
STRUCTURAL REPRESENTATION OF THE

GAME OF GO

by

James Ian Scrimger

B.Sc., Mount Allison University, 2004

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Computer Science

in the Graduate Academic Unit of Computer Science

Supervisor: Lev Goldfarb, Ph.D., Computer Science

Examining Board: Weichang Du, Ph.D., Computer Science, Chair
Michael Fleming, Ph.D., Computer Science
Yevgen Biletskiy, Ph.D., Electrical and Computer
Engineering

This thesis is accepted by the
Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

September, 2007

c© James Ian Scrimger, 2007

Abstract

Go, a popular game of strategy, is not amenable to the traditional AI techniques

for game playing. Because of the game’s hierarchical and temporal nature, the

use of structural representation is a logical approach to try. This thesis presents

a preliminary representation of the game of Go in the structural language of the

Evolving Transformation System (ETS).

An ETS class hierarchy designed to capture progressively complex aspects of Go

positions is presented. Individual Go stones are represented as elements of a few

low-level classes, these classes are the constituent pieces of higher-level classes corre-

sponding to blocks of stones, which are in turn assembled into classes corresponding

to the evolution of larger shapes.

The presented class hierarchy could form the basis of the first entirely class-based Go-

player, meaning that such a program’s move selection would be directed by generative

class descriptions.

ii

Table of Contents

Abstract ii

Table of Contents vii

List of Tables viii

List of Figures xv

1 Introduction 1

1.1 Motivation and background . 1

1.2 Scope of the thesis . 3

1.3 Organization of the thesis . 4

2 Computer Go 6

2.1 The game of Go . 6

2.1.1 Some rules of Go in detail . 7

2.2 Why Go is difficult for computers to play 13

2.2.1 Large search space for candidate moves 14

2.2.2 Complicated move evaluation 16

2.3 Current computer Go techniques . 17

2.3.1 Representation and knowledge 18

iii

2.3.2 Search . 20

2.3.3 Move generation and evaluation 21

2.3.4 Machine Learning and Go . 23

2.3.5 Monte Carlo techniques in Go 25

2.3.6 Solving sub-problems . 28

2.3.6.1 Opening game . 28

2.3.6.2 Endgame . 28

2.3.6.3 Life, death, and races to capture 29

2.3.6.4 Repeating patterns 30

2.4 Aspects of human play . 31

2.4.1 Where computers out-perform humans 32

2.4.2 Where humans out-perform computers 33

3 Evolving Transformation System 34

3.1 ETS is a representational formalism 34

3.2 Classes and inductive learning . 36

3.2.1 ETS class definition: classes are generative 36

3.2.2 Formative history . 38

3.2.3 Objects as processes . 39

3.3 Modeling in ETS . 40

3.3.1 ETS primitives and primal classes 40

3.3.2 Structs . 44

3.4 Classes in ETS . 46

3.4.1 Level 0 classes . 46

3.4.1.1 Level 0 constraints 46

3.4.1.2 Level 0 class generating systems 48

3.4.2 Higher level classes . 49

iv

4 ETS Go Model 52

4.1 Overview . 52

4.1.1 Primitives and primal classes 53

4.1.2 Class level 0: stones and vertices 54

4.1.3 Class level 1: blocks and spaces 55

4.1.4 Class level 2: groups . 55

4.2 Representing spatial relations in Go 56

4.2.1 What are spatial and temporal relations? 57

4.2.2 The emergence of spatial relations 57

4.2.3 Representing spatial relations via overlapping classes 61

4.2.4 From stones to structs . 61

4.3 Primitives and the primal class . 63

4.3.1 The primal class . 63

4.3.2 Colour primitives . 65

4.3.3 Adjacency primitive . 65

4.3.4 Edge primitive . 66

4.3.5 Attention generation primitives 68

4.4 Structs . 69

4.4.1 How structs are recorded . 70

4.4.2 Temporal aspects of Go structs 72

4.4.3 Spatial aspects of Go structs 74

4.5 Level 0 classes . 75

4.5.1 Stones and vertices . 77

4.5.2 Example: the generation of a class element 79

4.5.3 Play and capture . 82

v

4.5.4 Proximity . 86

4.5.5 Example: a fully-classified struct 91

4.6 Level 1 classes . 93

4.6.1 Previous level constraints . 94

4.6.2 Blocks of stones . 95

4.6.3 Spaces . 101

4.7 Level 2 classes . 110

4.7.1 Previous level classes and constraints 111

4.7.2 Overlapping constraints: an example 113

4.7.3 A tentative level 2 class element 117

5 Discussion 123

5.1 Representational properties . 124

5.1.1 Formative history . 124

5.1.2 Class variability . 124

5.1.3 Translational and rotational independence 126

5.1.4 Attention shift independence 129

5.1.5 Overlapping hierarchies . 131

5.2 Psychological plausibility . 132

5.3 Towards an ETS Go engine . 134

5.3.1 Learning . 135

5.3.2 Playing Go . 136

5.3.2.1 Position evaluation 137

5.3.2.2 Move selection . 139

5.3.3 Opening game . 140

5.3.4 Evaluating play . 141

vi

6 Conclusion and future work 142

6.1 Conclusion . 142

6.2 Future work . 144

Bibliography 146

Vita

vii

List of Tables

4.1 The level 0 class setting . 76

4.2 The level 0 play and capture classes. 82

4.3 The level 0 proximity classes . 86

4.4 Level 1 classes in this section . 94

4.5 Level 1 classes and constraints. 111

viii

List of Figures

2.1 Several Go positions. 8

2.2 Suicide and gaining liberties. 9

2.3 The principle of two eyes. 10

2.4 Examples of territory. 11

2.5 The ko rule. 12

2.6 A chain (or dragon). If white attempts to divide these stones by
playing at ‘a’, black can connect at ‘b’, and vice versa. 19

2.7 A Ladder. The two stones marked ‘X’ will be captured unless black
plays 1. However, white’s response of 2 forces black to play 3, and 4
forces 5, etc. until black can connect with friendly stones on the other
side of the board. 30

3.1 Three ETS primitive events, labelled π25, π2, and π4, along with their
associated primal classes, from three very different domains. 41

3.2 An abstract primitive (left), and two concrete primitives. 42

3.3 A struct, composed of six primitives belonging to three abstract prim-
itive types. The primitives are connected by primal processes, and the
corresponding primal classes are denoted by the shapes on the top and
bottom of each primitive. Primitive events are temporally ordered,
from the top of the struct to the bottom. 44

3.4 Struct σ1 is assembled with σ2{f}, which is a relabeling of (and hence
structurally identical to) σ2. The assembly is on their common prim-
itives π3l, π1b, and π2i. 45

3.5 A struct containing three level 0 class elements, delineated by boxes. . 46

ix

3.6 In the box: a structural constraint. Structs σ1, σ2, and σ3 satisfy this
constraint, while σ4 does not. The context part of the constraint is
shown in grey (see Fig. 3.7). 47

3.7 One step in the formation of a class element. Left: the working struct
for a forming class element. Center: the same struct with a new
primitive (grey) added by the environment. Right: the middle struct
after the constraint from Fig. 3.6 is applied. Note that the struct
satisfying this constraint is shown in bold, and that the constraint’s
context part was already present in the working struct. 49

3.8 Left: a struct containing two class elements, c11 and c21, that overlap
on a shared constraint Con(Π1) (shown in grey). Right: an overlap
graph showing the class elements as nodes and their shared constraint
as an edge. Temporal information is absent from the overlap graph. . 50

