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Abstract— Reversible logic functions can be realized as net-
works of Toffoli gates. The synthesis of Toffoli networks can be
divided into two steps. First, find a network that realizes the
desired function. Second, transform the network such that it
uses fewer gates, while realizing the same function. This paper
addresses the above synthesis approach.

We present a basic method and, based on that, a bidirectional
synthesis algorithm which produces a network of Toffoli gates
realizing a given reversible specification. An asymptotically op-
timal modification of the basic synthesis algorithm employing
generalized mEXOR gates is also presented.

Transformations are then applied using template matching.
The basis for a template is a network of gates that realizes
the identity function. If a sequence of gates in the synthesized
network matches a sequence comprised of more than half the
gates in a template, then a transformation using the remaining
gates in the template can be applied resulting in a reduction in
the gate count for the synthesized network. All templates with
up to 6 gates are described in this paper.

Experimental results including an exhaustive examination of
all 3 variable reversible functions and a collection of benchmark
problems are presented. The paper concludes with suggestions
for further research.

Index Terms— Logic synthesis, reversible logic, quantum com-
puting.

I. I NTRODUCTION

I NTEREST in reversible logic is motivated by its appli-
cations in quantum computing, low-power CMOS, nan-

otechnology, and optical computing. Synthesis of reversible
networks is an emerging research topic. It differs significantly
from synthesis using traditional irreversible gates. Two restric-
tions are added for reversible networks, namely fan-out and
feed-back are not allowed. Thus, the only possible structure
for a reversible network is a cascade of reversible gates. Toffoli
gates [17] are the most frequently used and best investigated.
The Toffoli gate inverts a single bit if the AND of a set of
control lines is 1. The formal definition is given in Section II.

Only a few synthesis methods have been proposed for
reversible logic including: using Toffoli gates to implement an
ESOP (EXOR sum-of-products) [13], exhaustive enumeration
[15], heuristic methods that iteratively make the function
simpler (simplicity is measured by the Hamming distance [2]
or by spectral means [11]), and transformation based synthesis
[5], [16], among others. Some methods use excessive search
time, others are not guaranteed to converge, and some require
many additionalgarbageoutputs.
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We follow the two-step approach suggested in [12]. First
a network that uses minimal garbage is found for a given
function. The algorithm for this step is guaranteed to converge.
It uses no backtracking or look-ahead and is thus very fast.
The second step consists of applying transformations which
reduce the number of gates in the network synthesized in the
first step.

Several authors have considered transformations for re-
versible networks. Shendeet. al [15], [16] used several 4-
bit network equivalences to be able to rewrite a limited set
of gates in a different order. In our work we cover and
classify all rewriting rules they describe, use more gates for our
template construction, generalize the notion of rewriting rules
with templates, and show how to use templates to simplify
networks. Iwama, Kambayashi, and Yamashita [5] introduced
some Toffoli network transformation rules, which mainly
served to bring a network to a canonical form. They stated that
their set of transforms is complete. However, their approach
uses a high number of garbage bits, whereas in our approach
no extra garbage outputs (other than those required to achieve
a reversible specification [10]) are used. The transforms in
[5] were proposed for network simplification, but the actual
application procedure was not described. Our work generalizes
and classifies the rules used in [5], and adds new classes. In
this paper, we show how templates can be applied to network
simplification and show results of doing that.

Section 2 presents the background on reversible logic and
Toffoli gates necessary for this paper. Section 3 presents a
basic synthesis algorithm and an extension to bidirectional
synthesis. An asymptotically optimal modification to the basic
algorithm which uses mEXOR gates is also given. Templates
and our approach to template matching are describe in section
4. Experimental results are presented in sections 5 and 6 and
the paper concludes with some observations and suggestions
for further research in section 7.

II. PRELIMINARIES

An n-input n-output function (gate) is termedreversible if
it is a bijection. In other words, a reversible function (gate)
permutes the elements of its domain. In practice, not all of the
2n! possible reversible functions can be realized as a single
reversible gate. Several reversible gates have been proposed.
Toffoli gates [17] and Fredkin gates [4] are the best known
and most widely studied. We will only consider Toffoli gates
in this paper.

Definition 1: For the set of domain variables
{x1, x2, ..., xn} the generalized Toffoli gate has the
form TOF (C, t), whereC = {xi1 , xi2 , ..., xik

}, t = {xj}
and C ∩ t = ∅. It maps the Boolean pattern{x0

1, x
0
2, ..., x

0
n}

to {x0
1, x

0
2, ..., x

0
j−1, x

0
j ⊕ x0

i1
x0
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...x0

ik
, x0

j+1, ..., x
0
n}. The set
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C which controls the change of thej-th bit is called the set
of control lines and t is called thetarget.

In the literature, a subset of all generalized Toffoli gates
is typically considered. The most popular are: the NOT gate
(TOF (∅, xj)), a generalized Toffoli gate with no controls;
the CNOT gate (TOF (xi, xj)) [3], which is also known as a
Feynman gate, a generalized Toffoli gate with one control bit;
and the Toffoli gateTOF (xi1 + xi2 , xj) (where “+” denotes
set union) [17], a generalized Toffoli gate with two controls.
The three gates are illustrated in Figure 1. Gates with more
controls are drawn similarly. Note that the way the gates are
drawn is a convention, which is not related to the way the gates
are implemented. The set of generalized Toffoli gates is known
to be complete (for example, see [10]), in other words, any
reversible function can be realized as a cascade of generalized
Toffoli gates and no additional garbage outputs are required.
For simplicity, we will use Toffoli gate to meangeneralized
Toffoli gate throughout this paper.
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Fig. 1. NOT, CNOT and Toffoli gates

Synthesis of reversible logic is often considered in con-
junction with quantum technologies [14]. Due to quantum
mechanical restrictions, the synthesis of reversible logic is
done with no feed-back and no fan-out [14]. Fan-outs and
feed-backs are also not allowed for some other technologies
that use reversible gates. This leaves the cascade structure as
the only network topology satisfying those conditions. Thus,
we consider cascades of Toffoli gates.

