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Abstract. My objective is to explain why a completely inadequate fo-
cus on the two central and inseparable concepts—the concepts of class
(of objects) and class representation—is responsible for the lack of ad-
equate progress in machine learning, and AI in general. I suggest that
the main reason for this lack of progress is reliance on conventional for-
malisms, mainly the vector space and logical, which cannot in principle
support a satisfactory concept of class. On the other hand, the orien-
tation towards new, class-oriented, representational formalisms—if the
underlying informational hypothesis about the nature of classes in the
universe is vindicated—would establish machine learning as a new kind
of natural science.

1 Introduction

Machine learning is a burgeoning area of research and one of, if not the central
field of AI. My contention, however, is that this state of affairs should not be
confused with the maturity of the field, as is usually done. Rather, it is due to
the field’s strategic importance. In this paper, I explain some of the reasons for
the former claim about the maturity of the field and suggest that a change in
the orientation of the field towards class-oriented representational formalisms is
due. My paper [1] is recommended as clarifying related issues.

As mentioned in the abstract, I would like to discuss the inherent, or struc-
tural, limitations of the two main conventional formalisms, vector space and log-
ical, which are responsible for the present orientation of machine learning and re-
lated areas. Although these two formalisms are quite different, both structurally
and “semantically”, I would like to explain why none of them can accommodate
the (central) concepts of interest, i.e. that of class and class representation. I
also claim that without the capability of fully addressing these central concepts,
no formalism for machine learning can be considered adequate. In other words,
I propose to judge the maturity of an information processing field not by the
amount of research work performed in the field, as is usually done in relatively
new fields, but by the progress towards clarifying its central concepts. Moreover,
the critical spirit of science demands that we should be prepared to abandon any



information processing formalism once it falls far short in meeting the central
informational goals of the field.

I hope that my claim about the centrality of the above two concepts in ma-
chine learning is not very controversial: if the central goal is to inductively learn
classes, the corresponding formalism must, above all, be capable of supporting
a satisfactory concept of class (including class representation), otherwise, from
scientific point of view, we are engaged in quite dubious activity of “learning”
something we don’t know what. Of course, the usual (and non-scientific) justi-
fication of the status quo, which I have heard quite often, is that “it works”.
Hence, in this paper, among other things, I want to consider the reasons why it
only appears to “work”.

So, which features of the present state of affairs are responsible for this confu-
sion? I am convinced that the confusion is a consequence of studying classification
without the benefit of relying on a satisfactory concept of class. The question
that we must ask is this: Can one claim that the information-processing science
of classification is in a satisfactory state, when the basic underlying concept of
class remains as obscure as it has ever been? Moreover, is it an appropriate jus-
tification of the present situation to claim that the present framework “works”
when there is nothing really scientifically interesting/revealing in the fact that,
for example, in the case of a vector space formalism—having carefully prese-
lected zillion features and a very large training set for the English handwritten
character recognition problem—the system begins to classify the incoming data
with a very good error rate? After all, such character data was, in the first
place, designed (by humans) to be easily distinguishable. Is it appropriate, in a
key information processing field, to accept such non-informative 1 frameworks
for classification as satisfactory?

I am also convinced that the above misunderstanding is a serious sign of
immaturity of our and, in fact, all information processing fields. We must always
remember that

today, in the age of computing, almost any model, including a very poor one,
could be “made [and hence appear] to work” in a number of applications, espe-
cially when given enough human resources. That does not at all mean that the
model has a scientific merit. What makes a new model scientifically attractive
is its important explanatory value, i.e. it must hypothesize a qualitatively new,
non-trivial feature of reality that one should be able to verify experimentally
(otherwise, at best, it is not a “new” model). If no interesting/novel feature
of reality is being hypothesized, the model, accordingly, does not have much
scientific value. In AI, one must insist on this criterion to an even greater ex-
tent, since there is a strong intuitive expectation that any natural environment
is “meaningful”, or “full of meaning”. Thus, in pattern recognition (and ma-
chine learning), from a scientific point of view, a useful formalism is supposed
to advance a “useful” hypothesis about the structure of pattern classes in the
Universe. [Of course,] . . . there is a longstanding scientific practice concern-
ing the verification of such hypotheses. But, above all, one must have such a
hypothesis. [1]

1 i.e. not clarifying the basic underlying concept of class.



