which is based on the gen-
eralized Toffoli gate with additional negated controls. We use
the same pictorial representation, and take -gates, where
each horizontal line is one of the following four types (Fig. 2):

1) Target line: Each gate has a single target line appearing at
some position .

2) Positive control line: If the input on this line is zero, the
value of the target line will not change. If the input is
one, the other positive/negative control lines determine
whether the value on the target line is negated.

3) Negative control line: If the input on this line is one, the
value of target line will not change. If it is zero, the re-
maining positive/negative control lines determine whether
the value on the target line is negated.

4) Don’t care line: The value on this line does not affect any
output.

The vertical line intersects horizontal lines of types 1–3.
In other words, for the given set of inputs ,
the subset of variables , integer

, , and a set of
Boolean numbers the family

consists of gates that leave all the bits unchanged, except for
the th bit, whose value is . If the term

consists of zero variables, we assign it a value
of 1.

The graphical representation of a gate is shown in Fig. 3.

Fig. 3. Single gate.

TABLE III
TRUTH TABLE FOR EXAMPLE 2

Fig. 4. Circuit used in Example 2.

The network we want to build is a cascade consisting of the
set of described gates.

Example 2: Take a reversible function
(output is written as a set of minimal length

EXOR polynomials). The fact that the function is reversible is
easy to see from its truth table shown in Table III. A possible
implementation is shown in (Fig. 4).

Further, we refer to this model as reversible cascades with
minimal garbage (RCMG).

B. Quantum Cost Analysis

Quantum technology (technologies) is one of several tech-
nologies that uses reversible gates and computations. So, it is in-
teresting to analyze the generic quantum cost of the introduced
model to see whether and how it differs from the costs of the
gates used by other models.

Quantum transformations are necessarily reversible, this fol-
lows from the only condition used to determine whether a trans-
formation can be accomplished: it must be a unitary operator on
the set of amplitudes [15]. This condition does not imply how
difficult it is to realize a given unitary transformation; it only
states the theoretical possibility. In this paper, we refer to the
quantum cost as the number of one- or two-qubit controlled-V
operations needed to construct the proper gate (see [2] and [15]
for more information). This is only a generic definition that
gives us a crude approximation of the actual cost.

In conjunction with reversible logic synthesis, the following
transformations can be realized as one gate with unit-quantum
cost:

• NOT gate (also known as quantum X gate). For Boolean
values it acts as the conventional NOT gate.

• CNOT gate, which acts as . In other words,
in the Boolean case, it flips if and only if .
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Fig. 5. Pruned circuit was obtained by eliminating adjacent NOT gates from
the circuit shown in Fig. 4.

The set of gates of NOT and CNOT is not complete since they
only realize linear functions. Thus, in order to make the set
complete (as a set of Boolean operators), the Toffoli gate [20],

was added. Unfortunately, this gate cannot
be realized as a single one-bit or controlled-V operation. A
quantum realization with cost 5 was found, and it is likely
that this is the minimum. The more controls a generalized
Toffoli gate has, the higher its cost in terms of the number of
elementary quantum transformations required.

The problem of building quantum blocks to realize the Toffoli
gates was investigated by many authors. For a comparison of
quantum costs of the Toffoli and RCMG model gates, we will
use the results from [2]. For other implementations, the costs
can easily be recalculated.

Definition 3: The quantum cost of a gate , is the
number of basic operations (one-bit and controlled-V type [2])
required to realize the function given by .

No particular realization of a gate (for most of the gates) was
proven to be optimal, so the numeric value of the quantum cost
may change as soon as better gate realizations are proposed.

To analyze the quantum cost of an RCMG model gate, we
suggest starting with its simplification, and then comparing its
cost to the cost of a generalized Toffoli gate. Note that an RCMG
model gate can be considered as a generalized Toffoli gate and
a set of NOT operations. First, we should try to minimize the
number of NOTs in the circuit.