Let the signal be propagated from left to right. The pic-
torial representation of a network is shown in Figure 2. The
reversible cost(or simply,cost) of a function implementation
is defined as the number of gates in the network realizing it
(S for the network in Figure 2).
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Fig. 2. The general structure for a reversible network

III. SYNTHESIS ALGORITHM

To begin, we present a basic greedy algorithm. We consider
a reversible function specified as a mapping over{0, 1, ...,
2n − 1}; in other words, a truth vector. We write a function

as f(i), wherei is an integer in the range0 ≤ i < 2n − 1,
meaning that the function argumenti is a vector giving the
binary expansion of the integeri. The result of the function
application to an integer argumenti, f(i), is treated as an
integer as well. The basic algorithm works by assigning Toffoli
gates at the output end of the cascade. The Toffoli gates
are chosen so that the output part of the specification is
progressively transformed to match the input part. When a
cascade of Toffoli gates that transforms the total specification
to the identity is found, then read in reverse order this cascade
transforms the input to the required output, that is, it realizes
the target function.
Basic Algorithm.
Step 0: If f(0) 6= 0, invert the outputs corresponding to 1-bits
in f(0). Each inversion requires a NOT gate. The transformed
function, written asf+, hasf+(0) = 0.
Step i: Consider eachi in turn for 1 ≤ i < 2n − 1 letting f+

denote the current reversible specification. Iff+(i) = i, no
transformation and hence no Toffoli gate is required for thisi.
Otherwise, gates are required to transform the specification to
a new specificationf++ with f++(i) = i. The required gates
must mapf+(i) → i.

Let p be the bit string with 1s in all positions where the
binary expansion ofi is 1 while the expansion off+(i) is
0. These are the 1 bits that must be added in transforming
f+(i) → i. Conversely, letq be the bit string with 1s in all
positions where the expansion ofi is 0 while the expansion
of f+(i) is 1. q identifies the 1 bits to be removed in the
transformation.

For eachpj = 1, apply the Toffoli gate with control lines
corresponding to all outputs in positions where the expansion
of i is 1 and whose target line is the output in positionj.
This will increase the lexicographical order off+(i). Then,
for eachqk = 1, apply the Toffoli gate whose target line is the
output in positionk, and with control lines corresponding to all
outputs in positions, exceptk, where the expansion off+(i)
is 1. This second operation decreases the lexicographical order
but not belowi.
Correctness analysis.For each1 ≤ i < 2n − 1, Step i
transformsf+(i) → i by applying the specified sequence of
Toffoli gates. Since we consider thei values in increasing
order, and Step 0 handles the case forf(0), we know that
f+(j) = j, 0 ≤ j < i. The importance of this is that it
shows that none of the Toffoli gates generated in a decreasing
order step affectf+(j), j < i. In other words, once a row
of the specification is transformed to the correct value, it will
remain at that value regardless of the transforms required for
later rows. Clearly, the final row of the specification never
requires a transformation as it is correct by virtue of the correct
placement of the preceding2n − 1 values.

Table I illustrates the application of the basic algorithm. (i)
is the given specification. Step 0 identifies the application of
TOF (a0) giving (ii). At this point f+(i), 0 ≤ i ≤ 4 are as
required. Mappingf+(5) → 5 requiresTOF (c1 + b1, a1) to
change the rightmost bit to 1 (iii) andTOF (c2 + a2, b2) to
remove the center 1 (iv). Lastly,TOF (c3+, b3, a3) is again
required, this time to mapf+(6) → 6. Note that the gates are
identified in order from the output side to the input side. The
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TABLE I

EXAMPLE OF APPLYING THE BASIC ALGORITHM

(i) (ii) (iii) (iv) (v)
cba c0b0a0 c1b1a1 c2b2a2 c3b3a3 c4b4a4

000 001 000 000 000 000
001 000 001 001 001 001
010 011 010 010 010 010
011 010 011 011 011 011
100 101 100 100 100 100
101 111 110 111 101 101
110 100 101 101 111 110
111 110 111 110 110 111
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Fig. 3. Network for the function shown in Table I

corresponding network is shown in Figure 3.

The basic algorithm is straightforward and easily imple-
mented. It is also easily seen that it will always terminate
successfully with a network for the given specification.

Theorem 1:The basic algorithm successfully terminates
giving a network of size less than or equal to(n − 1)2n + 1
gates.

Proof: Note that each gate application brings at least one
bit to its correct place, therefore the algorithm will definitely
terminate after applying a maximum ofn2n gates. In order to
prove a tight upper bound, we construct a worst case function
for this algorithm.

The first output pattern will require the maximum number
of gates (n) to bring it to the form of the first input pattern,0,
if it is (2n − 1), the bitwise negation of0. After applying the
n NOT gates for the first pattern, assume the second output
pattern is(2n − 2), the bitwise negation of the second input
pattern1. Again,n gates are needed . In the same manner, keep
assuming that after applying the gates from previous steps, the
output pattern for the current step is the negation of the input
for that step, which can be done until step(2n−1 − 1) of the
algorithm is completed.