4.1 A black stone, white stone, and empty vertex, all captured as level 0
classes. 54

4.2 Two blocks and a “knight’s jump” space, all captured as classes at
level one. 55

4.3 The formation of a black group that could be treated as a level 3 class. 55

4.4 Two ETS primitives that imply spatial interaction. 59

4.5 Three dubious attempts to represent the spatial aspect of the pictured
Go position. A: Because each event generates new primal class ele-
ments, it is difficult to say formally whether c13 represents the same
black stone as c11. B: This approach is highly numeric, and also suf-
fers from the same problem as A. C: The same primal class cannot
simultaneously interact with two events; this is forbidden by the model. 60

4.6 Logical progression. From left to right: 1. Go stones are class ele-
ments, and neighbouring stones overlap. 2. Each stone must have
some shared primitives and some only belonging to itself. 3. These
primitives need to be structurally arranged. 4. The resulting struct. . 62

4.7 The seven Go primitives. 63

4.8 The primal class corresponds to the player’s awareness of the part of
one line nearest a given vertex. 64

4.9 Left-right vs. up-down adjacency depends on how the colour primi-
tives are attached to the adjacency primitive. 66

x

4.10 This vertex is adjacent to nothing (i.e. it is on the edge of the board). 67

4.11 The player briefly considers a white stone. This is a complete (if small)
example of a Go struct. 68

4.12 An (abstract) struct corresponding to the pictured board position. . . 69

4.13 Left: This struct does not violate any purely formal rules, but it cor-
responds to a nonsense state-of-affairs, i.e., a situation that can never
be observed on a Go board. Right: a more subtle nonsense struct
showing two stones to the left of each other, a physical impossibility. . 71

4.14 An (abstract) struct showing a black stone being placed next to the
white stone. 73

4.15 Attention shifts across the board. 74

4.16 This struct, representing the player’s awareness of a single black stone,
is an element of the level 0 black stone class. 75

4.17 An example element of one of each of the stone/vertex classes, repre-
senting a player’s awareness of the above pictured board state. Prim-
itives shared between two overlapping class elements are shown in grey. 77

4.18 Constraints for the white stone class. The primitives in grey are the
context: these primitives must be present in the working struct in
order for the constraint to be applicable. 78

4.19 Three examples of a class element’s initial formation. The primitive
attached by the application of ConC1

1 is shown in bold, and the con-
text is shown in grey, and is provided by the environment. All other
primitives are not part of this new class element. 1. attention jumps
to the black stone. 2. the black stone is placed on the board. 3.
attention shifts to the black stone from a neighbouring stone. 79

4.20 Assembly of an element of class C2, a white stone. Newly added
primitives and primal classes are shown in bold, contexts are in grey,
and the particular constraint applied is indicated at each step. 80

4.21 Struct continuation must attach to the working struct. Above the
dashed line: the board position represented here (two adjacent white
stones), and the constraint being applied. Below: the two connected
class elements, with one of them shown in grey. Note that the mid-
dle primitives are shared between the two classes. The newly-added
primitive, which would be a valid continuation of the right-hand class,
is not a valid continuation of the class on the left, as the context of
the constraint being used is not within the working struct. 81

xi

4.22 The constraint on the left only specifies one of π4’s initials. 1. and 2.
are valid ways of applying the constraint. 3. is not valid, not because
the constraint forbids it, but because this struct is never observed. 4.
is structurally valid but does not satisfy the constraint. 82

4.23 Left: an element from C4, the black play class. Right: an element
from C7, the white stone removal class. 83

4.24 The constraints for C4, the black play class. Context primitives (i.e.,
those that must be present in the working struct before the constraint
may be applied) are shown in grey. 84

4.25 The capture of a white stone: c71, shown in grey, overlaps with c21,
an element of the white stone class, and c31, an element of the empty
vertex class. 85

4.26 The struct from Figure 4.17, with two proximity class elements out-
lined. Grey primitives are those within either element. The primitives
on which the class elements overlap are bold. 87

4.27 Constraints for C10, the adjacent empty vertices class. Context prim-
itives are shown in grey. 88

4.28 Constraints for C11, the black adjacent to white class. Context prim-
itives are shown in grey. 89

4.29 A struct containing three class elements: an empty vertex (solid box),
a black stone (dashed box), and the proximity relationship between
them (grey primitives). Element c31 shares constraints with c121; for
reference, the constraints from the respective classes are shown on the
left. Likewise, c121 and c11 have common constraints, depicted on the
right side. 90

4.30 An atari position and subsequent capture. The representation of this
board position and stone placement is shown in Figure 4.31. 91

4.31 A struct corresponding to the board positions in Figure 4.30. Note
that for simplicity, primitive numbers and some primal classes are
suppressed. Only a few of the 17 class elements within this struct
are identified. The vertical bars isolate the three class elements that
correspond to the center vertex. The C7 (white capture) element is
shown in grey, the resulting C3 (empty vertex class) element is bold,
and primitives marked with a ‘+’ are those that compose the element
of C4 (black play class) on the lowest vertex. Figure 4.32 shows an
overlap graph of all 17 class elements. 92

xii

4.32 An overlap graph corresponding to the struct in the previous figure.
Each node corresponds to one class element, and each edge between
elements indicates that these two elements overlap on a constraint. . . 93

4.33 A selection of constraints present in various level 0 classes. 95

4.34 An element of C1
1, the black one-stone block class. Upper right: the

board position that resulted in this class element. Left: the complete
struct, with the contained black stone class shown in grey. Lower
right: the associated overlap graph with the particular overlapping
constraints identified. 96

4.35 An element of C1
2, the two-stone black block class. This particular

class element is sitting at the edge of the board. 98

4.36 An element of C1
4, the block-interface class. The eight level 0 con-

straints shown in the figure are those used in the formation of the
eight level 1 constraints: see Def. 4 100

4.37 Examples of C1
5, a one-point jump, C1

6, a knight’s jump, and C1
7, a

diagonal play. 102

4.38 An element of C1
8, the long-knight jump class. 106

4.39 Top: an element of C1
9, the three-points-from-edge class. Bottom left:

a common opening play near the corner. Bottom right: the level 2
overlap graph representing this position: two elements of C1

9 and one
of C1

1 (1-stone black group). 107

4.40 The evolution of class elements as a four-stone wall is built, with the
resulting level 2 overlap graph shown below the double line. Each
circled area is one level 1 class element, and overlap is shown. The
element shown with a dotted circle does not overlap with the final
four-stone class (the large outer loop). 109

4.41 The board positions captured by some level 2 constraints 110

4.42 Overlap graphs for constraints Con2
6 (left) and Con2

10 (right). 114

4.43 Two annotated Go positions taken from [40]. The circles were added
by an expert Go player who was asked to indicate which stones formed
a “meaningful pattern”. 115

4.44 Top: a Go position and the overlap graph for the corresponding con-
straint: Con2

7. Bottom: A and B are elements of C1
11 that could be

used to satisfy this constraint. C is an element of C1
11 that could not

satisfy the constraint, and D is neither a class element nor satisfies
the constraint. 115

xiii

4.45 An overlap graph corresponding to the main set of stones on the right
side of Figure 4.43. Individual level 1 constraints are indicated by
their subscript. 116

4.46 The formation of this shape can be treated as a level 2 class element. 117

4.47 The level 2 class element at stage A. The external numbers correspond
to the order in which the corresponding stones were played. 118

