
Representation Before Computation

Lev Goldfarb

Inductive Information Systems
Fredericton, NB

Canada
lev.goldfarb@gmail.com

http://www.cs.unb.ca/~goldfarb

Abstract. My main objective is to point out a fundamental weakness in
the conventional conception of computation and suggest a promising way
out. This weakness is directly related to a gross underestimation of the
role of object representation in a computational model, hence confining
such models to an unrealistic (input) environment, which, in turn, lead
to “unnatural” computational models. This lack of appreciation of the
role of structural object representation has been inherited from logic and
partly from mathematics, where, in the latter, the centuries-old tradi-
tion is to represent objects as unstructured “points”. I also discuss why
the appropriate fundamental reorientation in the conception of computa-
tional models will bring the resulting study of computation closer to the
“natural” computational constrains. An example of the pertinent, class-
oriented, representational formalism developed by our group over many
years—Evolving Transformation System (ETS)—is briefly outlined here,
and several general lines of research are suggested.

1 Introduction

Historically, computability theory has emerged within logic 1, and so it is not
surprising that “logical” agenda continues to play an important part in its devel-
opment 2. This origin has determined to a considerable extent the basic “logical
orientation” of the field, i.e. the kinds of questions that one might be asking
(computable vs. non-computable, etc.). 3

1 E.g. Alan Turing proposed the Turing machine as a convenient mechanism for an-
swering question of whether satisfiability in the predicate calculus was a solvable
problem or not.

2 E.g. Stephen Cook [1]: “When I submitted the abstract for this paper in December
1970 my interest was in predicate calculus theorem proving procedures, and I had
not yet thought of the idea of NP completeness.”

3 In connection with this orientation of the field, it is useful to recall ideas of John
Von Neumann, one of the leading prewar logicians who was well aware of the original
Turing work and actually invited Turing to stay at the Institute for Advanced Studies
as his assistant (after Turing completed his Princeton dissertation): “We are very
far from possessing a theory of automata which deserves that name, that is, a purely

At the same time, already in his original paper, Turing had to face the issue
of representation, both the “data” representation (on the tape), i.e. the input
“symbol space” 4, and the representation of the machine itself (machine instruc-
tions and its states).

Following the original Turing’s considerations, related to “the process of [sym-
bol] recognition”, it is not difficult to see that if these “symbols” are endowed
with a more general structure—as is the case with all real-world “symbols”—
the structure of the corresponding “generalized Turing machine”, or “intelligent
machine”, would have to be fundamentally modified in order to be able to deal
with such structured symbols in an appropriate manner. So, first of all, we are
faced with the ubiquitous issue of structural representation. I would like to em-
phasize that, when dealing with natural objects, e.g. molecules or flowers, the
treatment of the issues related to the structural object representation must pre-
cede the computational considerations, since the formal structure of the latter
should depend on the formal structure of the former: the structure of object
operations will determine the structure of the corresponding basic “machine”
operations. Perhaps an analogy may help. If we recall the concept of a mathe-
matical structure (e.g. group, vector space, topological space, partially ordered
set), we should favor the idea that the structure of the machine operating on the
data that is viewed as an element of a particular (fixed) mathematical structure
should depend on the underlying operations postulated within this mathemat-
ical structure. In other words, representational considerations should precede
computational ones.

However simple the above considerations may look, the looks are deceiving:
it turns out that so far mathematics (and logic) has not adequately addressed
the issue of structural object representation, for good reasons. I suggest that
these reasons are quite profound and have to do with the context within which
the development of structural representation should take place. This context,
of classes and induction, has never been adequately delineated neither within

mathematical-logical theory. There exists today a very elaborate system of formal
logic and specifically, of logic as applied to mathematics. . . . About the inadequacies
[of logic], however, this may be said: Everybody who has worked in formal logic will
confirm that it is one of the technically most refractory parts of mathematics. The
reason for this is that it deals with rigid, all-or-none concepts The theory of
automata, of the digital, all-or-none type . . . is certainly a chapter in formal logic. It
would, therefore, seem that it will have to share this unattractive property of formal
logic.”[2]