At this point, the first2n−1 input patterns match the input,
so the most significant bit of the output patterns has been
completely dealt with (2n−1 zeros are in the upper part of
the truth table, the lower2n−1 must then by definition be
1). Therefore, starting from this step, the most significant bit
is fixed, and we cannot negate it to create a desired difficult
pattern. Starting from step(2n−1), negate only the remaining
(n− 1) unspecified bits of the output.

Similarly, at step2n−1 + 2n−2 of the algorithm the second
most significant bit will be completely specified. In general,
at step2n−1 + 2n−2 + ... + 2n−k, the k most significant bits
are completely specified. Thus, the maximum number of gates

produced by the algorithm becomes

n2n−1 + (n− 1)2n−2 + (n− 2)2n−3 + ...

... + 2 ∗ 2n−n+1 + 1 ∗ 2n−n

= nxn−1 + (n− 1)xn−2 + (n− 2)xn−3 + ...

... + 2 ∗ x1 + 1 ∗ x0|x=2

= (xn + xn−1 + xn−2 + ... + x2 + x + 1)′|x=2

=
(xn+1 − 1

x− 1

)′∣∣∣
x=2

=
( (n + 1)xn(x− 1)− xn+1 + 1

(x− 1)2
)∣∣∣

x=2

=
( (n + 1)2n(2− 1)− 2n+1 + 1

(2− 1)2
)

= (n + 1)2n − 2n+1 + 1 = (n− 1)2n + 1.

The above construction shows this bound is achievable.
Using the procedure from Theorem 1, it is possible to con-

struct a (unique) function for anyn that requires(n−1)2n +1
gates. Therefore, the upper bound is tight. Forn = 3, this func-
tion has the specification (written as the vector of outputs for
the input set{0, 1, ..., 2n−1}) [7, 1, 4, 3, 0, 2, 6, 5] and will be
referred to as3 17 since using Theorem 1, it can be calculated
that its cost is(3−1)23+1 = 2∗8+1 = 17. Analogously,4 49
has the highest cost for 4 input functions. Its specification is
[15, 1, 12, 3, 5, 6, 8, 7, 0, 10, 13, 9, 2, 4, 14, 11]. Functions with
a larger number of variables can be built. We will simplify
the networks further and consider these worst-case functions
to measure the level of improvement.

We next consider modifications to the basic algorithm,
which usually result in smaller networks in terms of the
number of gates and control inputs to particular gates.

A. Control Input Reduction

The basic algorithm naively assigns the maximum number
of control lines to each Toffoli gate. Often a subset of those
control lines will suffice. The requirement is that the gate does
not affect rows earlier in the specification,i.e. rows that are
already in the correct place. This is easily accounted for since
the set of control lines must either contain a line that has not
appeared as a 1 in any earlier row of the specification, or
must contain all lines that have appeared as 1’s in rows earlier
in the specification. Given that, the revised algorithm, instead
of using the control lines identified by the basic algorithm,
considers all valid subsets of those lines, and chooses the
control that minimizes the complexityC(f+) of the resulting
specification. We takeC to be the total Hamming distance
between the input and output sides of the specification, so this
heuristic chooses the gate that moves the specification furthest
towards (lesser value of the Hamming distance) the identity
specification. In the case of a tie, the smallest set of control
lines is used, and within that the choice is arbitrary.

B. Bidirectional Algorithm

As described thus far, the algorithm produces the network
by selecting Toffoli gates that manipulate the output side of
the specification. Since the specification is reversible, one



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ???, NO. ???, ??? 2004 4

TABLE II

EXAMPLE OF APPLYING THE BIDIRECTIONAL ALGORITHM

(i) (ii) (iii) (iv)
cba c0b0a0 c1b1a1 c2b2a2 c3b3a3

000 111 000 000 000
001 000 111 001 001
010 001 010 010 010
011 010 001 111 011
100 011 100 100 100
101 100 011 101 101
110 101 110 110 110
111 110 101 011 111
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Fig. 4. Networks for the function shown in Table II

could consider the inverse specification, derive a reverse
network, and then choose whichever network is smaller. A
better approach is to apply the method in both directions
simultaneously choosing to add gates at either the input side
or the output side during each synthesis step.

To see how this works, consider the initial reversible spec-
ification in Table II, column (i). The basic algorithm would
require that we invert each ofa0, b0 andc0 to makef+(0) = 0.
The alternative is to inverta, i.e. to apply the gateTOF (a)
to the input side. Applying this gate, and then reordering the
specification so that the input side is again in standard truth-
table order yields the specification in (ii). From the output
side, we would next have to mapf+(1) = 7 → 1. However,
from the input side we can accomplish what is required by
interchanging rows 1 and 3, which is done by applying the
gateTOF (a, b). Doing so, and reordering the input side into
standard order, yields the specification in (iii). At this point,
selection from the output side and the input side identify the
same gateTOF (a+b, c) (when expressed in terms of the input
lines) and the network is done (iv). The result uses three gates
(shown in Figure 4(a)), whereas approaching the problem from
the output side alone requires three NOT gates just to handle
f(0) and seven gates in total (shown in Figure 4(b)).