4.48 The level 2 class element transitioning from stage A to stage B. . . . 119

4.49 The level 2 class element transitioning from stage B to stage C. . . . 120

4.50 The level 2 class element transitioning from stage C to stage D. . . . 121

4.51 The level 2 class element transitioning from stage D to stage E, its
final, stable state. 122

5.1 Two level 2 constraints associated with the two “eyes” in the above
position. C1

3 is the black block class, C1
5 is the black one-point jump

class, and C1
19 is the not-previously-defined “black stone one point from

the edge” class. The constraint labelled Con1
? is the not-previously-

defined empty+edge analog to Con1
4. The overlap-connection labelled

‘+++’ is actually a whole set of constraints, since the classes overlap
on the entire center vertex. 125

5.2 The same configuration of Go stones under translation, i.e., in two
different locations on the board. 126

5.3 These two Go positions are identical: they merely appear in opposite
corners; i.e., the first position can be transformed into the second by
rotating the board 180 degrees. 127

5.4 In isolation, A and B are the same pattern under mirroring. However,
as C and D illustrate, A and B cannot be treated as strictly equivalent,
since their relative position matter greatly when they are combined
to form a larger position. 127

5.5 Two structs corresponding to the two opposite board positions shown
at left. 128

5.6 Four elements of class C1
16, representing the four possible orientations

of a black and white stone with one space between them. 129

xiv

5.7 Two structs corresponding to attention shifting across the same posi-
tion in opposite directions. Stone classes are indicated with boxes, and
primitives that are part of proximity classes are shown in grey. The
order the stones are added to the struct does not affect the overlap
graph of resulting classes: both the struct on the left and the struct
on the right result in the same overlapping level 0 classes. 130

5.8 The position at left can be resolved favorably for black (middle posi-
tion) or for white (right position), depending on who plays first. . . . 138

5.9 Overlap graphs corresponding to the two ways the position in Figure
5.8 can be resolved. Arrow notation is the same as in Section 4.7.3. . 138

xv

Chapter 1

Introduction

1.1 Motivation and background

Games of strategy have long been a favorite domain for AI research:

The complexity of games introduces a completely new kind of uncertainty ...
[which] arises not because there is missing information, but because one does
not have time to calculate the exact consequences of any move. Instead, one
has to make one’s best guess based on past experience, and act before one is
sure of what action to take. In this respect, games are much more like the real
world than in the standard search problems [of AI] [1, p. 123].

Traditionally, the flagship game for such research has been chess, but as computer

chess play improved to the level of world-class human players, more attention has

been focused on Go, which is not amenable to the search techniques that are so

successful in chess programs.

A common misconception drawn from decades of chess research is that brute
force techniques, utilising good search and evaluation algorithms, is sufficient

1

to solve any problem once it has been formally specified. Go is a domain that
contradicts this common misconception. It is easy to formally specify the rules
of Go, however, all current programs fall short of human performance even to
the level of a beginner-intermediate player. [2, p. 1]

The above was written in 1995 and, while programs have improved slightly over

the last decade, and significantly on small boards in the last year, there is still no

program that can challenge a professional player on a full-sized board [3].

The problems that Go presents are an opportunity to explore the use of structural

representation: because the search complexity of Go is very large, it is not possible

to use any ad hoc representation scheme and then perform heavy operations on it

algorithmically. In light of this, a structural approach, which seeks to maintain and

enhance as much of the available information as possible, appears to be a natural

candidate for building representations of the game. Besides helping to systematically

organize a Go program’s information, structural representation also supports induc-

tive classification, the ubiquitously sought-after machine learning goal of discovering

class representation from a few training objects to facilitate the identification of the

classes of subsequently-encountered objects, in a new way.

There have been previous attempts at “richer representation” (e.g., [4]) and classifi-

cation in Go (e.g., [5, 6, 7, 8, 9, 10, 11]), but none have led to programs that play as

successfully as those using brute-force techniques. At the time of writing, some of

the best Go programs use Monte Carlo simulation methods and a minimal amount of

structured Go knowledge [3]. If such approaches ultimately succeed (though whether

they will is very much an open question), it would put us in the unfortunate position

of having “solved” Go without learning anything new about Go.

The structural representation of Go I have constructed for this thesis uses the lan-

guage of the Evolving Transformation System (ETS), which is a new representational

2

formalism designed with inductive classification in mind. The latest version, [12],

was completed only recently, but the essential ideas have been in development by

Goldfarb and other members of the ETS group for more than 20 years.

The original motivation for the ETS was to unify two separate approaches in pattern

recognition: the statistical approach, and the structural (syntactic) approach [13].

The hope was that the strengths of these two models combined could overcome their

individual shortcomings: objects could be modeled syntactically and partitioned into

classes statistically. However, investigation in this area led Goldfarb and associates

to see that the much more fundamental concept of class representation had been

overlooked.

It is this concept of class representation that is at the heart of ETS. In most machine

learning (or pattern recognition) schemes, the primary focus is on representing in-

dividual objects, usually as data points in some abstract space, then grouping them

according to a boolean class variable. Goldfarb et al. thought that a class was much

more than just a collection of elements: the class itself must have its own struc-

ture. ETS is meant to be formalism that can describe both structured objects and

structured classes in the same language [14].

1.2 Scope of the thesis

The main aim of this thesis is to construct a representation of the game of Go in the

language of the ETS formalism, focusing on the use of generative class descriptions

(as distinct from the current machine learning paradigms) to model the game in a

rich and systematic way. The aim of this work is not to develop a computer program

that plays Go, or even to conduct learning experiments on game data. Rather, it is

3

to create a foundational model of the game that could be used to support those two

related projects.

The logic of the ETS formalism suggests that basic representation of data is perhaps

the most important concern, and should not be treated casually. Because repre-

sentations of Go are always developed with playing the game in mind (as opposed

to merely describing how to make legal moves), such representations must extend

beyond the basics of game rules and playing pieces, and into the realm of tactics.

In support of the above aim, the current approaches in computer Go will be reviewed,

and the concepts of ETS will be introduced. Once my Go model has been presented,

some of its desirable properties will be highlighted, and its use in constructing a Go

playing program will be discussed.

1.3 Organization of the thesis

Chapter 2 begins with an overview of the game of Go, discussing some of the game’s

properties and rules. This leads into a discussion of why Go is difficult for comput-

ers to play compared to other strategy games (Section 2.2). Section 2.3 provides

an overview of the standard techniques used in computer Go systems and their

shortcomings. Finally, Section 2.4 discusses some of the differences between how

computers play Go and how the game is played by humans.

Chapter 3 presents a pictorial (non-formal) overview of the Evolving Transformation

System. The first half of the chapter discusses the formalism’s key assumptions, so

that the reader will get a sense of the purpose of the various formal components.

The second part of the chapter describes the elements of the formalism themselves,

4

first introducing the basic representational units (Section 3.3), and then describing

the workings of ETS class representations (Section 3.4).

Chapter 4 covers the primary work of this thesis: the construction of an ETS rep-

resentation of the main aspects of Go. The chapter begins with an overview of the

entire class hierarchy, with each level examined in greater detail in Sections 4.3–4.7.

Sections 4.1 discusses the particular aspects of Go that I have sought to capture,

and Section 4.2 presents the thinking behind the the general approach taken, in the

hopes that an elucidation of how one begins modeling a phenomenon in ETS will be

useful to others working with structural representations.