4 “If we were to allow an infinity of symbols, then there would be symbols differing
to an arbitrary small extent. . . . The new observed squares must be immediately
recognizable by the computer. . . . Now if these squares are marked only by single
symbols there can be only a finite number of them, and we should not upset our
theory by adjoining these marked squares to the observed squares. If, on the other
hand, . . . [each of them is] marked by a sequence of symbols [i.e. by a structured
symbol], we cannot regard the process of recognition as a simple process. This is a
fundamental point and should be illustrated. [He then considers symbols formed by
numeric sequences.]”[3, my emphasis]

philosophy—in spite of continuous attention it attracted over many centuries—
nor within psychology, artificial intelligence, and information retrieval.

This paper is motivated by a recent development of what should be called the
first formalism for structural representation, the Evolving Transformation Sys-
tem (ETS). The main reason for the adjective “first” has to do with the following
considerations, related to the above context of classes and induction: these ubiq-
uitous concepts, for the first time, receive full clarification within the formalism,
while, despite the common usage, strings and graphs cannot be considered as
satisfactory forms of structural representation. Briefly, a string (or a graph) does
not carry within itself enough representational information to allow for the in-
ductive recovery of the corresponding class representation, i.e. grammar, which,
as it turns out, is a serious indication of the inadequacy of the underlying rep-
resentational formalism. Not surprisingly, the development of such a radically
different formalism as ETS is still in its initial stages, and hence, in this paper,
it is prudent to focus on the overall directions of its development rather than on
any concrete formal results.

I should also mention that the above reorientation in the conception of a com-
putational model is expected to bring it closer to a (structural) generalization of
the conventional mathematical structures, in which the basic formal/underlying
structure is postulated axiomatically.

2 On a Proper Approach to the Concept of Structural
Object Representation

Historically, mathematics has been the main, if not the only, “science of represen-
tation”, so it is not surprising that the lack of appreciation of the role of object
representation has been inherited from mathematics, where the centuries-old
tradition (including vector spaces) has been to represent objects as “unstruc-
tured” points. In this sense, the underestimation of the role of object represen-
tation in a computational model is also not surprising. But while the mainstream
mathematics—having been somewhat isolated from the problems arising in com-
puter science—had no apparent impetus to proceed with the necessary radical
developments, computer science has no such excuse. The concepts of data struc-
ture and abstract data type have been “screaming” for such fundamental devel-
opments. As was mentioned in Introduction, I believe the reasons for the lack of
such developments within computer science have to do with its historical roots
in mathematical logic, whose development was not at all motivated 5 by the
representation of “physical” objects [4], [5].

First, I propose to proceed with the development of formalism for structural
representation via generalization of the most basic entities on which the entire
edifice of mathematics and natural sciences stands, i.e. via structural general-
ization of the natural numbers: at this stage, I don’t think we have a more

5 I.e. considerably less so than is the case with mathematics, which always had to
address the concerns of physics.

fundamental choice for our starting point. I do not have in mind here relatively
“minor” (historical) generalizations such as complex numbers, quaternions, etc.,
since such generalizations are still numeric-based. What I have in mind is more
far-reaching generalization, based on the generalization of the Peano construc-
tive process in which a single “unstructured” successor operation is replaced by
several structural ones: I am thinking of the entities that are structured in a
manner shown in Figs. 1, 2.

Second, I suggest that the notion of structural representation can properly
be addressed only within the context of a class. The reasons have to do with the
following hypothesized ontology of objects. As we know, objects in nature do not
pop up out of nowhere but always take time to appear, and in each case the way
an object “appears” is similar to the way some other, “similar”, objects appear,
i.e. an object always appears as an element of a class of closely related objects,
be it an atom, a stone, a protein, a bacterion, or a stop sign. Moreover, an object
also co-evolves together with its class: there is an “invisible” permanent “bond”
between an object and its class.