In other words, we must look for formalisms—or, more accurately, representa-
tional formalisms—that would, above all, clarify the concept and the informa-
tional nature of the class, including class representation. Such formalisms, for
the first time, would allow for experimental confirmation of the class structure
hypothesis proposed by them, by verifying it against the structure of classes
in nature, as has been the practice in all natural sciences. Moreover, I strongly
believe that, in developing machine learning and related areas, we should be
guided by the hypothesis that the informational structure of universe is based
on (evolving) class representations. Such orientation would establish machine
learning as a new kind of natural science, the first information processing sci-
ence. I am also convinced that without such general orientation machine learning
will not succeed. For example, the main consequence of the present, incredibly
“promiscuous”, classification frameworks—which allows for an arbitrary concept
of class, e.g. the “class” of bachelors or the “class” of large stones—is that we still
don’t know what a class is and hence cannot deal adequately with a wide variety
of problems in pattern recognition, classification, data mining, and information
organization in general.

2 What is a Class?

In this section, I would like only to hint at a fundamentally new way of looking
at objects and their classes that has partly inspired the present paper. 2 In the
following sections, however, I will not rely on any special considerations of this
section.

To address the idea of class, first, it is important to realize that focusing on
the languages humans use cannot help us in this endeavor (see Section 4). On
the other hand, we can agree that elements in a class are bound together via
some similarity related to the “nature” of the class. The main question then
is this: How do we understand/interpret “similarity” and “nature of the class”?
The reason I used the singular “question” is to suggest that the two ideas should
be considered together to clarify each other, i.e. we should view the “similarity”
as induced by the “structure” of the class. I am convinced that in order to
come to grips with these issues we must look to nature for their clarification,
thus orienting our information processing science towards natural sciences. The
latter does not mean, of course, that we should follow the structure of existing
natural sciences, but rather that our inspiration must come from the structure
of classes in nature.

So, what is the nature of classes in the universe? Although we have addressed
the issue in Part I of [3], there are several general points that would be important
to state here. Above all, learning from the history of science in the 20th century,
it would be wise—and even necessary— to view classes, as everything else in
nature, in the light of their evolution, including their formation, modification,
and so on. Moreover, what evolves are not just the classes but also their elements

2 A much fuller elaboration developed over many years can be found in [2].



3. In other words, quite naturally, elements and their classes co-evolve together,
and the chosen representational formalism must be capable of supporting such
reality, which is outside the capabilities of the current mathematical formalisms
due to their reliance on the representation of an object by a “point” instead of
by a structured entity!

Thus, the next step is to choose some natural domain, in which classes play a
key role and which would most explicitly suggest to us how to think about classes
in general. It should not be surprising that I propose to look towards biology
and biological categories as serving this purpose. Although biological entities are
very complex, their general evolution, if interpreted appropriately, must exhibit
the same general pattern as the rest of objects in nature.

In the 17th-century thought a gulf was fixed between matter and mind, the
nature of each being conceived as totally exclusive of and different from the
other. The modern idea of nature involves the direct opposite of this position.
As the final products of the evolutionary process are life and mind, and as these
are its higher phases, we must presume that what is evolving theroughout the
process is more fully and adequately manifested in these forms than in forms
which are prior to them and lower in the scale. The further the process advances
the more dominant in . . . [its] product are the characteristics of the mind. We
can but conclude , therefore, that [these universal characteristics] . . . must be
immanent in all its phases. [4, my emphasis]

So what do biological classes suggest? One critical feature of biological “ob-
jects” stands out: any organism is not built from scratch but rather its instan-
tiation requires following some kind of stored “formative history” 4. It appears
quite reasonable to extend this form of instantiation to all objects in the uni-
verse, including man-made objects, where the “formative” history should be
interpreted reasonably broadly. Indeed, stones, pencils, web pages all have their
formative histories, albeit of different “kinds”. For example a web page has a
quite complex formative history related to its conception and execution.

Most important to us, in order to address properly the above question about
the nature of the class, I want to propose the following fundamental ontological
postulate (which is fully consistent with the above hypothesis about the informa-
tional organization of the universe 5): as is the case with a biological organism,
any object in nature exists along with its formative/generative history. Hence
the “similarity” of objects should now be understood as the “similarity” of their
formative histories. Next, since it is the object’s formative history that reveals
its similarity or dissimilarity with other objects, this formative history must be
captured in the object’s representation. As to the nature of the physical storage
of an object’s generative history, I can think of several hypotheses—the weak,
3 In this connection, we must remember that even the meaning of words used in a

human language continuously change with time, which is not reflected in the words
themselves.

4 From the theoretical point of view, the questions of how and where it is stored
should not concern us at this stage.

5 See the last paragraph of section 1.



which suggests that it is stored locally, and the strong, which suggests that it
may (also) be stored globally—but this paper is hardly a place for the discussion
of this topic.