Once my representation of Go has been recounted, Chapter 5 discusses its properties

and implications. Section 5.1 elucidates several qualities of the Go representation

that seem to be desirable. The chapter’s middle (Section 5.2) revisits some of the

information about human Go players gleaned from work in Psychology that was

introduced in Chapter 2, this time with a view to how my Go representation fits

with these observations. Finally, Section 5.3 proposes an outline for a new type of

Go-playing program constructed on the basis of the classes described in Chapter 4.

Chapter 6 concludes this thesis, and discusses future research directions, as well

as some of the implications of this work for the future development of the ETS

formalism.

5

Chapter 2

Computer Go

2.1 The game of Go

Go is a classic game of strategy for two players, who take turns placing coloured

stones (black for the first player and white for the second) on the vertices of a 19×19

grid, traditionally etched into a wooden board called a goban. The aim of each player

is to control “territory” (a number of unoccupied vertices) by surrounding it with the

stones of his own colour. It is also possible for each player to capture his opponent’s

stones by surrounding them in a similar way. The analogy used to describe Go is

two armies competing to control an unoccupied land. Go is very popular in Asia,

where tournaments draw attention on the same level as major sporting events. The

game is seen as the king of strategy contests, in the same way chess is viewed in the

west [15].

More formally, Go is a zero sum, perfect knowledge, perfect strategy game. Other

games in this category include chess, checkers, and Othello. “Zero sum” means that

6

one player’s gain directly corresponds to his opponent’s loss—there is no room for

cooperation or for causing mutual harm. “Perfect knowledge” means there are no

hidden resources—each player has complete information about the other player’s

pieces and capabilities. “Perfect strategy” means that, unlike games involving cards

or dice, there is nothing left to chance. Such games are perhaps the most straight-

forward, since the only unknown factor is the opposing player. For humans, they are

also considered to be those games that best test the intellect.

The roots of Go are in China, and it is believed to have been played in its present form

for 3000 years [16], though it has only been played in the west for the past century

[17]. There is speculation that the Go board was originally used as a divination tool,

with seers scattering stones on its surface and then interpreting the meanings, or as

a calendar, with a full-sized goban’s 361 intersections relating to the days of the year

[16]. The rules of the game are so simple that it is easy to imagine how they could

have naturally evolved from playing with stones on a grid.

Go has its own rich culture and language. It features prominently in many Asian

myths and serious players often approach the game as something almost spiritual—

Go is not just a puzzle to be solved. In his discussion of the origins of the game,

popular Go author Peter Shotwell writes:

As illustrated by the development of Daoism, from those early times, ‘sur-
rounding’ formed the basis of war aims and tactics, and was also was the
principle of not only what many Chinese regard life is, but also how it should
be conducted. [16, p. 8]

2.1.1 Some rules of Go in detail

Go has a simple set of rules governing where stones can be played. In general, a

player may place his stone on any unoccupied vertex, but there are a few restrictions

7

A B

D E F

C

Figure 2.1: Several Go positions.

handling various special cases. Stones do not move around the board: once placed,

they remain at a fixed location unless captured.

Life and death is perhaps the most important concept in Go. Any stone that is

surrounded on four sides by enemy stones is “killed” (also called “captured”), and

removed from the board. A stone’s adjacent empty vertices are called its liberties.

When a stone has no liberties left, it “dies”. It is important to realize that only

the four cardinal directions matter in this case: diagonally-adjacent stones don not

directly affect the life and death of their neighbours.

Stones of the same colour that are immediate neighbours are considered to be con-

nected, and live and die together. A block of connected stones is captured only when

all of the liberties in common across all stones are filled. Figure 2.1 shows the fol-

lowing examples of liberties and captures. A: a single stone has four liberties. B:

two stones together have six liberties. C: this white stone still has four liberties. D:

the white stone has only one remaining liberty; black can capture in one move. E:

The two white stones on the edge of the board also have only one remaining liberty.

F: this group of white stones has one remaining liberty.

8

A B C D

Figure 2.2: Suicide and gaining liberties.

A related rule is that it is illegal to suicide—that is, to place a stone where it would

have no liberties. However, a player may place a stone in a completely surrounded

location if doing so causes the capture of one or more of the adjacent stones, instantly

providing the newly-played stone with at least one liberty. Figure 2.2 illustrates this

concept. A: black cannot play at the center of the white group, as this would be

suicide. B: black cannot play in the center of this group either, since it would mean

suicide for both stones. C: black can play at the center of this group, since doing so

captures all four white stones, but a white play here is suicide. D: black can play at

the center of the white group, capturing the two right-most white stones.

As a consequence of these rules, the usual way to save a group of stones under threat

is to make two eyes. Eyes are small areas of territory, often a single vertex, enclosed

by a connected block of stones. If a single block has two eyes it is un-assailable, as

neither liberty can be taken away by the opposing player, since playing inside an eye

would be suicide.

Figure 2.3 shows several examples of eyes. A: black’s group has two eyes and cannot

be captured, despite being totally surrounded. B: by playing the marked stone, black

makes two eyes, saving this group. C: this group also has two eyes. D: white’s attack

on this larger eye will fail. Black can either capture the interloping white stone, or

just ignore it, since a second white play inside the eye would be a suicide play. E,

9

C

D

X

A I

J

X

K

X

X

XX

X

E

X
F

XX
G

X
B

X
H

Figure 2.3: The principle of two eyes.

F, G, H: if white is allowed to play behind black’s line, black’s group is doomed. I:

One of this black group’s eyes is a “false eye”... J: if black cannot connect with the

marked stone... K: white can divide this eye, isolating the lower three stones and

forcing black to fill the failed eye to prevent their capture. If this happens, the entire

group is threatened and must find another way to make a second eye.

Go games end by mutual agreement. When a player’s turn comes, she may elect

to pass, rather than play a stone. If both players pass in succession, the game is

over and the score is determined. Each player gets one point for each empty vertex

they have successfully surrounded (territory), as well as one point for each captured

10

A B C

Figure 2.4: Examples of territory.

enemy stone. Figure 2.4 shows the following examples of territory. A: black controls

12 points of territory at the corner of the board. B: white controls nine points of

territory, plus one point for the black stone. C: A 9 × 9 game between the author

(black) and GNU Go (white). Black has 27 points of territory, while white has 18.

Because the game can end at any moment, stones can be dead without actually being

captured—in fact, once it becomes clear that a group of stones cannot be saved, it is

often wasteful to actually complete the capture of it. Dead groups are removed from

the board at the end of the game and scored the same as stones captured during

play. It is not uncommon for a game to end with some of one player’s stones left

“behind enemy lines” and unable to make two eyes.

The ko rule is an additional rule governing stone-play. It covers a special case

situation that occasionally arises, and states that an identical full-board position

cannot occur twice in the same game. As Figure 2.5 shows, were it not for the

ko rule, players could become stuck in a situation where the same play is repeated

indefinitely. Instead, when a “ko fight” arises, players will alternate plays directly

challenging the ko situation with plays elsewhere on the board. Depending on what

else is at stake on the board when a ko situation arises, ko fights can be far-reaching

11

A B C

XX

Figure 2.5: The ko rule.

and exciting. From Figure 2.5: A: the classic ko situation. B: black’s play here

captures the white stone. C: since capturing black’s stone creates the same pattern

as in A, white must first play elsewhere before this move can be made.