The crux of the proposed informational view of the universe can be expressed
in the form of the first ontological postulate: in addition to the classes themselves,
for each class there exists, in some form, (its) class representation, which is
responsible for class integrity by guiding the generation of its new elements (and
which therefore evolves together with the class). One should keep in mind that
this postulate can be seen as a continuation of a very remarkable line of thought
going back to Aristotle, Duns Scotus, and Francis Bacon, among others.

The second ontological postulate deals with the closely interconnected issue
related to the nature of object representation: similar to a biological organism
with its developmental “program”, any object in nature also coexists with its
actual formative/generative history, which must be recoverable from the above
class representation. Hence the “similarity” of objects should now be understood
as the “similarity” of their formative histories. Since it is the object’s formative
history that reveals its similarity or dissimilarity with other objects, this for-
mative history must be captured in the object’s “representation” (which is, in
a sense, a generalization of the fact that all biological organisms have to store
their developmental information). Actually, it is not difficult to see that the two
postulates are closely related, so that one “leads” to the other.

Consistent with the above two postulates, one should approach the task of
developing a formalism for structural representation as that of developing a
class-oriented representational formalism 6, which should automatically ensure
that the formalism will be suitable for the purposes of inductive learning—since
the object representation would carry much more information about its class
representation—and consequently for the purposes of AI in general.

It is useful to emphasize that the development of such an informational for-
malism should not wait for the verification of the above postulates: for one thing,
no existing informational formalism insisted on any underlying hypothesis about
the informational structure of the universe. I believe, however, that in contrast

6 My papers [4], [5] are recommended as clarifying related issues.

to the latter practice, it is important to state up front an informational hy-
pothesis which would clarify and inform the development of the corresponding
informational formalism.

In what follows, I will proceed under the assumption that the above two
postulates are adopted, at least as far as the development of a formalism for
structural representation is concerned. Again, I would like to emphasize the
importance of such adoption: without the appropriate guiding considerations, the
very notion of structural object representation becomes far too ambiguous, as can
be seen from its usage so far. For example, strings and graphs are not appropriate
models for structural representation, since, as mentioned above, neither a string
nor a graph carry within itself sufficient information for the inductive recovery
of the class from which they are supposed to come. Mainly, this is a consequence
of the situation when none of the above two postulates have been seriously
considered.

One more point regarding these postulates. If we recall Georg Cantor’s con-
ception of the set as “the multitude that might be thought as oneness”, we can
see that the most natural way to conceive this multitude as one is to view the
set as a class (which is specified via some generative mechanism, see section 4).
In fact, I have always seen the concept of class—with its intension (“oneness”)
and extension—as the most natural substitute for the concept of set.

To summarize, within the proposed “computational” setting, the underlying
formal structure comes from that of the class.

3 The Price of Relying on Conventional Discrete
Representations

In this section, I want to address briefly the issue why the representation should
be of major concern when developing a computational model. First of all, I
assume (correctly or incorrectly) that the main objective of the present series of
conferences is to converge on the concept of computation that would be viable not
just within the “classical”, i.e. “logical”, setting but also in the natural sciences
in general.

The main problem with the conventional representations, such as strings,
graphs, etc., is that they do not incorporate within themselves any particular
(generative) structure that might be associated with their formation. However,
as postulated above (see the two postulates in the last section), this genera-
tive/formative information must be an integral part of an object’s identity, and
when absent creates an unrealistic and ambiguous situation as to this identity.
Such representational deficiency (in the form of the missing representational in-
formation) is obviously impossible to overcome by any algorithmic means. For
example, given a string abbaca, there is simply no way to know the sequence of
operations that were responsible for the string’s formation and, potentially, there
are exponentially many of them. As a consequence, from the very beginning we
are critically handicapped in regards to our ability to discover the underlying

generative structure, and no computational setting would be able to overcome
this representational deficiency.

One might think that there is a simple way out of this situation: embed the
necessary formative information (via some tags) into the representation, end of
the story. However, this is a typical representational kludge, as opposed to a
scientific approach: we have not gotten wiser neither about structural object
representation, nor about the concept of “formative history”.