It is understood that, when constructing such object representation, a partic-
ular agent must rely on its own, internal, representational resources to capture
the corresponding formative history, which is thus agent-dependent, as opposed
to the “actual” formative history. And so an agent’s sensory resources and ex-
perience affect such representations.

Now it becomes clear that classes evolve not only through the appearance
of new class elements but also via evolution/modification of their elements’ for-
mative histories. Moreover, the concept of class representation emerges, then,
as directly related to the generative scheme for constructing the class elements,
i.e. of their formative histories (or, which from formal point should be the same
thing, their representations).

In the following sections, I will rely on one general and I hope not very con-
troversial point: the central concept of machine learning is that of class, and it is
inseparable from the concept of class representation. As a consequence, in order
to be considered as a serious candidate for use in machine learning, the formal-
ism should be able to support a meaningful and informative—both structurally
and intuitively—concept of class representation. By the “structural meaningful-
ness” of the class representation I mean a constructive nature of the (formal)
class definition: it means that this definition must explicitly specify—via the
basic (representational) operations of the underlying formalism—how the class
elements are to be constructed 6. Without such a constructive class specification,
it is practically impossible (but by itself it is not sufficient) to insure meaning-
fulness of the class concept.

3 The Inadequacy of Numeric Formalisms

In this section, I address the situation with the concept of class as it relates to
by far the most popular and actually ubiquitous applied framework, the vector
space formalism. Because the concept of measurement has evolved with this,
numeric, formalism, it is no exaggeration to say that, practically, this is the only
universal formalism relied upon in all of natural sciences. Hence, one should
not be surprised that the latter is the main reasons for adopting it in machine
learning, while the other reason has to do with the attendant fact of availability
within that formalism of highly developed (albeit irrelevant) formal machinery,
including statistical machinery.

Within this formalism, an object is represented as a point in a multi-dimensional
positive inner-product vector (Euclidean) space, hence the only conceivable way
to delineate a class of objects, if at all, is to construct some “boundaries”, linear
or non-linear, enclosing the relevant points, separating them from the rest of the
space. Moreover, since the inductive learning in this case, by definition, is based

6 The latter is also a standard requirement for any basic definition in modern algebra.



on a finite training set of vectors, it is expected that the enclosed parts of the
vector space that were delineated—the decision regions—would contain almost
all (in a probabilistic sense) points from the corresponding class and almost no
points from other classes under the consideration. This expectation is based on
the so-called “compactness hypothesis” [5].

Thus, in the ubiquitous Euclidean vector space, a class is specified via the
class “boundaries” that are selected from some fixed family of decision surfaces.
7 Because these surfaces play such a critical role in the “representation” of the
corresponding class, let us, first, consider the relation, if any, between the sur-
faces and the class being learned. Indeed, does this family of surfaces have any
relation to the corresponding class of objects? It is easy to see that no mean-
ingful relations can exist, since the family itself simply has to be chosen in an
ad hoc manner (see the next paragraph). Furthermore, the final specification of
class via such surfaces adds practically nothing to our knowledge about the class
in question. Consequently, since the “structure” of the decision surfaces tell us
nothing about the class, the obtained in this case “representation” of the class is
not “meaningful” at all, i.e. it reveals nothing about the nature/structure of the
class. On the other hand, it is very hard to believe that biological class repre-
sentations are not meaningful; and there are also serious reasons to believe that
the latter, in contrast to the vector space “class representations”, are generative
(dreams, paintings, etc., see e.g. [13]).

Second, in view of the intrinsic (algebraic) structure of the vector space,
there is no, and there cannot be any, criteria as to which family of decision func-
tions/surfaces to choose based on a particular family of actual classes. Hence,
this choice must remain, both formally and intuitively, ad hoc, i.e. absolutely
extraneous to the underlying structure of the class and, in case of non-linear sur-
faces, also structurally extraneous to the underlying (linear), or representational,
structure of the vector space itself.

Third, since the choice of the family of decision functions must remain ad hoc,
from a pragmatic point of view, one should assume that any small (especially
non-linear) perturbations of the decision surfaces in resulting family of decision
surfaces is as good as the original. Therefore, we have no reliable/stable formal
structure to associate with the class representation, which from formal point of
view is a very unsatisfactory situation.

Putting all of the above considerations together and looking afresh and as
impartially as possible at the class decision surfaces in a vector space, it is hard
not to admit that they cannot serve the role, either structurally 8 or intuitively,
of the corresponding class representation. Thus, the best that the vector space
formalism can offer for machine learning is “classification” without the concept
of class, if such a thing make sense at all. Of course, it is always possible to defend
the status quo by denying the importance of the capability of a representational

7 Actually, there are uncountably many of such families.
8 Probably, the most important point here is that they cannot play the role of a

constructive specification of the class.



formalism to accommodate meaningful concepts of class and class representation,
but I find such arguments just that—a simple justification of the status quo.