Go players are ranked, and Go includes a handicap system to allow competitive

games between players of different ability levels. Weakest to strongest, amateur

players are ranked from 20 kyu to 1 kyu, and expert armatures are ranked from 1

dan to 6 dan. Additionally, there are professional dan ranks of 1 to 9.

When players of the same rank play, the white player gets a few (usually 6.5) points

of komi, or compensation for black’s first-play advantage. If one player is a single

rank stronger than the other, the weaker player typically takes black. For greater

differences in rank, the weaker player gets some number of stones (usually between

one and nine) pre-placed in specific locations on the board. This gives the weaker

player a head-start in claiming territory.

While the ranking system is a useful way to quantify the relative strengths of (human

and AI) players, researcher and dan-level Go player Martin Müller cautions that it is

difficult to measure the playing strength of Go programs directly because they tend

to have non-human strengths and weaknesses [18].

12

2.2 Why Go is difficult for computers to play

At first glance, Go appears to be a simple game. It has few rules and only two

varieties of playing pieces: a white stone and a black stone. However, a great deal of

complexity arises from these simple elements. A book by the Japanese Go association

contains the following insight [19, p. 10]:

The game of Go may be looked upon either as very easy or as very difficult.
In one sense it is easy because the rules are simple. Since every player is
free to put his stones wherever he likes, except for a few forbidden moves, it
takes only an hour or so to remember all the rules. It is exactly for the same
reason, however, that Go is considered to be a difficult game. If our moves
were restricted by a number of rules, the game would become the easier for the
limitations on our range of thinking. As it is, we can rely on nothing beyond
our own ability, just as in the case of drawing a picture freely on a large canvas.
Therefore, although each game results in victory or defeat, the process must
involve such creative talent as is required in producing a work of art.

Traditionally, computers have avoided the need for “creative talent” in playing games

by relying on their own strength: the ability to perform rapid calculations. However,

in the case of Go, that strength has failed, and the above hints at the reason why:

it is the lack of restrictions that makes Go difficult for a computer to play. At

any juncture the number of available moves is much larger than in similar strategy

games, and evaluating the merits of each move is more complex and nuanced. In

practice, the standard computer game playing technique of generating a (possibly

exhaustive) set of candidate moves and then comparing them via some score function

[20] becomes doubly unwieldy.

13

2.2.1 Large search space for candidate moves

If you want to understand intelligence, the game of Go is much more demand-
ing ... It doesn’t have the silver bullet: deep search. Chess has somewhat
outlived its usefulness. It turned out to be easier than we thought.

Jonathan Schaeffer, quoted in [21]

Game programmers have successfully applied various search techniques to games

such as chess and checkers. The least sophisticated of these techniques was outlined

by Claude Shannon in his 1950 paper proposing a computer chess program [20].

Shannon’s program considers all legal moves that it can make, then considers all

possible replies by its opponent to each of these moves, then all possible moves it

could make after all such replies, etc. The result is called a game tree, where each

node represents a board position, each node’s children are all possible moves replying

to that position, and each node’s depth corresponds to the number of moves beyond

the present. Each level of the tree represents the program’s consideration of the game

at a fixed point in the future, and is called a ply, which is a convenient measure of

the amount of look-ahead that a program performs. Usually programs that use these

techniques search until they find a quiescence [20]: a stable position in which the

strength of the players’ positions can be easily compared.

Such an approach can be unwieldy, since the complexity increases exponentially with

each ply, but various techniques to remove bad lines of play and redundant moves

have been developed, and chess programs that rely on deep searches (such as IBM’s

famous Deep Blue [22]), have been very successful. However, such full-scale searches

are not practical for Go.

Go is typically played on a 19×19 grid (361 total vertices, compared with 64 squares

in Chess), and each grid position can either contain a black stone, a white stone,

14

or be empty. Thus, there are 3361 possible board positions, which is approximately

1.74 × 10172, although only about 1.2% of them are legal [18]. There are too many

possibilities for even the fastest computer to cope with. For comparison: it is thought

that there are 1080 atoms in the universe, and strong 256 bit cryptography has a key

space of about 1.16 × 1077. Even a smaller 9 × 9 variation of the game still has a

position space of approximately 4.43× 1038.

A Go program need not consider all possible board positions, only the one that it is

presently faced with, and all possible moves to be made. Even this adds up quickly:

there are 361 possible first moves, 360 possible second moves, etc. However, the

search space of a full game is not exactly 361! because vertices that have already

been filled can become available for play again via capture. A full game played to

its conclusion will often last about 300 moves (150 for each player) [2], meaning that

the board is not completely full at the end.

Obviously an exhaustive search of the game-space for full-board Go is impossible

given current technology. What is interesting is that on a 9 × 9 board, computer

play is not significantly better. In his overview of Computer Go, Müller writes,

The large search space caused by the great number of possible moves and by
the length of the game is often cited as the main reason for the the difficulty
of Go. However, as Ken Chen points out ... 9× 9 Go, with a branching factor
comparable to chess, is just as difficult as full 19× 19 Go ...

The biggest difference between Go and other games is that static of evalua-
tion is orders of magnitude slower and more complicated. Moreover, a good
static full-board evaluation depends on performing many auxiliary local tacti-
cal searches. [18, p. 6]

15

2.2.2 Complicated move evaluation

No simple yet reasonable evaluation function will ever be found for Go. This
is evident to serious students of the game. . . [18, p. 7]

Martin Müller, 2002

It is not always apparent to even master human players whether a given move is

better or worse than another. By contrast, in chess, even a simple count of the

number of pieces each player has remaining (since each piece has a point-value that

captures its relative worth—pawns are worth 1, bishops and knights 3, rooks 5, and

so on) can be a strong indicator of which player is stronger. Go positions are much

more nuanced, however. They depend on the likelihood of a group’s survival, or

the amount of territory that can potentially be controlled. Complexity emerges in

unexpected ways when neighbouring groups interact.

There are heuristics for evaluating Go positions: for example, an introduction to

Go for beginners [23] suggests that a group with four liberties is safe from capture.

However, this kind of rule is not absolute, and although there are many handy

rules to remember, each player must ultimately depend on his ability to “see” the

consequences of each move.

The fact that Go evaluation functions are both slow and unreliable further reduces

the effectiveness of search. Most notably, min-max (for example“alpha-beta”) prun-

ing techniques cannot be employed. These techniques, which were an integral part of

the famous chess program Deep Blue [22], reduce the size of the search-tree by lim-

iting the search to each player’s most promising moves at each stage. Obviously, to

identify such promising moves depends on an effective full-board position evaluation.

16

2.3 Current computer Go techniques

The previous section outlined the problems of search scale and position evaluation

faced by computer Go researchers. Current programs typically avoid tackling these

issues head-on by employing a group of specialized modules. However, this modular

approach to the independent facets of the game has not managed to make up for the

overall difficulty. Müller writes,

Most competitive programs have required 5-15 person-years of effort, and con-
tain 50-100 modules dealing with different aspects of the game. Still, the
overall performance of a program is limited by the weakest of all these compo-
nents. The best programs usually play good, master level moves. However, as
every games player knows, just one bad move can ruin a good game. Program
performance over a full game can be much lower than master level. [18, p. 4]

Many programs, such as GNU Go 3.6 [24], which has a modular framework, use

a programmatic approach1: rules and heuristics designed with input from expert

players are used to search for and evaluate candidate moves. Other programs use

machine learning techniques to generate playing strategies without expert interven-

tion, though the programmatic approach has thus far been stronger. There are

also programs that use novel techniques outside these two broad categories; Section

2.3.5 discusses one such technique that is becoming popular: the use of Monte Carlo

simulations.