So now we come to a considerably less trivial question: What is a general
formalism for structural representation that would also explicate the notion of
structural generativity as its integral part? Note that conventional computational
formalisms, for example Chomsky’s generative grammars, have not addressed
this issue simply because they had implicitly assumed that strings are legitimate
forms of representation, so that this more fundamental representational issue has
not even appeared on the horizon (in spite of the fact that in this particular case
Chomsky, from the very beginning, had emphasized the importance of generativ-
ity). Of course, one can excuse these early developments since at the time of their
emergence, 1930s to 1950s, the serious representational issues, could not have
appeared on the horizon; but now, at the beginning of the 21st century—when
all kinds of applications, starting from general search engines (such as Google)
and biological databases, all the way to various robotic applications “beg” for
structural representations—the story is quite different.

Thus, the price of relying on conventional discrete representations is that
the more fundamental, underlying, representational formalism remained in the
dark, which, in turn, prevented the development of a scientifically much more
satisfactory and definitive framework for computation, including the realization
of the full potential of many interesting ideas such as, to take a recent example,
the membrane computing.

For a discussion of the inherent, or structural limitations of the two main
conventional formalisms—vector space, or numeric, and logical—see [4], [5]. In-
cidentally, it is these inherent limitation of the numeric (representational) for-
malism that, I believe, are responsible for the predominance of statistical over
structural considerations in machine learning, pattern recognition, data mining,
information retrieval, bioinformatics, cheminformatics, and many other applied
areas. The question is not whether the appropriate statistical considerations
should play some role in these areas, the obvious answer to which is “yes, of
course”, but whether, at present—when we lack any satisfactory formalism for
structural representation—we should be focusing on the development of new
statistical techniques for the conventional formalisms that are inherently inad-
equate for dealing with classes (and hence, with the class-oriented needs of the
above areas).

4 A Brief Sketch of the ETS Formalism

Unhappily or happily, the structure of the ETS formalism has absolutely no
analogues to compare it with, despite the fact that its main entities, “structs”,

may have a superficial resemblance to some other known discrete objects such
as, for example, graphs, which is useful to keep in mind. Also, in view of limited
space, in what follows I restrict myself to informal descriptions, while the formal
definitions can be found in [6], Parts II and III. The most important point to
keep in mind is that all objects in the formalism are viewed and represented as
(temporal) structural processes, in which the basic units are structured events,
or primitives, each responsible for transforming the flow of several “regular”
processes (see Figs. 1, 2).

4.1 Primitive Transformations

Thus, the first basic concept is that of a primitive transformation, or primitive
event, or simply primitive, several of which are depicted in Fig. 1. In contrast
to the basic concepts in conventional formalisms, this concept is relatively non-
trivial, carrying identical semantic and syntactic loads. It stands for a fixed
kind of “micro-event”, or interaction, responsible for transforming one set of
adjacent processes, called initial processes, into another set of processes, called
terminal processes (in Fig. 2, both are shown as lines connecting primitives).
In other words, the concept of primitive transformation encapsulates that of a
“standard” interaction 7 of several processes, where each belongs to a particular
class of primal processes, or a primal class 8 . One can assume that the processes
involved are “periodic” and the event is responsible for their partial or complete
modification into another set of periodic processes. The formal structure of the
event is such that it does not depend on the concrete initial (or concrete terminal)
process, as long as each of the processes involved belongs to the same (fixed)
primal class of processes depicted in Fig. 1 as a small solid shape at the top (or
at the bottom) of a larger shape denoting event. As one can see, at this, basic (or
0th), stage of representation 9, the structure of the initial and terminal processes
is suppressed, as is the internal structure of the transforming event itself, and
what’s being captured by the formal structure is the “external” structure of the
event.

Since all of nature is composed of various temporal processes, examples of the
above events are all around us: e.g. an elementary particle collision, formation
of a two-cell blastula from a single cell (initial process is the original cell and the
terminal processes are the resulting two cells), collision of two cars, the event
associated with the transforming effect on the listener’s memory of the sentence
“Alice and Bob had a baby” (initial processes are Alice and Bob and the termi-
nal processes are Alice, Bob, and the baby), etc., where each mentioned event
transforms the “flow” of the corresponding stable/regular processes involved.