The following method of eliminating NOT gates from the
structure can be used. In some designs, like the one shown in
Fig. 3, two NOT gates may be adjacent. Therefore, they are re-
dundant. For the example shown in Fig. 4, pruning such NOT
gates gives the design shown in Fig. 5. In general, we divide any
gate from the set into three logical parts:

• first NOT array: the set of all NOT gates before the vertical
line;

• AND-EXOR array (the generalized Toffoli gate): the set of
all AND and EXOR gates on the vertical line;

• last NOT array: the set of all remaining NOT gates.
The general rule for pruning NOT gates is as follows.

1) Define TEMP array as an array of NOT gates of length ,
such that there is at most one NOT gate in each position.
Initially, no NOT gate is present in the TEMP array.

2) Starting from the beginning of a particular network, keep
NOTs from the first NOT array of a first gate to-
gether with the next AND-EXOR array and call this structure
a block. The last NOT array of gate is called TEMP.
If was one of , add it to TEMP.

3) Take the next gate from the network. If
update the TEMP array by computing

its exclusive or with the first NOT array of that is,
keep the modulo-2 sum of number of NOTs at each wire.
If the NOT gate from the TEMP array meets a target line

TABLE IV
GATE-COST COMPARISON

or a “don’t care” line, it can be passed through the gate,
so delete these occurrences from the TEMP array and add
them to the output array of the gate. Unite the TEMP
array with the AND-EXOR array (create a new block), let

and go to step 2. If the gate was one of
gates , update TEMP array by computing
the “exclusive or” of TEMP with , let and
go to step 2.

4) When the last gate in the network is reached, create the
last block by attaching the TEMP array.

It is easy to see that the network consisting of the described
blocks is equivalent to the network built from the gates . The
number of blocks of the pruned network is the number of gates
of the initial -network minus the number of gates from the
set of this -network plus the TEMP array.
Therefore, both the set of NOT gates and the length of the struc-
ture can only be decreased.

The new gate will consist of the NOT array in front of the
Toffoli gate, where the NOTs may appear only in front of the
control lines, which makes it easy to compare the costs. The re-
sult of this comparison is summarized in Table IV. It is important
to notice that the cost of the gate in the new model differs from
the cost of the widely used generalized Toffoli gate only mar-
ginally. For example, the quantum cost of a Khan gate [6], [7]
with controls is equivalent to the cost of the two Toffoli gates,
which, in a rough calculation, should multiply the cost of a cir-
cuit by two when compared to the synthesis results of RCMG
model.

Note that the NOT pruning procedure is post processing, that
does not affect the synthesis.

C. Theoretical Synthesis

In order to formulate and prove some results, we need to enu-
merate the set of all gates considered in the structure. Every gate
can be uniquely specified by describing the set of horizontal
lines. From now on, we will use the notation for
the gate consisting of wire types in order of ap-
pearance from top to bottom.

Lemma 1: The set of all possible gates in the proposed struc-
ture consists of elements.

Proof: Distribute lines among the places we have to
fill in order to define a gate. Initially, there are places for
the target line; after assigning it, there are places left
to be occupied by positive, negative, and “don’t care” lines
to be placed in any combination. The number of ways to
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put them, therefore, is . This gives a total of
different gates.

Theorem 2: (Lower Bound): There exists a reversible func-
tion that requires at least gates.

Proof: The number of all reversible functions of vari-
ables is (as the number of permutations of elements).
The number of different transformations produced by gates of
the set is . Assuming that taking some of the gates
and building networks with different order produces different
reversible functions (which is not always true, since, for in-
stance, two consecutive gates , or do nothing), we
get a complexity for the hardest function of . This
means that there exists a reversible function which can be real-
ized with a complexity not less than . Using the
formula for write

Theorem 3: (Upper Bound): Every reversible function can
be realized with no more than gates.

Proof: We use an idea similar to bubble sorting in our con-
structive proof.