Finally, two interesting (peripheral) observations are in order: one about the
metric restrictions of the Euclidean vector space and the other about the repre-
sentational conservatism associated with its use. The first observation concerns
the lessons that should have been, but were not, learned from one of the best
known physical theories, special relativity theory, which emerged about a hun-
dred years ago, including the introduction of the Minkowski space. This theory
clearly implies that some variables—for example, time and space—are “non-
commensurable” and this fact should influence the (ubiquitous Euclidean) inner
product that specifies the geometry on the underlying vector space, i.e. the in-
ner product must now become indefinite instead of positive-definite. Surprisingly,
these major developments in physics and mathematics had little effect on the
areas of applied mathematics (including statistics) that had a direct impact on
machine learning. Despite my major work [6], written over twenty years ago,
several dozen papers, e.g. [7–10], and at least two recent doctoral theses [11,
12] discussing the utility of the pseudo-Euclidean spaces for machine learning,
pattern recognition, and data mining, the latter work had relatively little ef-
fect on the mainstream research work in these areas. I mentioned this mainly
to emphasize a strong representational conservatism of researchers and not just
in machine learning but practically in all other areas, even when it comes to
relatively minor modifications in the underlying structure of a conventional data
representation formalism as opposed to the technical growth within a fixed rep-
resentational formalism. Thus, my second observation has to do with this quite
understandable, but often underestimated, sociological fact that any non-trivial
modifications in a conventional “representational” formalism (which are quite
rare)—or, its replacement by a completely different one (which are historically
extremely rare)—require a considerable retraining effort on the part of the re-
searchers involved.

4 The Inadequacy of Logical Formalisms

Logical formalisms emerged as the result of historically sustained attempts to
develop a formal “restriction” of the ordinary human languages, mainly for the
needs of mathematics. Two key points are worth keeping in mind, both being
the consequences of this observation. First, in many ways the structure of all log-
ical formalisms was inspired by the structure of written, mainly Indo-European,
languages (subject, predicate, etc.). And second, implicitly following the use
of traditional languages, in developing logical formalisms, no serious effort has
been invested to bypass the human mind as the only “consumer”, or interpreter,
of such formalisms. In other words, such formalisms are not strictly “represen-
tational” in the sense that they are not directly interfacable with the actual
“physical”, or external to the mind, events in nature, since it had been implic-
itly presumed that these formalisms will be used by humans for the purposes
of more precise written communication between humans. In this connection, I



like to quote an important observation by one of the prominent logicians of the
first half of the 20th century, Bertrand Russell, who in the second half of his life
changed his views on the primacy of logical formalisms: “Nature herself cannot
err, because she makes no statements. It is men who may fall into error, when
they formulate propositions.” [14, emphasis is added]. This “obvious” observation
is very important to keep in mind, simply because it reminds us that our present
obsession with varius kinds of propositional (and non-propositional) languages is
not bringing us any closer to mother nature.

To give away the plot of my main argument, historically, human (and other,
artificial,) languages have evolved on top of more sophisticated/powerful sensory
mechanism, where the latter is directly interfacable with the “physical”, or exter-
nal, events and is responsible for producing class representations. In particular,
the language mechanism does not have and does not need the capability to con-
struct a wide variety of class representations: it just needs to label and manipulate
the outputs of the sensory mechanism. Therefore, emulating language structure
does not lead us to the elucidation of the nature and representation of the class.

To clarify the role of speech and language mechanism, the main points I want
to address have to do with the evolutionary place of those as well as sensory
mechanism. Again, I hope that today my view of it as the central information
processing mechanism is not as controversial in AI as it might had been one to
two decades ago 9. In fact, the biological evidence supporting my position is really
overwhelming. To realize this, it is enough to recall that except humans no other
species have language, which, moreover, was acquired only within the last million
years. It goes without saying that by that time all our sensory mechanisms (for
various sensory modalities) were almost fully developed: the relatively minor
modifications in the sensory machinery that have occurred since then were due
to the evolution of some sensory functions to support the emerging speech and
language.