7 The internal structure of such event/interaction is undisclosed.
8 The concept of class permeates all levels of consideration.
9 In this paper, I discuss almost exclusively a single-stage version of ETS. For multi-

stage version see [6], Part IV.

4.2 Structs

The second basic ETS concept is that of a struct formed by a (temporal) se-
quence of the above primitive events, as shown in Fig. 2. It is easy to see how
the temporal process of Peano construction of natural numbers (Fig. 3) was
generalized to the construction of structs: the single “structureless” unit out of
which a number is built was replaced by multiple structural ones, i.e. by ETS
primitives. An immediate and important consequence of the multiplicity of units
in the construction process is that we can now see which unit was attached and
when. Hence, the resulting (object) representation for the first time embodies
both temporal and structural information in the form of a formative, or gener-
ative, object history recorded as a series of (structured) events. This was one of
the basic driving motivations for the development of ETS, while the other main
motivation was the development of a unified class-oriented representational for-
malism, which would satisfy the needs of a large variety of information-processing
areas as well as natural sciences.

Fig. 1. Pictorial illustration of three primitives. The first subscript of a primitive stands
for the event type, i.e. it refers to the set of primitives all sharing the same structure,
e.g. π2b and π2d . The initial classes are marked as various solid shapes on the top,
while the terminal classes are shown as solid shapes on the bottom: each shape stands
for a particular class of processes. The only concrete processes—i.e. elements of these
classes—are identified in the figure as the initial processes of primitive π2b with the
second subscript b = 〈 c1i , c2j , c3k 〉 , where cst is the tth initial process from the primal
class Cs, s = 1, 2, 3 .

Before proceeding further, it is important to note that there are two natural
contexts within which the above concept of an object’s formative history can
appear. On the agent’s side, a struct is a recorded sequence of sensory micro-
events as they occur during the agent’s sensory interaction with the target object,
which must rely, of course, on the agent’s own arsenal of primitives. On the
more “objective” (agent independent) side, a struct is the representation of the
sequence of events that actually participated in the object’s formation, i.e. in
the object’s evolution. The essential point to observe is that both modes of
representation are captured within the same formalism, which is a very desirable
feature of a representational formalism, since such state of affairs suggests that
the biological form of information processing didn’t have to be “invented” from
scratch.

Fig. 2. Two illustrative examples of (short) structs.

Fig. 3. The single primitive involved in the ETS representation of natural numbers
(left), and three structs representing the numbers 1, 2, and 3.

4.3 Struct Assembly

One of the basic operations on structs is struct assembly (illustrated in Fig.
4), which relies on the events shared by the structs involved. This operation
allows one to combine in one struct several separately observed, but typically
overlapping, structs (e.g. those representing several facial features such as the
eyes and the nose). In particular, the overlap of several structs captures a “non-
interfering”, or non-destructive, interaction of the objects/processes that the
structs represent. I should note that, in light of ETS, the noun “process” captures
the conventional concept of “object” much more adequately, simply because an
object is, in fact, a temporal concept.

It is not difficult to see the fundamental difference between a struct and, for
example, a string: the main difference has to do with the temporal nature of
ETS representation, which now allows one to “compare” any objects based on
their “formative history”. The latter information is simply not available in all
conventional forms of representation.

Thus, to repeat, the ETS object representation captures the object’s forma-
tive/generative history which, for the first time, brings considerable additional

Fig. 4. Pictorial illustration of three structs and their assembly (bottom). Note that
the second link connecting primitives π3k and π2g in the assembly comes from σ1

(and not from σ3).

information into the object representation. I should add that, from the applied
point of view, the adjective “formative” does not (and cannot) refer to the ob-
ject’s actual formative history, since, in most cases, it is not accessible to us,
but rather to a particularly chosen application mode of approaching/recording
it, i.e. to the mode of struct construction selected by the application developers.