First, note that the set of gates that do not have a “don’t
care” line, i.e., the set

and thereexists a unique interchange the two
output strings

and in
the output part of the truth table (natural numbers 0 and 1 should
be treated as Boolean 0 and 1, respectively). This also means that
a single gate changes the two Hamming distance-one strings in
the output part of the truth table.

Second, we define a special total order on the set of gates.
In this order:

• strings with a fewer number of ones precede (denoted as
) those with a larger number of ones;

• strings with an equal number of ones are arranged in lexi-
cographical order.

In other words, the order is as follows:

. We will also use standard
order on Boolean constants .

The method is to copy the input part of the truth table to the
output part, which corresponds to the situation when no network
is built yet; therefore, the output is equal to the input. Then,
apply operations defined by the gates from the set to bring
each string to its place, starting from the string with the lowest
order and finishing with the string with the highest order.

Take any string and bring it to its place. If the
string is already at its place, we are done. If it is not, then since

we are moving the strings in ascending order, its place is occu-
pied by a string of higher order. This is true, since by induction,
the strings of lower order are already at their places and no string
is repeated. Therefore, the place of is occupied
by a . Compose string

.
Step 1: Increase the order of the target. Take the string

, find minimal , such that and
, and exchange distance-one strings

and . Now, the
place where we wanted to see is occupied
by .
Now, search for the smallest , such that ,
and and when it is found, exchange

with higher order
string .
Continue these changes until we have string

at the desired position of
.

Step 2: Decrease the order of the source. Take the
string , find minimal ,
such that and , and exchange dis-
tance-one strings and

. If the strings
and

are not equal (otherwise, we are done),
and there exists , such

that and . In this case, exchange
strings and

and call last
. Again, in the case of ,

keep decreasing the order by the suggested method
until we get , and then we are
done— is at its place.

Note that in order to bring to its position, we
did not modify strings with lower order, so they will stay at their
correct places. Second, the number of steps (gates) required to
bring any to its correct place equals the sum of
“increase order” and “decrease order” steps, which is not more
than . There are binary strings, so the method requires at
most steps.

Note the constructive proof for this theorem also provides the
following statement. Any reversible function can be realized in
terms of cascades of the gates from set .

Since the functions are reversible, the suggested method can
be used in both directions:

• forward: as it is described in the theorem;
• backward: start with the output part of the truth table, and

using the same method, bring it to the first part (where
all the binary -tuples are ordered lexicographically). The
resulting network in this case will realize the inverse per-
mutation . However, in order to get a network for the
function , it is enough to run the obtained network for

in the reverse direction.

Example 3: We illustrate the proof of the theorem on a (3,3)
function with the output vector (0,1,2,4,3,5,6,7) (Fig. 6). This
function was introduced by Miller and Perkowski, and is used in
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Fig. 6. Building a network.

[11] as a benchmark function. Later on, it was named the Miller
gate. Here, we use the backward method.

1) The first three outputs (0,0,0), (0,0,1), and (0,1,0) are at
the correct place.

2) Output (1,0,0) (shown in gray) is not in its place. The cor-
rect position is occupied by (0,1,1) (where the left arrow
shows). In order to bring (1,0,0) to its place, run steps 1
and 2 from the algorithm.

a) Increase order: interchange (0,1,1) with (1,1,1) (shown
by an arrow from left side).

b) Decrease order: interchange (1,1,1) with (1,0,1).
c) Decrease order: now we can bring (1,0,0) to its place

by changing it with (1,0,1).
Note that in order to bring (1,0,0) to its place we touched
strings with the higher order only [(0,1,1), (1,1,1) and
(1,0,1)].

3) Take the next element in order: (0,1,1). It is not in its place,
so we color it gray, find its desired place and draw an
arrow from the right pointing to the target place.

a) Increase order: interchange (1,0,1) with (1,1,1) (shown
by an arrow from the left side).

b) Decrease order: interchange (1,1,1) with (0,1,1) to put
the output string in its place.