In general, whenf+(i) 6= i, the choice is (a) to apply Toffoli
gates to the outputs to mapf+(i) → i, or (b) to apply Toffoli
gates to the inputs to mapj → i wherej is such thatf+(j) =
i. Since we consider thei in order, there must always be aj
such thatj > i. Also, the same rules for identifying the control
lines, including the reduction described above apply. Let the
bidirectional algorithm choose (a) ifH(i, f+(i)) ≤ H(i, j),
and (b) otherwise (whereH(p, q) is the Hamming distance
of the bit stringsp and q). We thus base the choice on the
number of gates required and not their width or how closely
they map the specification to the identity.

C. Asymptotically Optimal Modification

In this subsection we provide an asymptotically optimal
modification of the basic synthesis algorithm. For this mod-

ification, we need a new set of gates which are a further
geralization of the basic Toffoli gate.

Definition 2: An mEXOR gate TOF (C, T ), where
C ∩ T = ∅ and T = {xj1 , xj1 , ..., xjm

} is a single gate that
is equivalent to the networkTOF (C, xj1) TOF (C, xj2)...
TOF (C, xjm

).
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Fig. 5. Example of an mEXOR Toffoli gate

A pictorial representation of a mEXOR gate is shown in
Figure 5.

Given the set of mEXOR gates, the synthesis procedure
works as follows. The idea is to use the Toffoli gate algorithm
modification where the Toffoli gates with the same set of
controls are united to form one mEXOR gate.

Step 0.The first row of the truth table consists of the input
pattern with the lowest order,(0, 0, ..., 0) which represents the
integer 0 as a binary expression. The corresponding output
pattern, (b1, b2, ..., bn), unless it consists of all zeros, must
be transformed to all zeros. To do so we use one mEXOR
gate,TOF (∅; bi1 + bi2 + ... + bik

), where{bi1 , bi2 , ..., bik
} =

{bj |bj = 1, 1 ≤ j ≤ n}.
Step k. The input part of the truth table has the pattern

(a1, a2, ..., an), which represents the binary expansion of the
integerk. The output part has the pattern(b1, b2, ..., bn) which,
in general, differs from(a1, a2, ..., an). For any Boolean pat-
tern (x1, x2, ..., xn) we define the setX1 = {xj |xj = 1, 1 ≤
j ≤ n}, a pattern consisting of all 1-bits of(x1, x2, ..., xn). In
order to bring(b1, b2, ..., bn) to the form (a1, a2, ..., an), we
need at most two mEXOR gates:

1) Increase ones.We apply mEXOR gateTOF (B1, A1 \
B1) to bring(b1, b2, ..., bn) to the form(c1, c2, ..., cn) =
(a1∨ b1, a2 ∨ b2, ..., an ∨ bn); we change the output part
of the truth table as dictated by the gate.

2) Decrease ones.We apply mEXOR gateTOF (A1, C1 \
A1) to bring (c1, c2, ..., cn) to the form(a1, a2, ..., an);
we change the output part of the truth table as dictated
by the gate.

Note that during this step, none of the patterns previously put
at their places earlier in the truth table are altered:

• (b1, b2, ..., bn) º (a1, a2, ..., an) since all the patterns in
the order less than(a1, a2, ..., an) are already at their
correct places in the upper part of the truth table.

• It follows from the definition of (c1, c2, ..., cn),
(c1, c2, ..., cn) º (b1, b2, ..., bn) º (a1, a2, ..., an) ⇒
(c1, c2, ..., cn) º (a1, a2, ..., an).

Step 2n − 1. There are no operations at the last step, since
if all of the 2n − 1 patterns with lower order are in their
places, there is automatically only one spot available for the
last pattern,(1, 1, ..., 1).
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Complexity analysis.An upper bound on the complexity
of the presented algorithm’s output is given by the formula
2n+1 − 4. Since there are2n steps, and each requires at most
2 gates to be added to the network, the total cost is2 ∗ 2n. A
more detailed analysis shows that the first step adds at most
one gate, the last step never adds a gate, and the step before
the last uses at most one gate (similarly to what we had in the
first step). Therefore, the complexity decreases to2n+1 − 4.
This bound is reachable, and is therefore tight.

Definition 3: The complexity function L(n) is the maxi-
mal number of gates required to realize a reversible function
of n variables with an optimal network.

We have just proved an upper boundL(n) ≤ 2n+1 − 4,
hence L(n) ∈ O(2n). We next prove a lower bound
L(n) ≥ C ∗ 2n for a positive constantC.

Lemma 1:The number of distinct mEXOR gates withn
variables is(3n − 2n).

Proof: Each of the variables may participate in a gate
as a control or target, or may not be a part of a gate. This
gives the possibility of3n gates. However, among those3n

some will not contain any target bits, and therefore will not
be an mEXOR gate. The number of these will be2n (each bit
is allowed to be either a control or is not present). Thus, the
number of distinct gates is given by the formula(3n−2n).

It is interesting to note that an mEXOR gate with zero
controls is used at most once in the algorithm (Step 0), but
the number of them is exponential, namely2n. It happens
that considering these gates as a set of NOTs does not lead
to a change of asymptotic behavior, which is the focus of this
subsection.

Theorem 2:L(n) ≥ 2n

ln 3 + o(2n).
Proof: The number of all reversible functions ofn

variables is2n! (the number of permutations of2n elements).
The total number of mEXOR gates is3n − 2n. Supposing
that by taking all the possible cascades of mEXOR gates
we get different functions (which is, of course, not true),
the complexity of the hardest to realize function is given
by the formula log(3n−2n)(2n!). Since some cascades built
during such a process will give equal functions, the expression
log(3n−2n)(2n!) gives a lower bound for the cost of the most
expensive to build reversible function. This expression can be
simplified using Stirling’s formula to the form2n

ln 3 + o(2n).