Additionally, research into Go has been directed towards goals besides successful play.

Some research concentrates on solving local life-and-death problems (for example,

[25]), while others (for example, [26]) use machine learning to identify human players

by their style of play.

1Since the time of writing, GNU Go has incorporated Monte Carlo techniques into its play.

17

Besides play against humans, Go programmers test their creations against other

programs. One such recent test came at the 11th Computer Olympiad [27]. The best

program at this 2006 event on a 19× 19 board was the Open Source GNU Go, with

Ken Chen’s Go Intellect taking silver and Bouzy’s Indigo taking Bronze.

On a 9x9 board, a program called Crazy Stone, which uses Monte Carlo techniques,

placed first, followed by Aya and Go Intellect.

2.3.1 Representation and knowledge

Some Go programmers have responded to the challenges of Go’s complexity by con-

structing programs that represent the game in more nuanced ways than is typical

of game-playing in general. Current programs tend to base their move decisions

on a detailed analysis of the present game state, and often contain libraries of pat-

terns implemented by expert Go players. A common starting place is to analyze

the relationships between individual stones on the board. GNU Go, for example,

identifies worms—groups of connected stones, and “dragons”—groups that cannot

be disconnected by the opposing player [24].

In his summary of Computer Go research [28], Keh-Hsun Chen describes a typical

hierarchical view of the board (bottom up): stones, blocks, chains, groups, territory.

The atomic elements of Go are individual stones. Alone, they are not that interesting:

they do not move around the board, they are simply placed, and sometimes removed.

It is the interaction between stones that gives rise to the game’s interest. The most

straight-forward of these relationships is what Chen calls a block (also called a string

and in the case of GNU Go, a worm): two or more connected stones of the same

colour. Blocks are easy to identify, and it is natural to locate them on the Go board,

18

since the safety of each member stone depends on all the others. Many programs

conduct tactical searches on each block on the board to determine the degree of

danger they face (ranging from unconditionally safe to dead) [28].

 b

 a

Figure 2.6: A chain (or dragon). If white attempts to divide these stones by playing
at ‘a’, black can connect at ‘b’, and vice versa.

Chen calls a collection of “inseparable” (but not immediately connected) blocks

a chain (or dragon, in GNU Go parlance). Chains are not as straightforward to

identify, but programs can reliably detect them via heuristics, via matching with a

pattern library, or via tactical search [28]. Stones in a chain are almost as closely

linked as those in a block, since one block in a chain can often escape from danger

by connecting to another block that has more liberties.

Chen calls a group “a strategic unit of an army of stones”, defined as one or more

chains plus any prisoners, or captured (but not totally surrounded and thus still on

the board) enemy stones. Groups are detected in a manner similar to chains, but

are a more complete representation of a local region of the game board. Stones in a

group also tend to live and die together.

Because groups of stones are often cut off from friendly forces and must fight to

live locally, another way to organize information in a Go game is to decompose the

game board into independent or semi-independent “subgames” [29]. This technique

comes from combinatorial game theory and has been successfully applied to Go end-

games, and other situations. The reason that this type of decomposition is desirable

19

is because it serves as an attack on the complexity of search: a global search for the

best move can be treated as the sum of many local searches [30].

Territory is the most abstract element of Chen’s five, though it becomes concrete

at the end of a game when the score is calculated. While the game is in progress,

estimating the territory that can be finally won is an essential part of any playing

program. Often territory is predicted via influence. Chen’s Go Intellect program

uses a radiating influence function: each live stone increases the numeric “influence”

level of neighbouring empty vertices, with the amount dropping off as the distance

increases. Areas of the board with several nearby stones of one colour are strongly

influenced by that player—areas far from any stones or surrounded by both players

are weakly influenced. The expectation is that areas of high influence will eventually

become the territory of the influencing player.

A richer approach to determining the status of groups and territory was used by

Bouzy in his original Indigo program [4]. His program had a library of small (ap-

proximately 25 vertex) shapes, which the program identified on the board and then

iteratively assembled to find larger groups. This database was used to determine the

urgency of a particular move, since information about the strength of the position

associated with each pattern was included by hand [31]. However, since the roughly

300 patterns included the most common situations, adding more patterns to the set

brought diminishing returns [4]. Because of this, in more recent versions of Indigo,

Bouzy actually abandoned this approach in favour of Monte Carlo techniques [32].

2.3.2 Search

While it is true that a full-board search is prohibitively complex, Müller [18] notes

that local (or “tactical”) searches directed towards one or a few specific goals are

20

commonly employed by modern Go programs. This kind of limited search avoids the

two problems of full board search: for a given goal, such as the capture or rescue of

one or more stones, the evaluation criteria are simple (“has the stone been captured?”

etc.), and usually, only the relevant portion of the board need be examined.

A few programs, such as Bouzy’s Indigo, use shallow full-board search, but it is not

usually the program’s primary search mechanism.

Often, tactical searches are not used to find moves directly, but rather to determine

the state of the board. Local searches can be used to analyze the level of safety

(conversely, the ease of capture) of various groups of stones [18].

2.3.3 Move generation and evaluation

The way candidate moves are generated is closely linked to the way they are evalu-

ated. Because full-board searches are prohibitively complex, Go programs typically

consider only a limited subset of all legal moves. In order for this approach to work,

a good deal of position evaluation must take place before any moves are proposed,

as any failure to properly identify the current game situation can lead to important

moves being overlooked. Once such information has been collected, programs employ

various heuristic techniques to “suggest” candidate moves [18]. How these moves are

proposed and how many are considered depends largely on a given program’s eval-

uation function.

It is hard to give a description of a standard evaluation function (EF) as implemented

in a Go program. As Bruno Bouzy writes,

Instead of tree search optimizations, it is the discovery of the EF for the game of
Go that is the main task of Go programmers. Of course, each Go programmer

21

has their own EF. Every EF results from intensive modeling, programming,
and testing activities. Consequently, each EF is different from every other one,
and no agreed model has clearly emerged in the community. [33, p. 11]

Müller [18] describes two broad approaches: position evaluation and move evaluation.

Most programs use some combination of the two.

Position evaluation is an approach that is similar to that of traditional game-playing

evaluation functions. To evaluate a candidate move, the program assumes that

the move has been played and then does a full-board score estimate based on the

resulting position. Müller notes that this approach, while somewhat effective, tends

to be slow, and often overlooks defensive moves whose value is not apparent until

much later in the game. However, Monte Carlo methods are gaining popularity as

position evaluators because they allow for reasonably accurate prediction of final

territory. Bouzy’s Indigo program employs these methods, though in order to make

them feasible, the program also has a move generation system that produces only a

small number of moves to test [32].

Move evaluation is more peculiar to Go. Programs employ several specialized,

purpose-driven move generators to propose moves and score these moves accord-

ing to various (fast) heuristics. If the same move is proposed by different generators,

the scores are summed. Because of its speed, it allows for a larger number of can-

didate moves to be considered, though Müller notes that this faster approach is less

reliable [18]. GNU Go, a top-rated program, relies heavily on this technique.

Ultimately, any decision to play a particular move hinges on the amount of territory

that can be won at the end of the game, and even programs that employ heuristic

move generators tend to analyze projected territory. However, there is still no ac-

cepted best method for this (besides playing the rest of the game). Chen notes in

22

[28] that two top-level Go programs will sometimes differ by as much as 30 points of

territory in their analysis of the same position.