Again, no lower order strings were used:
.

4) Strings (1,0,1), (1,1,0), and (1,1,1) are in their place, so
the network is complete.

The theoretical method uses very wide gates, thus, the
quantum cost of the resulting circuit is expected to be very
high. In addition, it is very likely that the theoretical method
produces large networks. To build better circuits than the
theoretical algorithm possibly can, we use a different synthesis
approach.

V. HEURISTIC SYNTHESIS

Let be the set of all possible gates with inputs. We have
shown that . Given the model for function im-
plementation, the problem of synthesis is to write a function in
terms of a sequence of gates from the set .

We solve this problem using an incremental approach. That
is, we repeatedly choose a gate that will bring us closer to the
desired function. In order to do this, we need to be able to mea-
sure how close two functions are, and we call this the distance
between two functions. We then choose the gate that will de-
crease the distance between the realized function and the target
function. We continue to do this until the distance is zero.

TABLE V
TRUTH TABLE OF f(x ; x ; x ) = (x � �x x ; �x ; x � x x )

TABLE VI
DISTANCE BETWEEN f AND ITS PARTIAL REALIZATION

To give a formal definition of the distance, we need the fol-
lowing definitions.

Definition 4: A partial realization of is any function
of the same set of variables.

Definition 5: The distance between a reversible function
and its partial realization is the Hamming distance between
the output parts of their truth tables (treated as Boolean vectors
of length ).

Definition 6: The error of the function is its distance to
the identity function.

Example 4: For the reversible function
whose truth table is shown in

Table V the error is equal to 14 (error bits are shown in bold).
Example 5: A partial realization

of the reversible function from the previous ex-
ample is at distance 12 (see Table VI) from the target function

defined in Example 2.
The previous two examples have an even number of error bits,

and the number of error one-bits are equal to the number of error
zero-bits. This result holds in general as shown in the following
lemma.

Lemma 2: The error of a reversible function is even. Among
the error bits the number of those equal to one is the same as the
number equal to zero.

Proof: To see that this is correct, we can write down the
truth table of a reversible function and consider a column in the
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output part. Suppose the error in this column occurs in zero-
bits and one-bits. Since the function is reversible, each column
of the output part of the truth table contains zero-bits and

one-bits. Therefore, the chosen column has
zeros (as zero-bits are actually ones and ones are actually
zeros) and ones. This observation results in the
following set of equations:

for which the only solution is . Therefore, the total number
of errors in this column is , an even number. The same
proof can be given for each of output columns, thus, the total
error is an even number.

Note that we actually proved a stronger statement, namely,
the error is an even number in every output column. The other
consequence we can derive is that the distance between a func-
tion and its partial implementation is always an even number. It
is also not hard to see that the number of ones that are out of
place is the same as the number of zeros that are out of place.

Consider the following simple idea for a synthesis method
(it will be used later as a basis for the heuristic synthesis algo-
rithm we try to build): start with the identity function, find a gate
from the set such that when added to the partial realization
will decrease the distance to . Sometimes there is no gate that
decreases the distance to . However, it is always possible to
choose a gate that at least does not increase the distance to .
For an illustration, see Example 6.

Example 6: A reversible function with specification
and the identity function, have the fol-

lowing property. No gate will improve the distance function.
We use the word step to denote the addition of a gate to a

cascade network. Therefore, the number of steps made is the
number of gates in the network. A step is called positive (neg-
ative) if the distance increases (decreases).

Lemma 3 (Existence of Nonpositive Step): If the distance
between and is greater than zero (the partial realization

is not the function itself yet), there exists a gate in that
transforms to such that the distance between and is
less than or equal to the distance between and .