4.4 Level 0 Classes

The third basic concept is that of a class. Even within the basic representational
stage—the only one I discuss here—each class 10 is also viewed as possibly multi-
leveled. A single-level, or 1-level, class representation is specified by means of a
single-level, or level 0, class generating system, which details the stepwise
mode of construction of the class elements. 11

Each (non-deterministic) step in such a system is specified by a set of (level
0) constraints. Each constraint—also a major concept, which is not introduced
here, see [6], Part III—is a formal specification of a family of structs sharing
some structural “components” in the form of similar substructs. During a step
in the class element construction process, the struct that is being attached (at
this step) to the part of the class element that has been assembled so far must
satisfy one of the constraints specified for this step. To be more accurate, in the
definition, it is assumed that each such step can be preceded by a step executed
by the “environment”, i.e. by some other class generating system “intervening” or
“participating” in the construction process (see Fig. 5). Thus, quite appropriately
and realistically, a change in the environment (i.e. in some of its classes) may
change the class elements, without an attendant change in the class generating
system itself. Such a concept of class admits the effects of the environment in a
“natural” manner.

4.5 Level 1 Structs

Suppose that an agent has already learned several level 0 classes, which together
form the current level 0 class setting. Then, when representing objects, the agent
now has an access to a more refined form of object representation than a plain
level 0 struct: it can now see if this struct is in fact composed of several level 0
class elements (each belonging to one of the classes in the level 0 class setting,
see Fig. 6). This leads to the concept of the next level (level 1) struct, which
provides extra representational information as compared to the underlying level
0 struct in the form of the appropriate partition of the latter struct.

4.6 Higher Level Classes

In the (recursive) k-level version of the class representation, for k ≥ 2, each
step is associated with a set of level (k − 1) constraints. However, during the
corresponding construction process, level (k− 1) struct that is being attached

10 Here, I do not include the primal classes, which are assumed to be of undisclosed
structure.

11 Note the alternative terminology: “single”, or “1”, refer to the number of levels,
while “level 0” refers to the name of the level. Also note that since we begin with
level 0, this level cannot recurse to any lover level; level 1 is built on top of level 0;
level 2 is built on top of level 1; etc. Also note the difference between a level and
a stage (see section 4.7): levels refer to those of classes and appear within a single
representational stage.

Fig. 5. Pictorial representation of a generic two-step “unit” in the construction of
a class element: a step by the environment (bottom shaded primitives in the second
struct, which was added to the first one) followed by a step made by the class generating
system (substruct βj in the third struct, which was attached to the second struct).

Fig. 6. Simplified pictorial representation of a level 1 struct in the contracted form:
dots stand for primitives and solid lines delineate level 0 class elements ci’s.

(at this step) to the previously constructed part of the class element must now

be composed only out of level (k−2) admissible class elements 12 in a manner
satisfying one of the constraints specified for this step.

Figure 7 illustrates a (constructive) unit of such a construction process for
a level 1 class element. For a level 2 class element, this element is an output
of a level 2 (or three-levels) class generating system, and at each step of its
construction, the relevant part is assembled out of several level 1 class elements
in accordance with one of the constraints specified for this step.

Fig. 7. Illustration of a generic two-step unit in the construction of level 1 class element.
Dots stand for primitives, and solid lines delineate level 0 class elements, which now
serve as basic constructive units. A step by the environment (bottom left gray addition
in the second struct) is followed by a step made by a level 1 class generating system
itself (a substruct delineated by the dotted line).

4.7 Transition to the Next Representational Stage

In this section, I outline very briefly the concept of the next stage of representa-
tion, mainly because it clarifies the nature of the very basic ETS concept, that
of a primitive.

A transition to the next stage of representation is associated with a rep-
resentational change, more accurately compression, in which certain recurring
(global) patterns of process interactions, called transformations, are compressed
into new primitive transformations (for the next stage): each of the interacting
processes is compressed into a primal process and the segment in which the in-
teraction between them occurs is compressed into a next stage primitive event
(see Fig. 8).

Thus, the primitives at the next representational stage are transformations
from the present stage, including possibly some primitives from the present stage.
12 Each of those must come from a class belonging to a (previously learned or given)

set of level (k − 2) classes, comprising level (k − 2) class setting.

