
Garbage in Reversible Designs of Multiple Output Functions

Dmitri Maslov and Gerhard W. Dueck�

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3 CANADA

Abstract

In this paper we analyze the number of garbage
outputs that must be added to a multiple output
function to make it reversible. We give the precise
formula for the theoretical minimum. For some
benchmark functions, we calculate the garbage re-
quired by some proposed reversible design meth-
ods and compared it to the theoretical minimum.
Based on the information about garbage we sug-
gest a new reversible design method, that produces
the minimumnumber of garbage outputs. Finally,
we show that our proposed reversible logic struc-
ture may have some application in conventional
logic design.

1 Introduction

Energy loss is an important consideration in dig-
ital design. Part of the problem of energy dissi-

pation is related to non-ideality of switches and
materials. Higher levels of integration and the use
of new fabrication processes have dramatically re-
duced the heat loss over the last decades. The
other part of the problem arises from Landauer's
principle [7] for which there is no solution. Lan-
dauer's principle states that logic computations
that are not reversible, necessarily generate heat
kT � log 2 for every bit of information that is lost,
where k is Boltzmann's constant and T the tem-
perature. For room temperature T the amount of
dissipating heat is small (i.e. 2:9�10�21 joule), but
not negligible. The design that does not result in
information loss is called reversible. It naturally
takes care of heating generated due to the informa-
tion loss. This will become an issue as the circuits
become smaller.

Quantum computations are known to solve
some exponentially hard problems in polynomial

�Research supported by the NSERC (CANADA).

time [10]. All quantum computations are necessar-
ily reversible. Therefore research of reversible logic
is bene�cial to the development of future quantum
technologies: reversible design methods might give
rise to methods of quantum circuit construction,
resulting in much more powerful computers and
computations.

Most gates used in digital design are not re-
versible. For example the AND, OR, and XOR
gates do not perform reversible operations. Of
the commonly used gates, only the NOT gate is
reversible. A set of reversible gates is needed
to design reversible circuits. Several such gates
have been proposed over the past decades. Among
them are the controlled-not (CNOT) proposed by
Feynman [3], To�oli [13], and Fredkin [4] gates.
These gates have been studied in detail. How-
ever, good synthesis methods have not emerged.
Shende et al. [12] suggest a synthesis method that
produces a minimal circuit with up to 4 input
variables. Iwama et al. [5] describe transforma-

tion rules for CNOT based circuits. These rules
may be of use in a synthesis method. Miller [8]
uses spectral techniques to �nd near optimal cir-
cuits. Mishchenko and Perkowski [9] suggest a
regular structure of reversible wave cascades and
show that such a structure would require no more
cascades than product terms in an ESOP realiza-
tion of the function. In fact, one would expect
that a better method can be found. The algo-
rithm sketched in [9] has not been implemented.
A regular symmetric structure has been proposed
by Perkowski et al. [11] to realize symmetric func-
tions.

Traditional design methods use, among other
criteria, the number of gates as complexity mea-
sure (sometimes taken with some speci�c weights
re
ecting area of the gate). From the point of
view of reversible logic we have one more fac-
tor, which is more important than the number of
gates used, namely the number of garbage out-

puts. Since reversible design methods use re-
versible gates, where number of inputs is equal to
the number of outputs, the total number of out-
puts of such a network will be equal to the number
of inputs. The existing methods ([9]) use analogy
of copying gates to keep information on the input
of the network, therefore introducing the constant
inputs and garbage outputs|information that we
do not need for the computation. In some cases
garbage is unavoidable. For example, a single out-
put function of n variables will require at least
n � 1 garbage outputs, since the reversibility ne-
cessitates an equal number of outputs and inputs.

The importance of minimizing the garbage is
illustrated with the following example. Say we
want to realize a 5 input 3 output function in a re-
versible method on a quantum computer, but the
design requires 7 additional garbage outputs, re-
sulting in a 10-input 10-output reversible function.
In the year 2002 the best quantum computer we
have is a 7 qubit computer [1], therefore we will
not be able to implement this design. In other
words, in case of choosing between increase of the
garbage and increase of the number of gates to be
used in a reversible implementation, the preference
should be given to the design method delivering
the minimum garbage. In this case we will be able
to build the device, while it is impossible with the
other method.