Proof: Let be a string in the output
part of the truth table of some partial realization with an error
in bit (which is assumed to be on the th place without
loss of generality). Interchange it with the distance-1 string

, where . To do so, use the gate
made of line types correspond-
ingly, where the Boolean numbers are treated
as natural numbers. It is easy to see that the gate with this
specification exchanges the named strings and does nothing to
all others. Errors in the first (n-1) bits stay the same, but for
the last bit the following table shows all the possible ways this
interchange could happen (Table VII). So, we get a zero step or
a negative step.

Here, the question arises: is it possible to realize the func-
tion without positive steps? The answer is yes, and the design
method is given in Theorem 3. The proof for this theorem is
constructive and suggests a design procedure. The only thing

TABLE VII
EFFECT OF CHANGING ONE BIT

that is left to prove is that the steps “Increase order” and “De-
crease order” are nonpositive. Indeed, the essence of each of
these steps is to put a correct bit (0 for “Increase order” and 1
for “Decrease order” steps) in its place. The Lemma above states
that each of these steps are nonpositive. This fact allows us to
formulate the following result and use it as a core to create a
synthesis algorithm.

Theorem 4: There exists a synthesis method that adds a gate
only if it performs a nonpositive change to the distance function.
Such a method converges for any reversible function.

A. Algorithm

The actual implementation of the algorithm works as follows.

1) Define the number (we used values in the
range of 50–500 in our implementation).

2) While the distance is greater than zero from among all
gates, find the best gates. For each of

them, find the best second step. After this step, there are
pairs of gates in the list. Search for the se-

quence of two gates that maximally improves (minimizes)
the distance between the existing partial realization and
the function itself. If such a pair is unique, attach the first
gate to the cascade and go back to 2.

3) If two or more pairs of gates produce the same improve-
ment to the distance, activate TieBreaker. TieBreaker is
the function that finds the third best gate for each pair and
if one of the pairs has a better third gate (minimizes the
distance function), choose this pair. Then, attach the first
gate of the chosen pair to the cascade and go to 2.

4) If TieBreaker was not able to find a pair where the third
step gives better improvement, then take the pair that gives
the best improvement for the first gate. Go to 2.

5) If the gate to be assigned is not chosen yet, take the first
pair of the gates among those that give the best improve-
ment (from the list produced on step 2). Go to 2.

Theorem 4 states that the distance will not be increased, be-
cause there is always a zero step available. In general, such a
method is not guaranteed to converge, although it does converge
for every function we tried. We use this algorithm instead of the
theoretical one that is guaranteed to converge, since the latter is
likely to give a larger number of steps, because the distance can
only decrease by at most two.

An reversible function in general can
be realized by one of the possible designs. This happens
if we assume that the order of the output functions does not
matter. We can enumerate the outputs in any order, and thus,
realize different functions. In our case, for the larger functions
(starting from (7,7) functions and larger) we used a heuristic
for the output permutation: we took the output permutation
that gave the smallest error for the function or its complement.



MASLOV AND DUECK: REVERSIBLE CASCADES WITH MINIMAL GARBAGE 1505

For the functions with a smaller number of variables, we are
able to run all the possible permutations and choose the best
result.

Example 7: Consider the function with specification
from the previous example. Without the output

permutation it will take us at least three gates to build a network
for it. The first step is a zero step, as was shown in the previous
example. Then, we have two errors in each of two output bits.
This will require at least two more gates, since each of them
in the best case scenario can take care of at most one output
bit at a time. So, the theoretical minimum is three gates (in
fact, our algorithm terminates in three steps). When a function

with permuted outputs [that is, ]
can be easily realized with two steps: a subsequent negation of
first and second input bits.

B. Multiple-Output Functions

Using the results of Theorem 1, we are able to add the min-
imal number of garbage bits in order to make a multiple output
function reversible. Then, the reversible function specification
can be synthesized. However, a better approach would be to
calculate the minimal number of garbage outputs, add the corre-
sponding number of bits to the design and assign constant values
to them, leaving the garbage outputs unspecified. Then, a gate is
added if its addition decreases the value of the error, according
to the procedure described above. The benefit in such realiza-
tion of a multiple-output function is that we do not care about
some of the outputs; the actual values of the garbage bits are of
no interest. This allows us to:

1) have more freedom in changing don’t care outputs. There
is no risk in adding an error to a don’t care output. We
minimize the distance to the target outputs only.