Fig. 8. A transformation (left) and the corresponding next-stage primitive (right). An
illustration of a (possible) transformation corresponding to a hypothetical formation of
a lithium hydride molecule (terminal process) from hydrogen (left) and lithium (right)
initial processes (note the reoccurring structural patterns). The four primitives repre-
sent emission/absorption of a photon by electron (semi-circle)/nucleus (trapezoid). The
body of the transform (heavy dashed line) depicts an imaginary restructuring of the
two initial processes into the terminal one. On the right, the corresponding next-stage
primitive (lithium hydride formation) is shown.

Obviously, after such compression the resulting, next stage, representation, is
considerably simplified. Moreover, the transition to the next stage is accom-
plished seamlessly, within the confines of the same formal language.

5 Some Initial Computational Questions Arising within
the ETS formalism

For simplicity, I discuss several issues and only as they relate to a basic, single-
stage, computational “agenda” within the ETS formalism. The central problem
can be stated as follows: Given a (particular) family of multi-level classes, i.e.
of their class generating systems, and given several 0-level (“training”) structs
from a class belonging to this family, the goal is to construct the “description”
of the latter class, i.e. its class generating system.

In other words, I suggest that within such (inductive) framework, the com-
putational theory is aimed at developing the theory and techniques that would
allow one, first, to preprocess (or partition, or “mark up”) the input structs in
a consistent manner, based on the structure of the given family of multi-level
classes; and only then to proceed with the extraction of the underlying class
generating system.

So first of all, one needs to develop an appropriate theoretical framework,
which could be thought of as a “structural” generalization of the Chomsky’s
language hierarchy. As mentioned in the first paragraph of this section, such a
theory would allow one to properly restrict the learning problem to a particular
family of classes. The development of such a hierarchy should probably proceed
along the lines somewhat similar to those followed by Chomsky, with the fol-
lowing quite natural adjustments. First, some levels in the hierarchy might need
(internal) partitioning; and second, within the hierarchy, each family of classes
should be introduced via the appropriate restrictions on the set of admissible
constraints—which are the ETS analogues of the production rules—involved in
the specification of the class. However, it is important to emphasize the dif-
ferences between the ETS and the conventional string (and graph) hierarchies,
which concern not just the presence of levels in ETS. When defining a conven-
tional, for example Chomsky, hierarchy, one is not treating a string as a form
of structural object representation as understood above. This results, on the one
hand, in a wider range of admissible production rules (not all are meaningful
from the representational point of view), and on the other hand, in a variety of
qualitatively different machines associated with each family of languages (e.g.
deterministic/nondeterministic). There are reasons to believe that, in the case
of ETS formalism, in view of the temporal form of representation, the situation
is more palatable.

Next, based on such a structure theory, one would need to develop techniques
for the above class related (structural) preprocessing, or partitioning, of the
structs in a given (training) set of structs. 13 Even this task is highly non-
13 Although I’m not discussing this issue here, in many applications, one would need to

do all preprocessing under the assumption that some cyclic permutations of structs

trivial, since the tiling of each given struct must be accomplished relying on
the admissible previous level class elements only (see Fig. 6). The final stage is
related to the construction of the corresponding class representation.

It is understood that, in the meantime, to proceed with various applications,
one does not need to wait for the development of a full-fledged structural theory,
since in each concrete application, the corresponding family of classes can readily
be specified.

Thus, it should be clear that in contrast to the conventional computational
models—where, as was mentioned above, the defining agenda was logical—I
propose that it is the (structural) inductive agenda that should now drive the
development of the computational framework. This proposal is not really surpris-
ing, given that the new framework is aimed at supporting a continuous dynamic
interaction between the “machine” and various natural environments, where, as
was hypothesized above, the temporal/structural nature of object representation
is ubiquitous.