We propose a structure and a systematic de-
sign method that require the minimal number of
garbage outputs. This work focuses on analyzing
the conditions for minimal garbage and introduces
the model. Since the synthesis of reversible func-
tions di�ers from the conventional logic synthesis,
the following restrictions apply: fan-out and feed
back are not permitted [10].

2 Theoretical Minimum

In this paper we de�ne reversible function as fol-
lows.

De�nition 1. The function f(x1; x2; :::; xn) of n
Boolean variables is called reversible if:

1. the number of outputs is equal to the number
of inputs;

2. any input pattern maps to a unique output
pattern.

I

In other words, reversible functions are those,
that perform permutations of the set of input vec-
tors.
We illustrate the need for garbage outputs

and/or constant inputs with the following exam-
ples.

Example 1. A 2-input 2-output function given by
formula (x; y)! (�x; x� y) is reversible. The cor-
rectness of this statement can be veri�ed by look-
ing at the truth table below.

x y �x x� y

0 0 1 0
0 1 1 1
1 0 0 1
1 1 0 0

Example 2. A 2-input 1-output function (x; y)!
x�y is not reversible, since it is not an n-input n-
output function. Although, it can easily be made
reversible by adding output �x. Note, that for this
example we do not need to add an input.

Example 3. Consider the function (x; y) ! xy

(where concatenation denotes the logical AND op-
eration). It is impossible to make it reversible by
adding a single output. One way to make it re-
versible is to add one input and two outputs so
that the function becomes as shown in Table 2.
The output vector of the desired function can be
observed in the third output column of the table
when the value of variable z = 0 (shown in bold
font). To realize the function, the input z must
be the constant zero, and two garbage outputs are
present. The To�oli gate [13] realizes this func-
tion.

x y z x y z � xy

0 0 0 0 0 0

0 0 1 0 0 1
0 1 0 0 1 0

0 1 1 0 1 1
1 0 0 1 0 0

1 0 1 1 0 1
1 1 0 1 1 1

1 1 1 1 1 0

Table 1: Reversible function computing the logical
AND.

The previous examples show the necessity of
adding inputs and/or outputs to make a function
reversible. This leads to the following de�nition.

De�nition 2. Garbage is the number of out-
puts added to make an n-input k-output function
((n; k) function) reversible. I

We use the words \constant inputs" to denote
the inputs that were added to an (n; k) function
to make it reversible. In the previous example a
single constant input was added, namely the vari-
able z. The meaning of the pre�x \constant" of
the term is easy to see from the same example.
The target output is realized when the input is
the constant 0.
The following simple formula shows the relation

between garbage outputs and constant inputs

input+ constant input = output+ garbage:

Theorem 1. For an (n; k) function the mini-

mal garbage to be added to make it reversible is

dlog(M)e, where M - maximum of number of

times an output pattern is repeated in the truth

table.

Proof. The output of a reversible function is a
permutation of its input. Therefore, the obsta-
cle in having a multiple output function being
reversible, is that some output pattern appears
more than once. In order to separate these out-
puts we have to introduce new inputs to assign
additional bits to the output vector. If an out-
put (o1; o2; :::; ok) has the largest occurrence in the
output vector and it appears M times, in order to
separate di�erent occurrences of it, we need to in-
troduce dlog(M)e new output bits. dlog(M)e new
bits will be capable of creating 2dlog(M)e �M new

patterns. And, since the output (o1; o2; :::; ok) had
the largest occurrence among all other outputs, all
other outputs can be easily separated one from an
other by means of dlog(M)e bits. �

3 Analysis of Garbage in Ex-

isting Methods

In this section we analyze garbage in proposed
designs. Several design methods (for example
[6], [12], and [8]) start with a reversible func-
tion. Garbage is introduced during a prepossess-
ing phase, during which the function is made re-
versible. Note that there are many ways in which
the the value of the garbage outputs can be set.
Di�erent settings of these variables will lead to re-
sults with varying complexity.
Mishchenko and Perkowski [9] suggest a cascade

reversible design, called reversible wave cascade.

The design is shown in Fig. 1A. For the purposes of
garbage analysis here we concentrate only on the
number of garbage outputs added. Trivial anal-
ysis of the number of garbage bits shows that in
the proposed model the garbage will be (n+M),
where n is the number of inputs of multiple out-
put function f and M is the number of cascades
(Maitra terms) in the particular realization of a
function.

