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Abstract

Reversible logic functions can be realized as networks of
Toffoli gates. The synthesis of Toffoli networks can be di-
vided into two steps. First, find a network that realizes the
desired function. Second, transform the network such that
it uses fewer gates, while realizing the same function. This
paper addresses the second step. Transformations are ac-
complished via template matching. The basis for a template
is a network withm gates that realizes the identity function.
If a sequence in the network to be synthesized matches more
than half of a template, then a transformation reducing the
gate count can be applied. All templates form � 7 are
described in this paper.

1 Introduction

Reversible logic is an emerging research area. Interest
in reversible logic is sparked by its applications in quantum
computing, low-power CMOS, nanotechnology, and optical
computing. The synthesis of reversible circuits differs sig-
nificantly from synthesis using traditional irreversible gates.
Two restrictions are added for reversible networks, namely
fan-out and feedback are not allowed. The only possible
structure for a reversible network is a cascade of reversible
gates. The most frequently used gates are the Toffoli gate
[15] and the Fredkin gate [4]. The Toffoli gate inverts a sin-
gle bit if the AND of a set of control lines is 1. The Fredkin
gate interchanges two bits if the AND of a set of control
lines is 1. The formal definition of the Toffoli gate is given
in Section 2.

Only a few synthesis methods have been proposed for
reversible logic. Suggested methods include: using Tof-
foli gates to implement an ESOP (EXOR sum-of-products)
[11], exhaustive enumeration [14, 13], heuristic methods
that iteratively make the function simpler (simplicity is
measured by the Hamming distance [2] or by spectral means
[9]), and transformation based synthesis [5], among oth-
ers. Some methods use excessive search time, others are

not guaranteed to converge, and some require many addi-
tional outputs (garbage). We follow the two-step approach
suggested in [10]. First a network for the given function
is found. The algorithm for this step is guaranteed to con-
verge. In fact, the algorithm is very fast. Improvements on a
naive algorithm are described in [10]. The second step con-
sists of applying transformations which reduce the number
of gates. In this paper we describe the templates used for
such transformations in detail.

Several authors considered network transformations.
Shendeet. al[14, 13] used several 4-bit circuit equivalences
to be able to rewrite gates in a different order. Their circuit
equivalence rules were not proposed for circuit simplifica-
tion. In our work we cover and classify all templates they
describe, generalize the notion of template, and show how
to use them to simplify networks. Iwama, Kambayashi,
and Yamashita [5] introduced some circuit transformation
rules, which mainly served to bring a network to a canonical
form and thus, stating that the set of transforms is complete.
However, their approach uses a high number of garbage
bits, whereas in our approach no garbage is allowed. One of
the transforms in [5] was proposed for circuit simplification,
but the actual application procedure was not described. Our
work generalizes and classifies the templates used by [5],
and adds new classes. We also show a way of using tem-
plates for network simplification, implemented it, and show
results.

2 Preliminaries

An n-inputn-output function (gate) is calledreversible
if, and only if, it maps each input instance to a unique out-
put instance. In other words, a reversible function (gate)
permutes the elements of its domain. In practice, not all
of then! possible reversible functions can be realized as a
single reversible gate. Several reversible gates have been
proposed. However, we will only deal with Toffoli gates in
this paper.

Definition 1. For the set of domain variables
fx1; x2; :::; xng thegeneralized Toffoli gatehas the form
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setC which controls the change ofj-th bit is called the set
of control lines andt is called thetarget.