2) have a smaller error and therefore, in general, have less
steps to make in order to create a network.

C. Benchmarks

Due to the similarity of gates in the set and the general-
ized Toffoli gates, we introduce the following notation. The gate

is denoted as , which
is constructed as follows.

1) Write “ (.”
2) For each :

a) if , write “ ;”
b) if , write “ ;”
c) otherwise, do nothing.

Separate different entities with commas.
3) Write “ ” at the very end, where is defined such that

. By the definition of gate such will be unique.
Finish with the closing bracket “)”.

For example, gate can also be written as
. This form of writing the gate is better for

application use since it makes sense out of the structure of a
gate. The old form was used for the simplicity of formulas in
mathematical proofs.

In this section, we compare our algorithm to the previous al-
gorithms. Unfortunately, some authors do not give enough in-

TABLE VIII
COMPARISON WITH MILLER’S RESULTS

formation to allow us to do so. For example, authors of [8] sug-
gest an approach for reversible cascade synthesis for one output
functions. They do not provide experimental results, nor the al-
gorithm, therefore, we can not compare those results to ours.
Shende et al. [17], [18] provide the optimal synthesis method for
the (3,3) reversible functions only. Reversible synthesis of sym-
metric functions [16] is less general than our approach. Iwama
et al. [5] base their method on circuit transforms, but they do
not provide any experimental data.

We compare our results with three systematic methods: one
by Miller [11], another by Mishchenko and Perkowski [14], and
a third by Khan and Perkowski [6], [7].

Miller [11] suggests a reversible function synthesis that starts
with a reversible specification. He uses spectral techniques to
find the best gate (from NOT, CNOT, Toffoli, and Toffoli4, the
Toffoli gate with three controls) to be added to the network. This
method has been modified in [12] to synthesize networks of the
presented RCMG model. In his method, the output function is
required to appear as a set of actual outputs or their negations.
Miller also used a postprocessing process to simplify the net-
work (results are given in brackets). The results from all exam-
ples in [11] compared to ours are summarized in Table VIII,
where name is the name of the benchmark function, in/out is
the number of its inputs/outputs, Miller is the number of gates
for Miller’s method, and We is the number of gates for the pro-
posed synthesis method.

Mishchenko and Perkowski [14] suggest a reversible wave
cascade method and evaluate the complexity of some bench-
mark functions in terms of the size of these cascades. They
do not provide the actual design for the described method, but
instead they give upper bounds. We compare their results to
ours and summarize the comparison in Table IX. Although our
results are not always better than those of Mishchenko and
Perkowski in terms of the total complexity, the important factor,
the number of garbage bits, is definitely improved using our
approach. We were not able to compare the results for functions
with a larger number of inputs/outputs due to the huge amount
of work our program needs to find a network representing
such a function. In this table, the first three columns describe
the function: the name, number of input bits, and number of
output bits of a benchmark function. First pair of columns MP
and We lists the number of garbage outputs from the result
of Mishchenko and Perkowski’s method and our method; the
remaining pair of columns compares the numbers of gates
in designs of the benchmark functions for Mishchenko and
Perkowski’s method and our proposed design, respectively. Our
method does not always find the realization with the minimum
number of gates, but if we consider the cost of a benchmark
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TABLE IX
COMPARISON WITH MISHCHENKO AND PERKOWSKI’S RESULTS

TABLE X
COMPARISON WITH KHAN’S RESULTS

function to be the sum of the number of gates and the number
of garbage outputs, then our method gives a better result.