2.3.4 Machine Learning and Go

[M]ost current programs rely on a carefully crafted combination of pattern
matchers, expert rules, and selective search. Unfortunately, the engineering
effort involved suggests that making significant progress by simply fine-tuning
the individual components will become increasingly difficult and that addi-
tional approaches should be explored.

Huang et al, 2004 [5, p. 1]

Applying machine learning techniques to Go is a popular research area, though ML-

based Go programs have yet to reach the level of their contemporaries. Artificial

Neural Networks (ANNs) are popular, and the usual goal of learning is to determine

whether a given group will live or die (or, put another way, whether a particular

board region will be friendly or hostile at the end of the game), [5], [6], [7] [9]. This

kind of territory prediction can be readily incorporated into an evaluation function,

and has formed the basis of a few Go programs, included Enzenberger’s NeuroGo

[8]. Other uses for machine learning in Go exist: for example, Jacobs [26] describes

using a Neural Network to classify human playing styles.

The typical reasons for choosing ANNs are their pattern recognition capability [5],

and that they allow for at least a little structural information to be presented to the

network, though not in any systematic way. To take three examples:

• Early work in Go-playing ANNs used each stone and its local neighbourhood

as inputs to the network [9]. Enzenberger’s NeuroGo was created to address

a limitation of this technique: it is difficult for such a program to represent

23

blocks of connected stones [8]. NeuroGo actually treated blocks as inputs to

its neural network, and represented the adjacency relationships among blocks

via connections inside the network. It has been further refined to use soft

segmentation decomposition techniques to view the board as local areas of

influence, allowing for higher-level groups of related stones to be presented as

inputs to the network [8].

Enzenberger notes that “...most parts of the network see only a portion of the

board...” [9, p. 7]. In my mind, this points to another significant flaw: the

network cannot learn generalized Go knowledge that is shared across the whole

board. It is possible that some useful principle “learned” by one part of the

network will be applied only to one part of the board, and not generalized.

This is a weakness in artificial neural networks in general

• Huang et al.’s opening game experiments tested several kinds of inputs to the

ANN. All of their tests involved feeding the raw board information directly

to the network’s input layer. In some experiments they provided higher-level

information about the candidate move as inputs, including the distance of the

vertex from the edge of the board, the number of liberties of the block that the

move would connect to, the number of stones in the block, and the number of

friendly stones nearby [5].

• In their experiments on predicting whether a group of stones would live or die,

van der Werk et al. actually provided no direct information about the stones’

configuration to their neural network. Instead, input is in the form of several

higher-level features, such as the number of stones, the number of liberties,

and the number of immediately adjacent enemy stones [7].

The common problem with these three approaches is that the network is not em-

24

ployed to inductively determine high-level information about the board. In the case

of Huang et al. [5], certain higher-level “features” are detected algorithmically and

then given to the ANN as additional inputs, as if they were somehow independent

of basic board information.

NeuroGo takes a more interesting approach by allowing the board’s topology to shape

the neural network, but, as is also the case with van der Werk et. al’s experiments,

most or all of the classification of the board is done before it is provided to the neural

network classifier—why do this unless the network is not up the the classification

task?

The reality remains: Go is a conceptually multi-leveled game, and neural networks

are not designed to deal with such hierarchical information. A classifier based on

ETS would not have such limitations.

2.3.5 Monte Carlo techniques in Go

As the name implies, Monte Carlo (MC) techniques depend on randomly generated

information. The first Go program to use this technique was called Gobble [34].

It was inspired by simulation techniques in physics, and its designer estimated its

strength at about 25 kyu, which is very weak. It is actually a very simple program,

with no built-in Go knowledge beyond the basic rules for legal moves, and its play

was also limited to a 9 × 9 board. Its basic structure is this: each turn, play out

the remainder of the current game making random moves. Do this several thousand

times. Record the final scores correlated with each move that is made. Sum the

final scores for every game a particular move appears in. Do this for all moves, then

choose the one with the best score.

25

The advantages are twofold. One, there is no search through an exponentially-

growing game tree, since a fixed number of random games are played at each juncture

(though this can still be slow if the number of random games is high enough). Two,

move evaluation is easy to perform, since the only positions to evaluate are end-game

positions, and all that needs to be done is to compute the score. Note that in this

system, the game ends when each vertex is occupied by either a stone or an eye [32],

so the final positions are much simpler than in a typical human game.

In [35], Bouzy and Helmstetter outline experiments done to improve the play of a

program using MC techniques. The most relevant improvement was the addition

of some minimal Go knowledge beyond the rules of the game: the definition of an

eye. Bouzy later incorporated MC methods into his knowledge-rich Indigo program’s

move generation function. Other researchers have started using MC techniques as

well; a new program called MoGo [36] that uses MC techniques is currently ranked

highly among programs that play on a 9× 9 board. Recently, Kocsis and Szepesvári

have proposed a planning algorithm that combines MC simulation with bandit based

decision pruning, and it promises further improvements for Go programs [37].

There are several reasons why Monte Carlo Go is relevant for this thesis. First, this

approach to solving a problem, while fairly typical of AI techniques, is completely

unlike the way any real Go player operates. Even if a real player had the superhuman

ability to play out 10,000 random games per second, doing so would not help them

nearly as much as playing normally. Not only is this infeasible for a human player,

it is unnatural.

Second, from one point of view, such programs do not actually play Go. Bouzy and

Helmstetter [35] contains the record of a game between the Monte Carlo program

OLEG and a human, in which OLEG doesn’t seem to be playing Go so much as

26

another game called “don’t get captured”. The authors note that the program

tends to make tight groups that can’t be captured and do not claim much territory.

This makes sense given that random games are played. One cannot make much

territory when one is randomly placing stones inside one’s own borders, and the

only prohibition against placing stones in OLEG is against filling eyes, which are the

smallest units of territory, and this leads to a simplified “model” of Go that is not a

good approximation for the game itself.

Third, it highlights the fact that non-terminal positions in Go are difficult to evalu-

ate, while terminal positions are easy to evaluate (simply score the game and count

the points). While the technique (playing random games) is questionable, trying to

determine how easily a given position leads to a favourable outcome is a useful way

to approach Go. This is a key reason to apply ETS: the concept of generativity is

fundamental in the formalism, and is a natural way to describe the evolution of Go

positions. If (as ETS allows), a Go program can create a generative class description

for the kind of group being formed, that program can tell at the early stages whether

this group can successfully develop.

Interestingly, Bouzy has incorporated MC techniques into a more sophisticated

knowledge-based Go program [32]: the new version of Indigo uses MC as part of

its move evaluation function, and this has improved the program’s overall abilities

[32]. This success is due to what I have described above: the MC aspects of the

program form a crude system for predicting final territory.

27

2.3.6 Solving sub-problems

2.3.6.1 Opening game

There are several standard opening plays in Go, typically involving play near the

intersections of the third lines from the corners and then expanding along the edges

on the second or third line. The purpose of these opening moves, or joseki is to

make the first tentative territorial claims, and many Go programs make use of a

fixed library of such plays [18]. There is little room for even local searches in the

early game because of the complete lack of constraints when the board is open.

As mentioned above, there have also been attempts to use learning techniques to

develop opening game strategies; [5] describes the use of an ANN to learn opening

plays. The network played the first 10 moves of the game and then GNU Go self-

played the remainder to determine the final score and provide feedback.