In the literature, a subset of all generalized Toffoli gates
is typically considered. The most popular are: the NOT
gate (TOF (;; xj)), a generalized Toffoli gate which has no
controls; the CNOT gate (TOF (xi; xj))[3], which is also
known as a Feynman gate, a generalized Toffoli gate with
one control bit, and the Toffoli gateTOF (xi1 + xi2; xj)
(where “+” denotes set union) [15], a generalized Toffoli
gate with two controls. The three gates are illustrated in
Figure 1, and the gates with more controls are drawn simi-
larly. Note that the way the gates are drawn is a convention,
which is not related to the way the gates are implemented.
Gates with more than two controls are discussed in [6]. The
set of generalized Toffoli gates is known to be complete (for
example, see [8]), in other words, any reversible function
can be realized as a cascade of Toffoli gates. A regular syn-
thesis method for Toffoli gate networks is discussed in [10].
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Figure 1. NOT, CNOT and Toffoli gates

Due to probable technological restrictions, the synthesis
of reversible logic is done with no feedback and no fan-out
[12]. This leaves the cascade structure as the only model
satisfying those conditions. Thus, we consider cascades of
Toffoli gates.

Let the signal be propagated from left to right. The pic-
torial representation of a network is shown in Figure 2. The
cost of a function is defined as the number of gates in the
circuit realizing it (S for a network in Figure 2).
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Figure 2. The general structure for a network
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Figure 3. Templates with 2 or 3 inputs.

3 Templates

Previously [10], templates were introduced as a tool for
network simplification. In that work, a template consists
of two sequences of gates which realize the same function.
The first sequence of gates is to be matched to a part of the
circuit being simplified and the second sequence is to be
substituted when a match is found. The templates were in
Figure 3 were identified and classified based on their simi-
larity.

In [10], the template matching procedure looks for the
first set of gates, including the initial match to the widest
gate, across the entire circuit. If all target gates are found, it
attempts to make them adjacent using themoving rule: gate
TOF (C1; t1) can be interchanged with gateTOF (C2; t2)
if, and only if,C1\ t2 = ; andC2\ t1 = ;. Adjacent gates
can match the template in the forward or reverse direction.
The matched gates are replaced with the new gates specified
by the template. For a reverse match, the new gates are sub-
stituted in reverse order. Finally, if at any time two adjacent
gates are equal, they can be deleted, (deletion rule).

In this section, we give a formal classification of the tem-
plates used in [10]. For a better understanding of template
classes, we introduce the following notation.

� the left hand side has a sequence of gates that is to
be replaced with the sequence given on the right hand
side;

� the controls of the gates are coded by setsCi each of
which represents a set (maybe empty) of lines;



� the target setsti each contain a single line.

All sets are disjoint:Ci\Cj = ;; Ci\tk = ;; tl\tk =
; 8i; j; k; l.

Using this notation, aclassof templates can be defined
as a set of templates which can be described by one formula.
A first attempt to classify the templates results in the classes
listed below:

Class 1.This class unites and generalizes the templates
2.2, 4.1-4.3 (Figure 3) into a class (Figure 4a) with the for-
mula:

TOF (C1 +C2 + t2; t1) TOF (C1 +C3; t2)

TOF (C1 +C2 + t2; t1) =

= TOF (C1 + C3; t2) TOF (C1 +C2 +C3; t1) (1)

Class 2. This class consists of templates 4.4-4.6 (Fig-
ure 3) and their generalizations. The class is illustrated in
Figure 4b and can be written as the following formula:

TOF (C1 +C2; t2) TOF (C1 + C3 + t2; t1)

TOF (C1 + C2; t2) =

= TOF (C1 +C3 + t2; t1) TOF (C1 +C2 +C3; t1) (2)

Class 3. This class (Figure 4c) includes templates 2.1,
3.1-3.3 (Figure 3) and can be described by the formula:

TOF (C1 + C2 + t2; t1) TOF (C1 +C2 +C3; t1)

TOF (C1 +C3; t2) =

= TOF (C1 + C3; t2) TOF (C1 +C2 + t2; t1) (3)

Template 5.1 can be generalized, but this generalization
is not considered here since template 5.1 does not decrease
the number of gates in a network. However, use of a gen-
eralization of this template may be beneficial since it in-
troduces smaller gates that can be used by other templates.
Even if they are not used, it is beneficial to have gates with
fewer controls, since for some technologies their costs are
lower. For instance, in quantum technology the cost of a
Toffoli gate is 7 times higher than that of a CNOT gate [1].
As the number of controls of the Toffoli gate grows, the re-
lation between the costs of generalized Toffoli and CNOT
gate grows quadratically if no additional garbage is allowed
and linearly if garbage is allowed [1].