Perkowski et al. [11] suggest a regular struc-
ture for symmetric (n; k) function reversible de-
sign, called RPGA (Fig. 1B.). The synthesis for
a symmetric function, as it is easy to see from
the structure Fig. 1B, will require the garbage of
sum of the number of inputs and the number of
gates used (additional wires are reserved for the
outputs), which gives

n +
n(n� 1)

2
=

n(n+ 1)

2
:

given the models discussed above, we calculated
the number of garbage outputs for some bench-
mark functions. The following table summarizes
the result for methods suggested in [9] and [11]
for some benchmark functions used in [9]. The
�rst column shows the name of the function, the
second and third are number of input and output
bits correspondingly. The fourth column is num-
ber of wave cascades, the �fth is the wave cascade
method garbage, which is the sum of number of
output bits and number from the previous col-
umn. The sixth column shows the garbage bits
in RPGA method given by the formula described
above. Since every non-symmetric function can be
made symmetric by adding new outputs, the pro-
cedure of making the function reversible can be
done prior to the usage of the algorithm as authors
of [11] suggest. In general, such a procedure re-
quires many additional inputs, resulting in a high
\garbage price". In cases when the function is not
symmetric we put the sign \>" to indicate that
the actual garbage is higher. The seventh column
is maximal output occurrence, logarithm of which
added to the number of function inputs gives the
last column, which shows the minimal garbage to
make correspondent function reversible.

We conclude this section with the observation
that both analyzed methods produce a number of
garbage outputs, that is far from the theoretical
minimum. In the next section we introduce a new
regular structure with better garbage characteris-
tics, in fact, the amount of garbage is the theoret-
ical minimum.

0

...

0

...

0

...

...

...

...

...

1

x

x

x

x1

2

3

n

F

x xx

x1

2 3 n

1

1 1 1

1

1

...

...

... ...

f f f1 2 k

0 0 0

A. Reversible wave cascades B. RPGA

Figure 1: Reversible design methods

name in out VCC VCG RPGAG max out occur min garbage

5xp1 7 10 31 38 � 28 1 0

9sym 9 1 51 60 45 420 9

b12 15 9 28 43 � 120 6944 13

clip 9 5 63 72 � 45 37 6

in7 26 10 35 61 � 351 11651840 24

rd53 5 3 14 19 15 10 4

rd73 7 3 36 43 28 35 6

rd84 8 4 58 66 36 70 7

sao2 10 4 28 38 � 55 513 10

t481 16 1 13 29 � 136 42016 16

vg2 25 8 184 209 � 325 12713984 24

Table 2: Experimental results

4 A new Structure

Many di�erent reversible gates have been intro-
duced in literature. One of the �st gates was the
CNOT gate, which capable of producing the \ex-
clusive or" of two input bits as the second output
and the �rst output is equal to the �rst input.
A generalization of CNOT is a 3-input 3-output
To�oli gate. The To�oli gate negates the third

CNOT

x

y z

x

y + x

x x

y y

z + xy

Toffoli

Figure 2: CNOT and To�oli gates.

bit i� the �rst two bits are 1. Fig. 2 shows both
gates as they are commonly drawn. In the picto-
rial representation each of functions, \�" denotes
the product and \�" the \exclusive or".
To�oli [13] introduces n-bit input n-bit output

((n; n) gate) gate which leaves �rst (n�1) bits un-
changed and negates the last bit if all others are 1.
The authors of [5] go further and suggest usage of
the generalized (n; n) CNOT (To�oli) gate, which
changes one bit if some of the k bits are 1 (Fig. 3).
The changing bit (called the target) may also be
in any position.
The set of gates that we use in our structure is

generalized. We use the same pictorial represen-
tation and take (n; n)-gates where each horizontal
line is of the following 4 types (Fig. 4):

1. Target line. Each gate should have only one
target line appearing at some position j.

x x

x + x x x

x

x

x

x

x

11

2 2

3 3

nn i i i1 2 k
...

Figure 3: Generalized CNOT gate.

xi
Type 1.

xi
Type 2.

xi
Type 3.

xi
Type 4.

Figure 4: Horizontal line types.

2. Positive control line. If the input on this
line is zero, the value of target line will not
change. If it is one, look at the remain-
ing positive/negative control lines to deter-
mine whether the value on the target line is
negated.

3. Negative control line. If the input on this
line is one, the value of target line will not
change. If it is zero, look at the other re-
maining positive/negative control lines to de-
termine whether the value on the target line
is negated.