Theorems 1 and 2 together show that the approach using
mEXOR gates is asymptotically optimal.

In the above, we assume that the reversible cost of a single
mEXOR gate is 1. However, this does not reflect the cost of an
mEXOR gate in a real technology,e.g.quantum. Considering
the quantum cost calculation estimate described in [8]), the
quantum cost of a NOT gate is 1, of a CNOT gate 1, of a
Toffoli gate 5, of a generalized Toffoli gate with 10 controls
200. For the generalized Toffoli gate its quantum cost has been
shown to grow linearly (with an addition of one sink/auxiliary
bit) with the number of its controls [1].

The quantum cost of an mEXOR gate is comparable to the
quantum cost of the generalized Toffoli gate if the mEXOR
gates are built using CNOT gates as shown in Figure 6. Further
analysis [7] shows that the quantum cost of an mEXOR gate

differs from the cost of the generalized Toffoli gate with the
same number of controls only marginally.
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Fig. 6. Construction of a single mEXOR gate

IV. T EMPLATES

In [12], templates were introduced as a tool for network
simplification. A template was defined as two sequences of
gates that realize the same function. The first sequence of gates
is matched to a part of the network being simplified and the
second sequence is substituted when a match is found.

In this section, we present an alternative view of templates
and give a formal classification which includes the templates
used in [12]. To simplify the description of template classes,
we adopt the following set notation for used in specifying
Toffoli gates [9]:

• Ci represents a set (maybe empty) of lines;
• ti represents a set containing a single target line;
• All sets are disjoint:Ci ∩ Cj = ∅, Ci ∩ tk = ∅,

tl ∩ tk = ∅ ∀i, j, k, l.

The following result is very useful in defining templates.
Lemma 2: If a network G0 G1... Gm−1 realizes the

identity function, then for anyk-shift, Gk G(k+1) mod m . . .
G(k−1) mod m realizes the identity.

Proof: We prove the Lemma for 1-shift,
G1 G2... Gm−1 G0. Then all k-shifts can be proven
by applying the 1-shiftk times. The proof for a 1-shift
follows from:

Id = G0 G1... Gm−1

G0 Id = G0 G0 G1... Gm−1

G0 = G1 G2... Gm−1

Id = G0 G0 = G1 G2... Gm−1 G0.

Now, let a size m template be a sequence ofm gates (a
network) that realizes the identity function. Any template of
size m must be independent of templates of smaller size,
i.e. for a given template of sizem no application of any
set of templates of smaller size can decrease the number
of gates or make it equal to another template. The template
G0 G1... Gm−1 can be applied in two directions:

1) Forward application: A series of gates in a
network that matches the sequence of gates
Gi G(i+1) mod m... G(i+k−1) mod m of the template
G0 G1... Gm−1 exactly, is replaced with the sequence
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Fig. 7. All templates form ≤ 5

G(i−1) mod m G(i−2) mod m... G(i+k) mod m without
changing the network’s output, wherek ∈ N, k ≥ m

2 .
2) Reverse application: A series of gates in a

network that matches the sequence of gates
Gi G(i−1) mod m... G(i−k+1) mod m exactly,
is replaced with the sequenceG(i+1) mod m

G(i+2) mod m . . . G(i−k) mod m without changing
the network output, wherek ∈ N, k ≥ m

2 .

These definitions of template application need a correctness
proof—the network output should not be changed for each of
the listed operations. Correctness can be verified as follows.
Note, that a reversible cascade that realizes a functionf read
in reverse (from the outputs to the inputs) realizesf−1, its
inverse.

First, we prove the correctness of the forward applica-
tion of a template starting with elementG0. The operation
for this case requires substitution ofG0 G1... Gk−1 with
Gm−1 Gm−2... Gk. Since G0 G1... Gm−1 realizes the
identity function,Gk Gk+1... Gm−1 realizes the inverse of
the function realized byG0 G1... Gk−1. Therefore, read in
reverse orderGk Gk+1... Gm−1 realizes the inverse of the
inverse, i.e. the function itself. Thus, the function realized
by G0 G1... Gk−1 was substituted by itself, which does not
change the output of the network. Correctness of the remaining
forward applications can be proven using Lemma 2.

Correctness of all reverse applications follows from the
proof above and from the observation that the inverse of the
identity function is the identity function.

Next, observe that a template can be used in both directions,
forward and reverse as the formulas show. Also, we can start
using it from any element. Thus, it is better to think of a
template as a cyclic sequence.

The conditionk ≥ m
2 is used as we do not want to increase

the number of gates when a template is applied.
Definition 4: A class of templates is defined as a set of

templates which can be described by one formula.
The following is a classification of templates up to size 6.

• m=1. Size 1 templates do not exist, since each generalized
Toffoli gate produces a change of its input.

• m=2. There is one class of templates of size 2 (Figure 7a),
and it is theduplication deletion rule which is described
by the sequence (G1G1) where G1 = TOF (C1, t1).

When this template is applied, two identical gates are
replaced by the empty set which follows since all Toffoli
gates are self-inverse.