The correctness of formulas (1)-(3) is easily proven. A
more interesting question is whether the set of these three
classes of templates together with the two rules (moving
rule, deletion rule) is a complete set of simplification rules
for a sequence of three generalized Toffoli gates overn

lines. To check this, we ran a program which exhaustively
searches all sequences of three gates built on three lines to
check whether the sequence can be reduced by means of
templates from the three classes and the two rules. This

program found no new templates. Thus, we conclude that
the three classes together with moving and deletion rules
form the complete simplification tool for any Toffoli net-
work with up to three gates.

4 Templates - a New Approach

Further we generalize the template tool, but assume the
following limitations: the model gates should necessarily
be self-inverses. This limits the generality of a template, but
for the goals of the current paper this does not change the
essence, since a generalized Toffoli gate is a self-inverse.

Although the template description in Section 3 is formal
and shorter (3 classes and 2 rules in comparison to 14 tem-
plates with 2 rules as used before), it can be simplified even
further. For this we need a new understanding of templates.

Let asizem template be a sequence ofm gates (a cir-
cuit) which realizes the identity function. Any template of
sizem must be independent of templates of smaller size,i.e.
for a given template sizem no application of any set of tem-
plates of smaller size can decrease the number gates. The
templateG0 G1::: Gm�1 can be applied in two directions:

1. Forward application: A piece of net-
work that matches the sequence of gatesGi

G(i+1) mod m::: G(i+k�1) mod m of the template
G0 G1::: Gm�1 exactly, is replaced with the sequence
G(i�1) mod m G(i�2) mod m::: G(i+k) mod m without
changing the network’s output, wherek 2 N; k � m

2 .

2. Backward application: A piece of net-
work that matches the sequence of gates
Gi G(i�1) mod m::: G(i�k+1) mod m exactly, is
replaced with the sequenceG(i+1) mod m

G(i+2) mod m : : :G(i�k) mod m without changing the
network output, wherek 2 N; k � m

2 .

These definitions of template application need a correct-
ness proof—the network output should not be changed for
each of the listed operations. Correctness can be verified
as follows. Note, that a reversible cascade that realizes a
functionf read in reverse (from the outputs to the inputs)
realizesf�1, its inverse.

First, we prove the correctness of the forward applica-
tion of a template starting with elementG0. The operation
for this case requires substitution ofG0 G1::: Gk�1 with
Gm�1 Gm�2::: Gk. SinceG0 G1::: Gm�1 realizes the
identity function,Gk Gk+1::: Gm�1 realizes the inverse of
the function realized byG0 G1::: Gk�1. Therefore, read
in reverse orderGk Gk+1::: Gm�1 realizes the inverse of
the inverse,i.e. the function itself. Thus, the function re-
alized byG0 G1::: Gk�1 was substituted by itself, which
does not change the output of the network. Correctness of
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Figure 4. Toffoli templates.

the remaining forward applications can be proven by using
Lemma 1.

Correctness of all reverse applications follows from the
proof above and from the observation that the inverse of the
identity function is the identity function.

Next, observe that a template can be used in both direc-
tions, forward and backward as the formulas show. Also,
we can start using it from any element. Thus, it is better to
think of a template as a cyclic sequence. The correctness of
viewing a template as a cyclic sequence is proven with the
following Lemma.

Lemma 1. If a networkG0 G1::: Gm�1 realizes the iden-
tity function, then for anyk-shift, Gk G(k+1) mod m : : :

G(k�1) mod m realizes the identity.

Proof. We prove the Lemma for 1-shift,
G1 G2::: Gm�1 G0. Then all k-shifts can be proven
by applying the 1-shiftk times. The proof for a 1-shift
follows from:

Id = G0 G1::: Gm�1

G0 Id = G0 G0 G1::: Gm�1

G0 = G1 G2::: Gm�1

Id = G0 G0 = G1 G2::: Gm�1 G0:

The conditionk �
m

2
is used as we do not want to in-

crease the number of gates when a template is applied and
equality yields a simpler classification scheme.