So what is the role of sensory mechanisms? There is plenty of evidence to
suggest that the main role of sensory mechanisms is the classification of incoming
stimuli to support the main functions of life, i.e. orientation in the environment
[16, 17, 18], and of course, to be able to classify one must have the ability to
represent the relevant classes of objects. This answer to the question would be-
come much more apparent when the above hypothesis about the informational
organization of the universe (see section 2) is gradually verified. There is, how-
ever, some “evidence” towards this end. Indeed, sensory classification and class
representation mechanisms have been evolving over several billions of years and
are ubiquitous throughout all organisms, including bacteria. The sheer variety
of such mechanisms—which have evolved equally easy in extremely varied envi-
ronments, including those of the early Earth—suggests that their efficient devel-
opment must have been guided by a single abstract form of class representation,

9 See Nilsson’s paper [15]: “This paper presents the view that artificial intelligence
(AI) is primarily concerned with propositional languages for representing knowledge
and the techniques for manipulating these representations.”



which in turn could have come about only because it preexisted the biological
evolution (according to the above informational hypothesis).

Returning to the nature and structure of the natural “language mechanism”,
as I have proposed in [19] (and explained above), such a mechanism, of necessity,
relies on the main outputs of the “sensory mechanism”, i.e. on class represen-
tations. And it is this organization that allows the language machinery to deal
effectively—via nouns, verbs, adjectives, adverbs, and syntax—with various at-
tributes of the learned classes, relationships between the classes, etc. Moreover,
if this hypothesis about the nature of the sensory mechanism is true, which is
very likely, then the primary biological storage mechanism must have evolved to
support exclusively, or at least mainly, the storage of classes, i.e. of class rep-
resentations. Hence not only the inputs but also the (stored) “outputs” of the
language mechanism should conform to the “class format”. For example, it is
quite possible that the abstract verb “to love” is stored by means of the asso-
ciation with the potentially infinite class that in the conventional set-theoretic
language can be described as follows: the class of pairs, in each of which the sec-
ond component is either an agent or an agent’s state standing in the particular
relation to the first component which is an agent (e.g. “nature loves to hide”).
10

I would like to draw attention to the central role of generativity in the Chom-
sky’s formal grammar model as the syntactic model of language. What is inter-
esting about this, syntactic, side of language modeling is that it is fully consistent
with the proposed above generativity of the class representation. So, according
to the above hypothesis about the primacy of sensory, or class based, mecha-
nism, I suggest that the former generativity is something that was “inherited”
from the latter one. 11

Thus, in complete contrast to what Nilsson was proposing in [15] (and what
many AI researchers have often implicitly assumed)—that “it seems reasonable
to distinguish between peripheral and central processes, in which the peripheral
ones are those that are quite close to the boundary between the environment
and the animal or machine that inhabits it”—I am suggesting that it is the lan-
guage mechanism that is “peripheral” and built on top of the central, sensory,
mechanism, where the latter is responsible for class representation and classifica-
tion. Accordingly, since the language mechanism was not supposed to deal with
external, or sensory, events, to develop the science of machine learning we need
to look for formalisms fundamentally different from propositional formalisms in-

10 This class can be represented in the above generative manner.
11 I believe the main reason why the concept of generativity, so far, turned out to be

not very useful in machine learning and many related areas has to do with the much
deeper, representational, fact that, under the conventional string representation,
generativity cannot be integrated into this representation, i.e. it is not captured in
the string representation, and must be stored separately, in the form of the grammar
itself. As a consequence, given a small training set of strings, it is imossible to recover
reliably the original grammar. In our representational formalism [3], this inadequacy
has been remedied.



spired by the surface structure of Indo-European languages. As to the argument
similar to the above (that “it works”), my above considerations also apply.

Finally, I want to mention just three (almost “randomly” selected out many)
relatively recent references discussing inadequacies logical formalisms. Marvin
Minsky in [20] discusses the inadequacy of logic-based approaches to AI and the
need for approaches not based on logic. Mike Oaksford and Nick Chater in [21]
discuss the “inadequacy of logic as an account of everyday human reasoning”. I
also recommend section nine of my paper [1], which discusses some “additional”
inadequacies of the logical formalisms.

5 Conclusion

My objective was to draw attention to a completely inadequate focus that the
two central and inseparable concepts—those of class of objects and its repre-
sentation 12—have received in machine learning and AI in general. I suggested
that the main reason for this situation has to do with the non-trivial fact that
conventional formalisms, e.g. the vector space and logical, cannot in principle
support a satisfactory concept of class, and hence within them these concepts
cannot be attained. These concepts can be reached only within radically differ-
ent, class-oriented, representational formalisms, which were not considered here
and which should clarify the nature of structural object representation (see [3]).

On the other hand, a more thoughtful research into the above two concepts
also suggests the corresponding informational hypothesis about the nature of
classes in universe, which, if vindicated, would establish machine learning (and
in fact AI and computer science) as a new kind of natural science studying the
nature of information processing in universe.
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