• m=3. There are no templates of size 3.
• m=4. There is one class of templates (Figure 7b), called

the moving rule, which can be written as follows
(G1G2G1G2) where G1 = TOF (C1 + C2, C4 + C5)
and G2 = TOF (C1 + C3, C4 + C6). This is called the
moving rule because the sequenceG1G2 is replaced with
G2G1. This does not reduce the number of gates as in the
application of other templates, but rather reorders gates
so that other templates can be applied.
The upper template in Figure 7b has|C4| = 0 which
results in |C5| = 1 and |C6| = 1, when the lower has
|C4| = 1 resulting in|C5| = 0 and |C6| = 0.

• m=5. Surprisingly, there is only one class of template
of size 5 (Figure 7c). The class can be written as
(G1G2G1G2G3) whereG1 = TOF (C1 + C2 + t2, t1),
G2 = TOF (C1 + C3, t2) and G3 = TOF (C1 + C2 +
C3, t1).

• m=6. There are four classes here (Figure 8), and they are
described by

– G1G2G1G3G4G3 (Figure 8a), where

G1 = TOF (C1 + C3 + t2, t1),
G2 = TOF (C1 + C2 + C3 + C4 + t1, t2),

G3 = TOF (C1 + C2 + t1, t2),
G4 = TOF (C1 + C2 + C3 + C4 + t2, t1).

– G1G2G1G3G2G3 (Figure 8b), where

G1 = TOF (C1 + C3 + t2, t1),
G2 = TOF (C1 + C2 + C3 + C4 + t1, t2),

G3 = TOF (C1 + C2 + t2, t1).

Note, these two formulas for the classes look very
similar, and, in fact using Fredkin gates [4], they can
be generalized to form one very simple template:
FRE(C1 +C2 +C3 +C4, t1 + t2) FRE(C1 +C2 +
C3 + C4, t1 + t2) (whereFRE(C, t1 + t2) is a gate
which swaps values of bitst1 andt2 if, and only if,
setC has all ones on its lines). We do not pursue this
here as we are restricting our attention to generalized
Toffoli gates.

– G1G2G1G3G4G2 (Figure 8c), where

G1 = TOF (C1 + C2 + t2, t1),
G2 = TOF (C1 + C3 + t1, t2),

G3 = TOF (C1 + C2 + C3 + t1, t2),
G4 = TOF (C1 + C2 + C3 + t2, t1).

– G1G2G3G1G2G3 (Figure 8d), where

G1 = TOF (C1 + C2 + C4 + t2, t1),
G2 = TOF (C1 + C2 + C3 + t2, t1),
G3 = TOF (C1 + C3 + C4 + t1, t2).

To verify the correctness of the above classification, we must
show that no template can be reduced to a template of smaller
size.
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Fig. 8. All templates form = 6

Templates of size 4.The templates are independent of the
size 2 template, since no adjacent gates are equal.

Template of size 5.
• The template is independent of the size 2 template, since

no adjacent gates are equal.
• The size 4 template can be applied to move gateG3

anywhere in a template, but it does not allow any simpli-
fication of a size 5 template by smaller templates.

Templates of size 6.
• Size 6 templates are independent of the size 2 template,

since no adjacent gates are equal.
• A size 4 template can be applied to interchange

gates some gates in templatesG1G2G1G3G2G3 and
G1G2G3G1G2G3 and does not lead to any simplifica-
tion.

• The size 5 template matches at most 2 gates of any of
the size 6 templates and therefore cannot be applied.

A. Completeness

We have written a program that enumerates all the
4-variable networks with 6 gates that realize the iden-
tity function and tries to apply the templates. This pro-
gram shows that the set of 7 templates given above
(G1G1, G1G2G1G2, G1G2G1G2G3, G1G2G1G3G4G3,
G1G2G1G3G2G3, G1G2G1G3G4G2, andG1G2G3G1G2G3)
is the complete set of templates of size 6 or less for 4 inputs
and less. We are currently working on finding the templates
of size 7 and 8. Finding templates of size 9 does not seem to
be feasible at this point.

The mathematical proof of completeness of the presented set
of templates for any number of inputs is harder. For templates
of size 2 it can be done by inspection. For templates of size
4 and 5 the following lemmas are useful.

Lemma 3:A size m template has at mostbm
2 c different

target lines (lines with EXORs).
Proof: Prove by contradiction. Suppose there arebm

2 c+1
or more lines which contain an EXOR. Then, by the pigeon
hole principle, there will be one line with one EXOR only.
Cut the cycle so that the gate with this EXOR,TOF (C, t)

comes first. Now, if we assign 1 to allxj ∈ C, the value
of t changes tōt as the signal is propagated in the template.
Thus, the template does not realize the identity function, which
contradicts its definition.

Lemma 4:Given a template of sizem where all gates have
the same target line, thenm is even and all gates can be
grouped as pairs of equal gates.

Proof: Proof by contradiction. Suppose not all the gates
can be paired or the numberm is odd. Apply moving and
duplication deletion rules to delete all the paired gates from
the template. The remaining network still realizes the identity
since all the applied operations did not change the network
output. When propagating the signal in the network, the output
on the line with the EXOR (for instance,xn) becomes a
polynomial of positive polarity on the remaining variables
(for instance,x1, x2, ...xn−1). In other words, a Zhegalkin
polynomial [18] (also knows as a positive polarity Reed-
Muller polynomial) on the set of variables{x1, x2, ...xn−1}
was added to the inputxn. Since no non-zero Zhegalkin
polynomial equals zero, the output on then-th line will differ
from its input. This contradicts the definition of a template
since it realizes the identity function.