The following is a classification of templates up to size
7. We use the notation introduced in the previous section.

� m=1. Size 1 templates do not exist, since each gener-
alized Toffoli gate produces a change of its input.

� m=2. There is one class of templates of size 2 (Figure
5a), and it is the deletion rule which is described by the
sequence (AA)

TOF (C1; t1) TOF (C1; t1):

� m=3. There are no templates of size 3.

� m=4. There is one class of templates (Figure 5b), the
moving rule from the previous section, which can be
written as follows (ABAB):

TOF (C1 + C2; C4 + C5) TOF (C1 +C3; C4 + C6)

TOF (C1 +C2; C4 +C5) TOF (C1 + C3; C4 +C6):

The set notation is used to describe the targets since
they may intersect or not, which is impossible to de-
scribe in one formula using theti notation for the tar-
gets. The upper template in Figure 5b hasjC4j = 0
which results injC5j = 1 and jC6j = 1, when the
lower hasjC4j = 1 resulting injC5j = 0 andjC6j = 0.

� m=5. Surprisingly, there is only class of template of
size 5 (Figure 5c), which unites the three earlier classes
(1)-(3) and includes templates 2.1-2.2, 3.1- 3.3 and
4.1-4.6 from Figure 3. The class can be written as
(ABABC):

TOF (C1 + C2 + t2; t1) TOF (C1 + C3; t2)

TOF (C1 + C2 + t2; t1) TOF (C1 + C3; t2)

TOF (C1 + C2 + C3; t1):

� m=6. There are two classes here (Figure 5d), and they
are described by formulas (ABACBC)

TOF (C1 + t2; t1) TOF (C1 +C2 +C3 + t1; t2)

TOF (C1 + t2; t1) TOF (C1 +C2 + t2; t1)

TOF (C1 +C2 +C3 + t1; t2) TOF (C1 +C2 + t2; t1)

and (ABACDC)

TOF (C1+ t2; t1) TOF (C1 + C2 + C3 + t1; t2)

TOF (C1+ t2; t1) TOF (C1 + C2 + t1; t2)

TOF (C1 +C2 +C3 + t2; t1) TOF (C1 +C2 + t1; t2):

Note, the two formulas for the classes look very simi-
lar, and, in fact using Fredkin gates, they can be gen-
eralized to form one very simple templateFRE(C1+
C2+C3; t1+ t2) FRE(C1+C2+C3; t1+ t2) (where
FRE(C; t1+ t2) is a gate which swaps values of bits
t1 andt2 if, and only if, setC has all ones on its lines),
but we do not pursue this here as we are restricting our
attention to generalized Toffoli gates.
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Figure 5. All templates for m � 7.

� m=7. There are no templates of size 7.

To verify the correctness of the above classification, we
must show that no template of larger size can be reduced to
a template of smaller size, which can be done by hands.

4.1 Completeness

First, we wrote a program which builds all the 4-input 4-
output circuits of size 7 that realize the identity function and
tries to apply the templates. The program result shows that
the set of our 5 templates (AA, ABAB, ABABC, ABACBC,
ABACDC) is the complete set of templates of size 7 or less
for 4 inputs and less.

The mathematical proof of completeness of this set for
any number of inputs is harder. For templates of size 2 it
can be done by hand, since there are not so many choices to
look at. For templates of size 4 and 5 the following lemmas
(proven in [7]) are useful.

Lemma 2. A sizem template has at mostbm
2
c different

lines with EXOR signs.

Lemma 3. Given a template of sizem where all gates have
the same target line (i.e. the EXOR appears on a single
line), thenm is even and all gates can be grouped as pairs
of equal gates.