4. Don't care line. The value on this line does
not a�ect any output.

The vertical line intersects horizontal lines
of types 1-3. In other words, for the given
set of inputs fx1; x2; :::; xng, subset of variables
fxi1 ; xi2; :::; xikg, integer j 2 f1; 2; :::; ng; j 6=
i1; j 6= i2; :::; j 6= ik and set of � k < n Boolean
numbers f�1; �2; :::; �kg the family consists of
gates that leave all the bits unchanged, except for
the j-th bit, whose value is xj�x

�1
i1
x�2i2 :::x

�k
ik
, where

x�i is xi if � = 1 and �xi if � = 0. If the term
x�1i1 x

�2
i2
:::x�kik consists of zero variables, we assign

it a value of 1.

The graphical representation of a gate is shown
in the Fig. 5.

The network we want to build is a cascade con-
sisting of the set of described gates.

Example 4. Take a reversible function
(x1; x2; x3) ! (x1 � �x2x3; �x2; x1 � x2x3)

... ...

x
x
x
x
x

xi

i

i1

4

i

i

i

2

3

5

Type 4.

n

Type 4.
Type 2.

Type 3.

Type 4.

Type 1.

Figure 5: Scheme model

(output is written as a set of minimal length
EXOR polynomials). The fact that the function
is reversible is easy to see from its truth table
below. A possible implementation is shown in
(Fig. 6).

x1 x2 x3 f1 f2 f3
0 0 0 0 1 0

0 0 1 1 1 0

0 1 0 0 0 0

0 1 1 0 0 1

1 0 0 1 1 1

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 1 0 0

Table 3: Truth table

.
.
.

x

x

x

1

2

3

Q QQ 4,1,4 2,4,11,3,2

Figure 6: Scheme

In order to formulate and prove some results we
need to enumerate the set of all gates considered in
the structure. Every gate can be uniquely speci�ed
by describing the set of horizontal lines. From now
on, we will keep notation Qa1;a2;:::;an for the gate
consisting of wire types a1; a2; :::; an in the order
of appearance from the top to the bottom.

Lemma 1. The set of all possible gates in the pro-
posed structure consists of n � 3n�1 elements.

Proof. Let's distribute lines among the n places
we have to �ll in order to de�ne a gate. Initially,

there are n places for the target line, after assign-
ing which there are (n � 1) places left to be oc-
cupied by positive and negative control and don't
care lines to be placed in any combination. The
number of ways to put them is, therefore, is 3n�1.
This gives the total of n � 3n�1 di�erent gates. �

Theorem 2. (lower bound) There exists a re-

versible function that requires at least 2n

ln 3
+ o(2n)

gates.

Proof. The number of all reversible functions of
n variables is 2n! (as the number of permutations
of 2n elements). The number of di�erent gates is
n3n�1. Assuming that by taking some of gates
and building networks with di�erent orders gives
di�erent reversible functions (which is not always
true, since, for instance, the gate Q1;4;4;:::;4, or �x1
placed two times at a row does nothing) would
give us complexity for the hardest function to be
logn3n�1(2

n!). This means that there exists a re-
versible function which can be realized only with a
complexity not less than logn3n�1(2

n!). Using the
formula ln(k!) = k lnk�k+o(k) for k = 2n write:

logn3n�1(2
n!) =

ln(2n!)

ln(n3n�1)
=

2n ln 2n � 2n + o(2n)

ln(3n�1) + ln(n)
=

n2n � 2n + o(2n)

(n � 1) ln3 + ln(n)
=

(n� 1)2n + o(2n)

(n� 1) ln3 + ln(n)
=

2n + o(2n=n)

ln 3 +
ln(n)

n� 1

=
2n

ln 3
+o(2n):

QED �

Theorem 3. (upper bound) Every reversible

function can be realized with no more than n2n

gates.

Proof. We use the idea similar to bubble sorting
in our constructive proof.

First, note that the set of gates that do not
have \don't care" line, i.e. the set Q0 =
fqa1;a2;:::;anja1; a2; :::; an 2 f1; 2; 3g; & 9! ai = 1g
interchange the two output strings (3 � a1; 3 �
a2; :::; 3�ai�1; x; 3�ai+1; :::; 3�an) and (3�a1; 3�
a2; :::; 3� ai�1; �x; 3� ai+1; :::; 3� an) in the right
part of the truth table (natural numbers 0 and 1
should be treated as Boolean 0 and 1 correspond-
ingly). This also means that a single gate changes
the two Hamming distance-one strings in the out-
put part of the truth table.
Second, let's de�ne a special total order on the

set Q0 of gates. In this order:

� strings with less number of ones precede those
with larger number of ones;

� strings with equal number of ones are ar-
ranged in the lexicographical order.