6 Conclusion

I hinted that it might be prudent for some researchers in computation to add to
their research interests a new area that we called Inductive Informatics, which
can be thought of as a reincarnation of a four-hundred-year-old Francis Bacon’s
project of putting all sciences on firm inductive footing, with the attendant
restructuring of the basic formal/scientific language and methodology. Interest-
ingly, the future of what we now call “computer science” appears to lie in this
direction. In hindsight, it looks as if the major obstacle to Bacon’s vision has
been the lack of a classification-oriented—or which appears to be the same thing
“structural”—representational formalism. Our proposed version of such formal-
ism is a far-reaching, structural, generalization of the numeric representation,
and in that sense it is much closer to mathematics than the logic (which was
suggested by von Neumann [2] to be a desirable direction). Moreover, with the
appearance of such a formalism, the concept of class representation, for the first
time, becomes meaningful, and it also becomes quite clear that it is the intrinsic
incapability of the conventional representational formalisms to support this fun-
damental concept that is responsible for our previous failure to realize Bacon’s
vision.

In addition to the new theoretical horizons that are being opened up within
new (event-based) representational formalisms, the other main reason why such
formalisms should be of interest to researchers in computation has to do with
the immediate practical benefits one can derive from their various applications
in machine learning, pattern recognition, data mining, information retrieval,
bioinformatics, cheminformatics, and many other applied areas. The legitimacy
of the last statement should become apparent if one followed carefully the above

and/or some of their substructs should be treated as identical representations by the
agent, since they may correspond to alternative ways of sensing the same object in
the environment.

points regarding the new and rich (temporal) aspect of object representation—
i.e. the object’s formative history—as well as the (generative) concept of class
representation that now become available within the ETS formalism.

Finally, it is useful to note the expansion of event-based research directions
in recent (last 30-40 years) work in philosophy, psychology, and linguistics (e.g.
[7], [8], [9], [10], [11]).

Acknowledgment. I thank Oleg Golubitsky for a discussion of the paper and
Ian Scrimger and Reuben Peter-Paul for help with formatting.

References

1. Cook, S. A.: The complexity of theorem proving. In: Laplante, P. (ed.): Great
Papers in Computer Science. West Publishing Co., St. Paul, Minneapolis (1996) 2

2. Neumann, von J.: The general and log ical theory of automata. In: Pylyshyn, Z. W.
(ed.): Perspectives in the Computer Revolution. Prentice-Hall, Englewood Cliffs,
New Jersey (1970) 99–100

3. Turing, A. M.: On computable numbers, with an application to the Entschei-
dungsproblem. In: Laplante, P. (ed.): Great Papers in Computer Science. West
Publishing Co., St. Paul, Minneapolis (1996) 303, 304

4. Goldfarb, L.: Representational formalisms: What they are and why we haven’t had
any. In: Goldfarb, L. (ed.): What Is a Structural Representation (in preparation)
http://www.cs.unb.ca/~goldfarb/ETSbook/ReprFormalisms.pdf

5. Goldfarb, L.: On the Concept of Class and Its Role in the Future of Machine Learn-
ing. In: Goldfarb, L. (ed.): What Is a Structural Representation (in preparation)
http://www.cs.unb.ca/~goldfarb/ETSbook/Class.pdf

6. Goldfarb, L., Gay, D., Golubitsky, O., Korkin, D.: What is a structural rep-
resentation? A proposal for an event-based representational formalism. In:
Goldfarb, L. (ed.): What Is a Structural Representation (in preparation)
http://www.cs.unb.ca/~goldfarb/ETSbook/ETS6.pdf

7. Casati, R. and Varzi, A.: Fifty Years of Events: An Annotated Bibliography 1947
to 1997, Bowling Green (OH), Philosophy Documentation Center (1997) (also
http://www.pdcnet.org/eventsbib.htm)

8. Casati, R.: Events, Stanford Encyclopedia of Philosophy,
http://plato.stanford.edu/entries/events (2006)

9. Lombard, L. B.: Events: a Metaphysical Study, Routledge and Kegan Paul, London
(1986)

10. Zacks, J. M. and Tversky, B.: Event structure in perception
and conception, Psychological Bulletin 127 (2001) 3–21 (also
http://www-psych.stanford.edu/~bt/events/papers/eventspsychbull.pdf)

11. Tenny, C, and Pustejovsky, J. (ed.): Events as Grammatical Objects, CSLI Publi-
cations, Stanford, CA (2000)