Use of Lemma 2 allows us to say that all the templates
of size 4 have EXOR signs on either two lines (two signs on
one and two on the other) or 1 line (all 4 on 1 line). In the
last case use Lemma 3. Thus, an exhaustive search proof
becomes reasonable. For the size 5 templates we can guar-
antee that they all will have exactly two lines with EXOR.
Note, that Lemma 3 proves that the only two templates
which have only one line affected with EXOR are the dupli-
cation deletion rule and the passing rule, all other identities
of this type are applications of the above rules.

Size (a) (b) (c) (d)
17
16
15 2
14 22 8
13 112 43 10
12 432 215 91
11 1191 651 410
10 2575 1776 1458
9 5116 4038 3846
8 7842 7405 7412 577
7 8989 9716 10082 10253
6 7478 8573 8977 17049
5 4314 5167 5294 8921
4 1682 2055 2066 2780
3 463 558 559 625
2 89 102 102 102
1 12 12 12 12
0 1 1 1 1

WA: 7.25 6.92 6.83 5.87

(a): before template matching

(b): after template matching

(c): modified template matching

(d): optimal sizes [14, 13]

Table 1. Number of reversible functions using
a specified number of gates for n = 3.

5 Experimental Results

We wrote programs to verify the correctness of our re-
sults, build the new templates and apply them. The results
of the verification program were discussed in above.

The program which simplifies the networks works as fol-
lows. First, it is convenient to store template ABAB as
a separate rule which helps to bring the gates together to
match a template. Then, the circuit is simplified as fol-
lows. We call this the “moving rule”. For the hierarchy
of templates AA� ABABC � ABACBC � ABACDC try
to match as many gates of a template as possible by look-
ing ahead in the network and using the moving rule. If a
template can be applied, apply it for the greatest applica-
tion parameterk possible. After applying any template start
trying to apply the templates in hierarchical order from the
very beginning. If none of the templates can be applied, the
simplification process stops.

The template simplification tool was tested on all size
3 reversible functions synthesized by the algorithm from
[10]. We also investigated amodified template matching
procedure. It works as follows. Normally, a section of the
circuit is only replaced when more than half of the gates



in the templates are matched. However, it may be advanta-
geous to replace the gates if exactly half of the gates match,
provided that the gates that replace them have fewer con-
trol lines. Empirical results show that this can lead to re-
ductions in the size of the circuit. Further reduction of the
size of synthesized networks can be achieved when template
simplification tool is applied in conjunction with simulated
annealing technique. However, the results reported in Table
1 are good themselves: more than50% of the synthesized
networks are optimal.

Table 1 shows the number of functions for each gate
count and the average number of gates required.

a

b

c

       d
(constant 0)

garbage

carry

sum

propogate

A B C

Figure 6. Optimal circuit for a full adder.

Example 1. We took a network for three bit adder produced
by the synthesis algorithm presented in [10] (Figure 6A)
and applied our program to simplify it. As expected, the
program used a size 5 template and matched 3 gates (Figure
6B). Thus, they were substituted by the remaining 2 gates of
the template read in reverse order (Figure 6C). This circuit
is optimal, since no further reduction is possible. Suppose,
an adder can be realized with 3 gates or less. Then, addition
of these gates to the end of the built size 4 cascade results
in a new template which was proven (by enumeration) not
to exist for size 7 and less and four inputs.

6 Conclusion

The larger the set of templates, the more reductions can
be done. For instance, if for some natural numberk k-
optimality is defined as the impossibility of simplifying a
network with size2k�1 and less templates, then all the tem-
plates of sizen � 2n+1� 1 and less form the complete sim-
plification tool for the synthesis method provided in [10].
The theoretical algorithm from [10] produces a valid net-
work with at mostn � 2n gates, therefore if this network is
not optimal and was not simplified by all templates with size
n �2n+1� 1 and less, not all the templates are listed. Thus,
we come to a contradiction which proves the statement.

In this work, we built the set of templates and showed a
procedure allowing us to create 4-optimal circuits for net-
works with number of inputs less than or equal to 4. We
generalized these templates and proposed them as the set
of rules which produces a 4-optimal network out of those
given. The template tool was generalized and shown in a
readily usable form.
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