In other words, the order is as follows:
(0; :::; 0; 0) � (0; :::; 0; 1) � (0; :::; 0; 1; 0) � ::: �

(1; 0; :::; 0; 0) � (0; :::; 0; 1;1) � (0; :::; 0;1;0; 1) �
::: � (1; 0; :::;0;1) � ::: � (1; 1; :::; 1; 0) �

(1; :::; 1; 1). We will also use standard order on
Boolean constants: 0 � 1

The method is to copy the �rst part of the truth
table to the second, which corresponds to the sit-
uation when no network is built yet, therefore the
output is equal to the input. Then, apply opera-
tions de�ned by the gates from the set Q0 to bring
each string to its place starting from the string
with the lowest order and �nishing with the string
with the highest order.

Take any string (a1; a2; :::; an) and bring it to
its place. If the string is already at its place, we
are done. If it is not, by induction, its place is
occupied by a string of higher order. This is true,
since by induction the strings of lower order are
already at their places and no string is repeated.
Therefore, the place of (a1; a2; :::; an) is occupied
by a (b1; b2; :::; bn). Compose string (a1 _ b1; a2 _

b2; :::; an _ bn).

Step 1: increase the order of the tar-

get. Take the string (b1; b2; :::; bn), �nd minimal
i, such that ai = 1 and bi = 0 and exchange
distance-one strings (b1; b2; :::; bn) and (a1_b1; a2_
b2; :::; ai _ bi; bi+1; :::; bn). Now, the place where
we wanted to see (a1; a2; :::; an) is occupied by
Inc1 = (a1 _ b1; a2 _ b2; :::; ai _ bi; bi+1; :::; bn).
Now search for the smallest j such that j > i,
aj = 1 and bj = 0 and when it is found, exchange
Inc1 = (a1_ b1; a2_ b2; :::; ai_ bi; bi+1; :::; bn) with
higher order string Inc2 = (a1_ b1; a2_ b2; :::; aj_

bj; bj+1; :::; bn). Continue this changes until we
have string Inck = (a1 _ b1; a2 _ b2; :::; an _ bn)
at the desired position of (a1; a2; :::; an).

Step 2: decrease the order of the source.

Take string (a1 _ b1; a2 _ b2; :::; an_ bn), �nd min-
imal i, such that ai = 0 and ai _ bi = 1 and ex-
change distance-one strings (a1_b1; a2_b2; :::; an_
bn) and (a1; a2; :::; ai; ai+1_bi+1; :::; an_bn). If the
stringsDec1 = (a1; a2; :::; ai; ai+1_bi+1; :::; an_bn)
and (a1; a2; :::; an) are not equal (otherwise we are
done), (a1; a2; :::; an) � Dec1 and there exists j >
i, such that aj = 0 and aj_bj = 1. In this case ex-
change strings (a1; a2; :::; ai; ai+1_bi+1; :::; an_bn)
and (a1; a2; :::; ai; aj+1 _ bj+1; :::; an_ bn) and call

last Dec2. Again, in case ifDec2 6= (a1; a2; :::; an),
keep decreasing the order by the suggested method
until we get Decs = (a1; a2; :::; an) and then we are
done - (a1; a2; :::; an) is at its place.

Note, that in order to bring (a1; a2; :::; an) to
its place we didn't touch strings with lower order,
therefore, they will stay at their correct places.
Second, the number of steps required to bring any
(a1; a2; :::; an) is correspondent sum k + s which
is less than n, since the \increase order" and \de-
crease order" changes were made at di�erent bits.
There are 2n binary strings, so the method re-
quires at most n � 2n steps. �

Note, the constructive proof of this theorem
also provides the following statement: any re-
versible function can be realized in terms of cas-
cades of the gates from set Q.

Since the functions are reversible, the suggested
method can be used in both directions:

� forward: as it is described in the theorem;

� backwards: start with the output part of the
truth table and using the same method bring
it to the �rst part (where all the Binary n-
tuples are ordered lexicographically). The re-
sulting network in this case will realize inverse
permutation f�1. But, in order to get net-
work for the function f it is enough to run
obtained network for f�1 in reverse direction.