Use of Lemma 3 allows us to say that all the templates
of size 4 have EXORs on either two lines (two signs on one
and two on the other) or 1 line (all 4 on 1 line). In the last
case use Lemma 4. Thus, an exhaustive search proof becomes
reasonable. For the size 5 templates we can guarantee that they
all will have exactly two lines with EXORs. Note, that Lemma
4 proves that the only two templates which have only one line
affected by EXORs are the duplication deletion rule and the
moving rule, all other identities of this type are applications
of the above rules.

V. EXPERIMENTAL RESULTS

We have written a program which synthesizes a Toffoli
network for a given reversible specification and then applies
templates to simplify the network achieved on the first step.
The synthesis part of the program is straightforward. The
simplification part works as follows. First, it is convenient to
store templateG1G2G1G2 as a separate rule which helps to
bring the gates together to match a template. We call this the
“moving rule”. Then, the network is simplified as follows.
For the hierarchy of templatesG1G1 Â G1G2G1G2G3 Â
G1G2G1G3G4G3 Â G1G2G1G3G2G3 Â G1G2G1G3G4G2

Â G1G2G3G1G2G3 (in a sense, more general transformations
are applied first), the program tries to match as many gates of a
template as possible by looking ahead in the network and using
the moving rule. If a template can be applied, this is done for
the largest number of matched gates possible. After applying
a template, the program starts trying to apply the templates
in the order given from the beginning. Finally, if none of the
templates can be applied, the simplification process stops.

Our current implementation of template matching uses
redundant computation that could be eliminated in future
implementations. However, for networks with up to 500 gates,
the runtime for network simplification using templates is no
more than a few seconds, and is negligible for networks with
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up to 100 gates. We have thus not worked at optimizing the
template matching further as 500 is a practical limit for the
networks of current interest. Both simplification and template
matching portions of our implementation would have to be
optimized to work efficiently for networks with more than
500 gates.

Our template matching tool as implemented does not use
any backtracking and applies templates immediately and only
to decrease the gate count (or, in modified template matching
discussed later, a template can be applied to decrease the
number of controls) once a suitable matching is found. This
is clearly not optimal, and a more robust template application
procedure would produce better results, as was illustrated
in [6]. Although we have not investigated the question in
detail, optimal network simplification using templates certainly
appears to be an NP-hard problem.

Example 1:We took a network for a three bit adder pro-
duced by the synthesis algorithm presented in [12] (Figure 9)
and applied our template matching procedure to simplify it. As
expected [12], the program used a size 5 template and matched
3 gates. Those gates were substituted by the remaining 2
gates of the template read in reverse order. This network is
equivalent to the smallest reversible network for a three bit
full adder found by hands in earlier papers.

We also investigated amodified template matchingproce-
dure. It works as follows. Normally, a section of the network is
only replaced when more than half of the gates in the templates
are matched. However, it may be advantageous to replace the
gates if exactly half of the gates match, provided that the gates
that replace them have fewer control lines. Empirical results
show that this can lead to reductions in the size of the network.

Table III shows the results of applying our algorithm to all
8! = 40320 3 × 3 reversible functions. Three scenarios are
listed:

(a) the straight forward algorithm with improvements de-
scribed in [12];

(b) (a) plus template matching;
(c) (a) plus modified template matching;
(d) optimal results from [15].

For each scenario, we show the number of functions for
each gate count and the average number of gates required.
Runtime for calculating column (c) using an Athlon XP 2400+
computer with 512 Mb of RAM is 35.14 seconds.

VI. B ENCHMARKS

An irreversible function can be realized using reversible
gates [14]. Garbage outputs must be added if necessary so
that the output patterns are distinct and constant inputs must
be added as necessary so that the function has the same number
of inputs and outputs. This can be viewed as embedding the
irreversible function specification in a larger reversible one.

Definition 5: The maximum output patternmultiplicity of
a multiple-output Boolean function is the maximum number
of input assignments which yield the same output pattern.
Equivalently, it is the maximum number of times a single
output pattern appears in the truth table specification of the
function.

TABLE III

NUMBER OF REVERSIBLE FUNCTIONS USING A SPECIFIED NUMBER OF

GATES FORn = 3

Size (a) (b) (c) (d)
17
16
15 2
14 22 8
13 112 43 6
12 432 215 62
11 1191 651 391
10 2575 1776 1444
9 5116 4038 3837
8 7842 7405 7274 577
7 8989 9716 9965 10253
6 7478 8573 9086 17049
5 4314 5167 5448 8921
4 1682 2055 2125 2780
3 463 558 567 625
2 89 102 102 102
1 12 12 12 12
0 1 1 1 1

WA: 7.25 6.92 6.80 5.87

(a): before template matching
(b): after template matching
(c): modified template matching
(d): optimal sizes [15]

As shown in [10], the minimum number of garbage outputs
required isdlog2 qe, whereq is the maximum output pattern
multiplicity of the irreversible function. Optimal definition of
the garbage outputs is a difficult and open problem. At present
we pre-assign them to make the function reversible using the
approach described in [11]. Often they can simply be set equal
to input variables. At other times, we use EXOR functions
involving subsets of the inputs.

Table IV shows our results for a number of benchmark
functions. Thename, in andout columns represent the name
of a benchmark function, the number of inputs and outputs.
Size is the number of inputs and outputs in a minimal
reversible specification (Theorem 1 of [10]) derived from the
benchmark. Thecost beforeand cost after columns contain
the number of generalized Toffoli gates needed before and
after the template matching tool is applied. For the presented
networks the gate count reduction resulting from template
matching is not significant. There are a number of reasons
for this.