Results shown by Khan [6], [7] are weaker (although newer)
than the results in [14], but for the sake of completeness, we
show the comparison in Table X. Note that our results are better
in all cases except for . However, this is a weakness of
the synthesis method we have, not the model, since every single
output nonbalanced function can be realized with the cost of the
number of terms in its minimal EXOR polynomial as is shown in
the Section VI of this.

It is also interesting to notice that the benchmark can
be realized in terms of an ESOP with 14 terms as the result of
Perkowski and Mishchenko states. For our method, this number
is 13, which shows that the proposed method can do better than
EXOR minimization. The following example contains one more
function for which our method is more efficient, compared to
the standard nonreversible technological realization of ESOP,
the EXOR programmable logic arrays.

Example 8: The (5,1)-function whose output is 1 if
and only if exactly two of the input variables are 1 in terms of
ESOP can be realized with eight terms. Our synthesis method is
capable of creating a network (for the proposed structure) with
only seven gates. The function is not balanced, therefore
the minimal number of garbage outputs for it is five. Thus, the
(5,1)-function becomes a (6,6) reversible function. We used
the last output to realize the function, and named the inputs as

– , where the last input is a constant 0. The network struc-
ture is as follows:

.
It also happens that the synthesis in RCMG model is benefi-

cial to the synthesis of ESOPs, which is shown in the following
section.

VI. RCMG AND ESOP COMPARISON

To exploit the similarity between the two chosen models, note
that each of the terms in the ESOP can be treated as a sepa-
rate gate. All the terms are arranged in the form of a cascade,

a string: the EXOR of terms builds the ESOP polynomial. The
following summarizes the similarities and differences between
the two models.

• Both models use the same operations, namely, AND, EXOR,
and negation.

• The gates are similar. Each gate acts as an EXOR of the
term built from the input variables. The difference is that
in ESOP the set of input variables is not changing while
passing through the gates, where for RCMG this is not
true.

• The number of distinct gates is comparable: for
RCMG and for the ESOP.

• The gates are in a linear order. The terms being “exored”
form a string, and generalized Toffoli gates form a cas-
cade. The difference between them is in whether the order
matters. The order of terms in a polynomial does not
matter, whereas the order of reversible gates in our model
does.

Lemma 4: By adding a constant input, it is possible to use the
results of an ESOP minimization to build a reversible network
for a single output Boolean function.

Proof: Take an -input Boolean function and create a
zero constant on the input line . This may result in nonop-
timality of the number of garbage outputs. Transform each term

to the gate .
Such a transformation of each of the terms in the ESOP results
in the set of gates of the RCMG; when arranged in a cascade,
they form a reversible network for the function.

The more interesting question is if the RCMG model is suf-
ficiently efficient in comparison to the ESOP. The answer for
this question is “yes”, and the following set of Boolean func-
tions grows polynomially for the RCMG and exponentially for
the ESOP.

Definition 7: For every even integer , a Boolean func-
tion is defined as

.
Lemma 5: Function can be realized with cost

in terms of the RCMG model.
Proof: The cascade of gates

defines the structure of the network [Fig. 7(a)].
Note that in the actual implementation the first gates

form a
single layer. The remaining gate forms
the second layer. Thus, the total length of the network becomes
a constant, namely two [Fig. 7(b)].

To show that no ESOP shorter than an ESOP with exponential
length can represent function , we need the following
Lemmas.

Lemma 6: Every term in an optimal ESOP for
, where ,

contains variable and contains it without negation.
Proof: Let be an optimal ESOP for the function

. Write it as

(1)
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Fig. 7. Two views of the reversible design structure for exphard .

where , , and do not contain . The total cost of this
ESOP is the sum of the number of terms in , , and ,
which is . Let be an ESOP for . Then,

forms an ESOP for . Add and

If we write it by components, we have

(2)

Use this last equality to continue from (1)

This ESOP has terms. Since is minimal, the
number of terms of is zero. Therefore, the number of terms
of is also zero, which can be seen from the second equation
in (2). In other words, .