Example 5. Let's illustrate the proof of the the-
orem on (3; 3) function f with the output vector
(0; 1; 2; 4; 3;5;6; 7). This function was introduced
by Perkowski and is used in [8] as benchmark func-
tion. Here we use the backwards method.

� The �rst three outputs (0; 0; 0), (0; 0; 1), and
(0; 1; 0) are at the correct place.

� Output (1; 0; 0) (color it gray), which is not
in its place, which is occupied by (0; 1; 1)
(where the left arrow shows). In order to
bring (1; 0; 0) to its place, run steps 1 and 2
from the algorithm.

{ Increase order: interchange (0; 1; 1) with
(1; 1; 1) (shown by an arrow from left
side).

{ Decrease order: interchange (1; 1; 1)
with (1; 0; 1).

{ Decrease order: now we can bring
(1; 0; 0) to its place by changing it with
(1; 0; 1).

Note, in order to bring (1; 0; 0) we
touched strings with the higher order
only ((0; 1; 1); (1; 1; 1) and (1; 0; 1)).

� Take the next on the order element - (0; 1; 1).
It is not on its place, so we color it gray, �nd
its desired place and put an arrow from right
pointing the target place.

{ Increase order: interchange (1; 0; 1) with
(1; 1; 1) (shown by an arrow from left
side).

{ Decrease order: interchange (1; 1; 1)
with (0; 1; 1) to put the output string on
its place.

Again, no lower order strings were used:
(0; 1; 1) � (1; 0; 1) � (1; 1; 1).

� Strings (1; 0; 1); (1; 1;0) and (1; 1; 1) are at
their place, so the network is built.

In this case the method gave an optimal networks.
However, we would not expect this in general,
since this method only uses a small subset of the
gates available.

5 Non-Reversible Logic Ap-

plications

The suggested method is also applicable to non-
reversible logic design if the proposed gates
are interpreted as correspondent blocks of non-
reversible gates NOT, AND and EXOR. The prob-
lem of function minimization then becomes a prob-
lem of minimization the number of standard NOT,
AND and EXOR gates in an implementation. If
the �nal complexity in the suggested method will
be less than the one of a PLA, the method may
be bene�cial. We suggest the following method of
eliminating NOT gates from the structure. First,
in order to di�er non-reversible logic design case
from the described in previous sections reversible
logic design the \lines" will be called \wires". This
makes sense from the point of view of physical im-
plementation. In some designs like the one shown
in Fig. 5 two NOT gates may be subsequent. From
the point of view of reversible logic we assume we
cannot mutually erase them, but in non-reversible
case the two subsequent NOT are redundant. For
the example from Fig. 5 such a NOT gate pruning
gives the design shown in Fig. 8. In general, we
divide any gate from the set Q into three logical
parts:

000
001
010

011
100

101
110
111

Increase
order.

000
001
010

011

100

101
110

111

Decrease
order.

000
001
010

011

100
101

110
111

Decrease
order.

000
001
010

011

101
100

110
111

Increase
order.

000
001
010

011

111
100

110
101

Decrease
order.

000
001
010

111

011
100

110
101

Figure 7: Building a network

.
.
.

x

x

x

1

2

3

Figure 8: Pruned scheme

� First NOT array: the set of all NOT gates
before the vertical line (wire).

� AND-EXOR array: the set of all AND and
EXOR gates from the vertical line (wire).

� Last NOT array: the set of all remaining
NOT gates.

The general rule of pruning NOT gates is as fol-
lows:

1. De�ne TEMP array - array of NOT gates of
the length n, by the de�nition containing not
more then one NOT gate at each place. Ini-
tially no NOT gate is presented in the TEMP
array.

2. Starting from the beginning of a particular
network keep NOTs from the �rst NOT array
of a �rst Q1 2 Q gate together with AND-
EXOR and call this structure a block. The
last NOT array of gate Q1 call TEMP. If Q1

was one of �x1; �x2; :::; �xn, add it to TEMP.

3. Take next gate Q2 2 Q from the network.
If Q2 62 f �x1; �x2; :::; �xng update TEMP array -
\exclusive or" TEMP with �rst NOT array of
Q2: keep modulo-2 number of sum of number
of NOTs at each wire. Unite TEMP array
with AND-EXOR array (create a new block),

call Q2 := Q1 and go to 2. If the Q2 gate
was one of gates �x1; �x2; :::; �xn, update TEMP
array - \exclusive or" TEMP with Q2, call
Q2 := Q1 and go to 2.