All but the first two benchmarks have inherent structure. The
synthesis phase of our approach is in fact doing a good job of
finding that structure. In addition, as noted above our approach
to applying templates is greedy and may well miss possible
specifications. This is not to say templates are not of use since
as shown above over all 3 variable functions they actually
provide significant reduction. In addition as noted earlier,
templates can reduce the number of control connections if not
the gate count, reducing the implementation cost in certain
technologies.

Simple gate count gives an estimate but it is often more
informative to evaluate cost in terms of a particular technology.
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Fig. 9. Optimal network for a full adder

TABLE IV

RESULTS OF BENCHMARK FUNCTION SYNTHESIS

name in out size cost before cost after QC TG QC TG QC +1G
3 17 3 3 3 6 6 12 5 5
4 49 4 4 4 16 16 58 13 13
add3 3 2 4 5 4 8 13 13
ham3 3 3 3 6 5 7 5 5
ham7 7 7 7 25 23 81 125 84
ham15 15 15 15 138 132 2084 32765 352
hwb4 4 4 4 18 17 63 13 13
hwb5 5 5 5 57 55 313 29 29
hwb6 6 6 6 134 126 1528 61 52
hwb7 7 7 7 302 289 5419 125 84
4mod5 4 1 5 9 8 24 29 29
5mod5 5 1 6 18 17 185 61 52
rd53 5 3 7 12 12 132 125 84

cycle173 20 20 20 48 48 7802 1048573 512

For that reason, we calculate the quantum cost1 of our net-
works based on the reported quantum costs of Toffoli gates [1],
[8]. ColumnQC in Table IV provides the quantum cost of each
network assuming the network is built with the number of lines
given in thesizecolumn (that is, no additional lines are used).
ColumnTG QC gives for comparison the quantum cost of a
single sizen Toffoli gate built onn lines, givenn equals to the
size of the corresponding function. The last column,TG QC
+1G, contains the cost of a sizen Toffoli gate built on(n+1)
lines (that is, one additional line is available). Even though we
report calculation of the quantum costs, we point out that the
primary goal of the presented work was minimization of the
gate count, not quantum cost minimization. We also have some
evidence that using more gates with less controls will decrease
the quantum cost for some of the presented problems. The
actual designs of the reported networks can be viewed online
at http://www.cs.uvic.ca/˜dmaslov/.

The reversible specifications for the functions
ham3, ham7, ham15, (hamming optimal coding
functions, where the number defines the size)
hwb4, hwb5, hwb6, hwb7 (hidden weighted bit functions,
where the input pattern is circularly shifted by the number of
ones it has) and4mod5 (Grover oracle which interprets the
4-bit input as a binary expansion and returns 1 if the number
given by this 4-bit string is divisible by 5) were sent to us by
Patel and Markov.

The maximal size function for which we reported a network
has 20 inputs and outputs. This function,cycle17 3, cycles
the first 217 input values according to the binary value of

1We estimate the quantum cost as the number of 1-qubit or two qubit
controlled-V operations needed to construct the gate (see [1], [14] for more
information). This is an approximation of the actual cost, but it gives a closer
estimate of the real cost than does simple gate count.

the last three bits that act as a control. In other words, if
the binary number represented by the controls isA, the input
set {0, 1, 2, ..., 217 − 1} is mapped into{A,A + 1, ..., 217 −
1, 0, 1, ..., A − 1}. Cycle17 3 can also be thought of as a
modula-217 adder which adds 17-bit and 3-bit numbers. The
network structure is surprisingly regular, Figure 10. One easily
sees how to build analogous networks for general type shifters
cycleN K (parametersN, K are natural numbers). For in-
stance, the network forcycle10 10 (modula-1024 adder of two
10-bit numbers) will have 55 gates. Using an Athlon XP 2400+
computer with 512 Mb of RAM it took approximately 25
minutes to synthesize the network forcycle17 3 (runtimes for
smaller specifications are noticeably smaller,e.g. 8.9 second
for the second largest function that has size 15).

VII. C ONCLUSION

A simple algorithm for the synthesis of reversible networks
composed of generalized Toffoli gates has been presented. The
basic algorithm will always terminate with a valid network.
An heuristic approach has been given to reduce the size of the
networks produced through Toffoli gate control line reduction.
The major enhancement to the basic algorithm is a method by
which gates can be identified at either end of the specification
and the network synthesized in both directions simultaneously.
A modification of this algorithm synthesizes asymptotically
optimal reversible networks of mEXOR elements.

In this work we also described a template simplification
tool, a tool which allows further reduction of the networks
produced by the synthesis algorithm. Templates were defined,
classified for simplicity of their application and presented in
a readily usable form.

We wrote a program and tested the synthesis algorithm, tem-
plate application tandem. The first test, exhaustive synthesis
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Fig. 10. Network forcycle17 3 function

of all 3-variable reversible functions showed that more than
50% of synthesized functions are optimal, which shows the
quality of our synthesis approach. Next we ran our program
to synthesize benchmark functions and achieved good results.

There are several open areas of research arising from this
work. We are considering nonexhaustive ways to identify
larger templates and also looking at better ways to apply
template matching.

Perhaps the most interesting open question is how to effec-
tively assign garbage outputs. We are currently developing a
modification to our approach that treats the garbage outputs
as don’t-cares throughout the synthesis procedure.

Finally, this paper has considered only Toffoli gates. The
approaches described are readily extended to other reversible
gatese.g.Fredkin gates. Preliminary study shows that this can
result in significantly reduced gate count.
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