Lemma 7: Any optimal ESOP for
, where , has the same

complexity as an optimal ESOP for .
Proof: Lemma 6 enables us to factor variable out of

an optimal ESOP for the function :
, where is an ESOP that does not contain

in any form. Let . Then,
. In

other words, has the complexity of a minimal ESOP for
, so the ESOP does also.

Lemma 8: A minimal ESOP for
the function

, where
and are variables and and , consists
of at least terms, where is the number of terms in a
minimal ESOP for .

Proof: We can take a minimal ESOP of the function
and write it as ,

where , , and are ESOPs that do not contain the vari-
able in either term. Such a decomposition is unique. Notice

that the sets of terms in each of , , and do not inter-
sect

Otherwise, suppose that . Then, there exists a
term . Since , by deleting these two
terms from ESOPs and and adding it to , we get an
ESOP that has complexity (that is, the number of terms in an
ESOP) one less than the optimal ESOP . This contradicts the
optimality of . Therefore, . The other two set
intersections can be proven to be empty similarly.

Let in the ESOP for the
function . This results in

and

(3)

Similarly, assigning leads to

(4)

Adding (3) and (4) produces

(5)

Use Lemma 7 to conclude that each of the ESOPs in (3) and (4)
has at least terms, as does the ESOP from (5).

As we proved before, the sets of terms in , , and
do not intersect, so based on Lemma 7, (3)–(5), the following
system can be written:

Since

the problem of finding the number of terms in a minimal ESOP
for is bounded by the solution of the following linear
optimization problem:

which is given by the expression .
The proof of the following statement would allow us to derive

the exact number of terms in a minimal ESOP for .
Conjecture. The minimal ESOP for the function

where and are variables and and ,
consist of terms.

Theorem 5: A minimal ESOP for the function has
at least terms.
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TABLE XI
COMPLEXITY OF THE FUNCTION exphard

Proof: This result is easily proven by induction using
Lemma 8.

A better lower bound can be achieved for the best ESOP com-
plexity of the function by saying that everytime we
apply Lemma 8, the actual ESOP lower bound is (as
a natural number, greater than ), which brings a larger
bound into the next step. The final formula for this observation
will look like

(6)

Table XI summarizes the results for the function .
The first column shows the number of inputs. The second
column is the number of gates needed for the model RCMG
to realize the function. The third column shows the cost for
the application of the RCMG model. We used the Exorcism-4
[13], [19] program to calculate the near minimal ESOP for the

function. The results of this program are summarized
in the fourth column. Note, that this column supports the con-
jecture. The fifth column shows the theoretically proven lower
bound on the minimal ESOP, given by formula (6).

A. Multiple-Output Functions

One of the reasons that ESOPs are used is their ability to share
terms. The RCMG model does not have this property. However,
the RCMG model can be united with the MEXOR model intro-
duced in [10] to form a new hybrid model. This will allow the
use of multiple EXOR output Toffoli gates with the same con-
trol, which is equivalent to the term sharing in the nonreversible
ESOP model. It can be shown that a quantum realization of such
a hybrid gate has a cost that differs from the cost of the original
Toffoli gate only marginally. The result of Lemma 4 will now
hold for any multiple output Boolean function.

VII. CONCLUSION

In this paper, we introduced a synthesis model and a synthesis
procedure which allow us to minimize the most important factor
of the reversible circuit cost which is the number of garbage
outputs. We showed that the new gates differ only marginally
from the generalized Toffoli gates. We synthesized benchmark

functions and achieved good results in comparison to the pre-
viously shown results. In some cases, our method requires less
gates, and in all cases, our number of garbage outputs is the the-
oretically minimal. Finally, synthesis for the RCMG model was
shown to be better than the synthesis of conventional ESOPs
in the sense that no RCMG representation of a function requires
more gates than the number of terms in a minimal ESOP. On the
other hand, there exists a class of polynomial complexity func-
tions in terms of RCMG, which can be realized as an ESOP with
exponential cost only.
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