4. When the network is over, create last block -
put TEMP array in it.

5. Finally, there might be a case, when a piece of
wire consists of gates type 1, 2, 5 and 6. For
each of these pieces leave zero or one NOT
gate, according to the parity of number of
NOT gates seen on the piece. Although such
a case is rare, it may give some improvement.

It is easy to see that the network, consisting
of described blocks is equivalent to the network
built from gates Q. The number of blocks of the
pruned networks is the number of gates of initial
Q-network minus number of gates from the set
f �x1; �x2; :::; �xng of this Q-network plus the TEMP-
array. Therefore, both, the set of NOT gates and
the length of the structure (number of gates of Q-
network) can be only decreased.

The set of all blocks can be described similarly
to the set of all Q-gates by naming all the hori-
zontal wires (Fig. 9):

xi
Type 4.

xi
Type 5.

xi
Type 6.

xi
Type 1.

xi
Type 2.

xi
Type 3.

Figure 9: Horizontal wire types.

1. Negative target wire: NOT gate followed by
EXOR gate.

2. Positive target wire: EXOR gate only.

3. Negative control wire: NOT followed by AND
gate.

4. Positive control wire: AND gate only.

5. Negative don't care wire: NOT gate.

6. Positive don't care wire: no gate.

Where each block contains exactly one wire of type
1 or type 2.

Further simpli�cation of the non-reversible ap-
plication structure can be done by combining the
gates whose sets of input variables do not intersect
to form one layer.

6 Conclusion

In the presented work we analyzed an important
factor in reversible logic synthesis, the amount of
garbage. We suggested the structure to realize re-
versible functions as cascades of gates from some
set Q and proved that for any given multiple out-
put function a reversible network can be built.
A theoretical method of the network construction
was presented. Although such a design is a costly
one, it exists. For a synthesis method see [2].

7 Acknowledgments

The authors wish to acknowledge Dr. Perkowski
of Portland State University, USA for his valuable
comments.

References

[1] IBM's test-tube quantum computer
makes history. Technical report,
http://researchweb.watson.ibm.com/
resources/news/20011219 quantum.shtml,
Dec. 2001.

[2] G. W. Dueck and D. Maslov. Reversible func-
tion synthesis with minimum garbage out-
puts. In International Symposium on Repre-

sentations and Methodology of Future Com-

puting Technologies, March 2003.

[3] R. Feynman. Quantum mechanical comput-
ers. Optic News, pages 11{20, 1985.

[4] E. Fredkin and T. To�oli. Conservative logic.
International Journal of Theoretical Physics,
pages 219{253, 1982.

[5] K. Iwama, Y. Kambayashi, and S. Yamashita.
Transformation rules for designing cnot-based
quantum circuits. In Proceedings of the De-

sign Automation Conference, New Orleans,
Louisiana, USA, June 10-14 2002.

[6] A. Khlopotine, M. Perkowski, and P. Kern-
topf. Reversible logic synthesis by iterative
compositions. International Workshop on

Logic Sysnthesis, 2002.

[7] R. Landauer. Irreversibility and heat genera-
tion in the computing process. IBM J. Res.,
5:183{191, 1961.

[8] D. M. Miller. Spectral and two-place de-
composition techniques in reversible logic. In
Midwest Symposium on Circuits and Systems,
Aug. 2002.

[9] A. Mishchenko and M. Perkowski. Logic syn-
thesis of reversible wave cascades. In Inter-

national Workshop on Logic Sysnthesis, June
2002.

[10] M. Nielsen and I. Chuang. Quantum Compu-

tation and Quantum Information. Cambridge
University Press, 2000.

[11] M. Perkowski, P. Kerntopf, A. Buller,
M. Chrzanowska-Jeske, A. Mishchenko,
X. Song, A. Al-Rabadi, L. Joswiak, A. Cop-
pola, and B. Massey. Regularity and
symmetry as a base for eÆcient realization
of reversible logic circuits. In International

Workshop on Logic Sysnthesis, 2001.

[12] V. V. Shende, A. K. Prasad, I. L. Markov, and
J. P. Hayes. Reversible logic circuit synthesis.
In ICCAD, San Jose, California, USA, Nov
10-14 2002.

[13] T. To�oli. Reversible computing. Tech memo
MIT/LCS/TM-151, MIT Lab for Comp. Sci,
1980.