2.3.6.2 Endgame

The endgame is one of a very few aspects of Go where computers sometimes out-

perform humans [33]. As the game nears completion, a large portion of the board is

filled with stones, some territory has been settled, and the remaining disputed areas

can often be partitioned into several independent “sub-games”. These facts make

many (but not all) endgame situations amenable to techniques from combinatorial

game theory, such as decomposition search [30].

Decomposition search is a divide-and-conquer approach to standard game-tree search-

ing. In the Go endgame, heuristic Go knowledge can be used to find the regions of

the board that are independently disputed. Optimal solutions to each region can

28

often be found via a complete search to all terminal positions, and the complexity of

these individual searches is much less than a combined full-board search would be.

In [30], Müller presents Go examples where decomposition search has been used to

solve the endgame as much as 60 moves before the game’s completion. Even more

impressively, work by Berlekamp and Wolfe [38] has shown that combinatorial game

theory techniques can sometimes yield end-game solutions better than those played

by human Go masters [33].

2.3.6.3 Life, death, and races to capture

In the course of a Go game, the question arises: can this group of stones be saved?

The player who sees a definite answer to this question of tsumego has a clear advan-

tage, either way. If the group can be saved, it is important to realize this quickly

before it is too late. Likewise, if a group cannot be saved, it is best to abandon it

rather than placing more stones only to be captured.

While Müller notes that the ability of Go programs to solve these problems does not

surpass the level of their play in general, in certain restricted cases, such as when the

group cannot escape to friendly stones and must make two eyes to live, computers

can solve these problems very well [18]; the GoTools program [25] is known for its

capabilities in this area. This class of tsumego problems are typically solved by local

tactical searches [39]. As with the endgame, for an individual threatened group the

search space is often restricted and the goal is clearly defined.

However, the more general (and common) tsumego problems that occur when a group

can potentially live by escaping are much more difficult for computers to solve [33].

29

2.3.6.4 Repeating patterns

Go games include certain kinds of repetition, such as ko fights (see Section 2.1.1),

which Go programs often have a specialized module to deal with [18].

Another repeating pattern commonly seen in Go is a ladder : a group of stones is

threatened with capture and has only one escape route, and the player attempting

to capture the group repeatedly limits it to just one escaping move. Lines of black

and white stones grow across the board until an encounter with other stones or the

board edge either allows the group to escape or seals its fate.

Because the move choices available to extend or constrain the ladder are very lim-

ited, local search techniques are effective. The formerly top-ranked program Goliath

optimized its ladder searches by playing out the entire ladder as if it was one move

and then evaluating the resulting position [33]. In [18], Müller describes a game be-

tween human professional-level players in which one player misjudged the outcome

of a ladder, and this costly mistake eventually forced him to resign. Müller notes

that a computer would never make such a blunder.

21

3

4

5

7 9

11 13

6

8

10

12

X

X

Figure 2.7: A Ladder. The two stones marked ‘X’ will be captured unless black plays
1. However, white’s response of 2 forces black to play 3, and 4 forces 5, etc. until
black can connect with friendly stones on the other side of the board.

30

2.4 Aspects of human play

Human professional players are amazingly good at Go. They are able to
recognize subtle differences in Go positions that will have a decisive effect
many moves later, and can reliably judge at an early stage whether a large,
loose group of stones can be captured or not. Such judgment is essential for
good position evaluation in Go. In contrast, obtaining an equivalent proof by
a computer search seems completely out of reach.

Martin Müller, [18, p. 7]

Judith Reitman’s study [40] examined how Go players remember information about

game positions, using the same methodology as earlier studies on chess players’

perception and memory (see [41] for discussion of de Groot’s key study [42] and

others). She showed that Go players, like chess players, conceptually divide the

board into chunks—groups of stones that are recalled as a single unit—and suggested

that this grouping depends on the player’s understanding of Go: the expert player

outperformed the beginner in recalling positions taken from real games, but fared

no better than the beginner in recalling random patterns of stones2. In other words,

there is a distinct difference between real Go patterns and “nonsense” patterns, and

expert players are good at remembering and thinking about the real patterns.

Perhaps the most interesting aspect of [40] is where it differs from the earlier studies

on chess: in the chess studies the remembered chunks were assumed to be hierarchi-

cal, but the lowest-level set of chunks formed a strict partition of the pieces on the

board [41]. Thus, any hierarchy stored in the memory of the player would be built

of non-overlapping components. This assumption (while perhaps merely dubious

when applied to chess) was shown not to bear out for Go: there was good evidence

2Interestingly, this was the only task set by de Groot in his Chess study in which master players
consistently out-performed weaker players [41].

31

that the expert player organized the stones on the board into overlapping collections

(examples are presented in Chapters 4 and 5).

The most likely explanation for why the Go master stored information about the

board in overlapping chunks is also the simplest: stones on the board influence each

other in complex and overlapping ways. This would seem to be at odds with Go

programs that segregate the board into non-overlapping patterns of stones, as, for

example, a pre-Monte Carlo version of Indigo did [4].

When Chen implemented decomposition search in his program Go Intellect, he

quickly discovered that decomposing the game board into “independent” regions

had a “disasterous” effect on the program’s play [29, p. 1]:

The decomposition of the board into sub-regions do not really produce inde-
pendent sub-games. The development of a region may have significant impact
to some other regions, which is not measured in the local sub-game score.

This led him to the technique of soft decomposition, where the game is partitioned

into subgames that are not strictly limited to one region of the board (that is, two

or more sub-games can be played out on overlapping portions of the board), lending

credence to the importance of treating Go shapes as overlapping.

2.4.1 Where computers out-perform humans

Playing end-games, calculating ladders, and determining if an enclosed group can

be captured are all areas where computers better human experts [18, 38]. These

are all well-defined sub-problems that lend themselves to min-max search and other

forms of brute-force calculation, and there are usually optimal solutions (sometimes

32

only one). Recalling the passage from the Nihon-Kiin I quoted in Section 2.2: these

sub-problems are the ones where there is no room for creativity, and as such are

not representative of what makes the game such a challenge. Computer success here

should not be mistaken for progress towards solving Go in general.

2.4.2 Where humans out-perform computers

Computer play still lags far behind that of dedicated humans. Besides failing to

choose the best move, many programs have particular “blind spots” or other signif-

icant weaknesses, and can be made to look foolish if a human player knows how to

exploit their shortcomings. [18] includes the record of a game Müller played against

The Many Faces of Go [43], in which he gave the program a 29-stone handicap

and then defeated it. Ironically, Many Faces is considered to be a strong “fighting”

program (a 29-stone handicap means the board is crowded and the players are in con-

stant conflict), but it was fighting that was the program’s undoing: a human player

with a 29-stone lead would have played conservatively and easily surrounded his op-

ponent. Many Faces could not adapt and instead opted for a direct confrontation at

every juncture, allowing its superior human opponent to slowly turn the tide.

It is worth noting that at the time of writing, some MC-based programs are beginning

to challenge high-level human players on small boards [3].

33

Chapter 3

Evolving Transformation System

3.1 ETS is a representational formalism

A formalism is a mathematical framework or language, well defined axiomatically.

The prefixed “representational” indicates the purpose of the formalism: it is designed

to model any arbitrary phenomenon. In order to be an effective tool, a representa-

tional formalism must be able to account for the structure of objects [44, p. 38]:

Many artificial intelligence problem domains require large amounts of highly
structured interrelated knowledge. It is not sufficient to describe a car by
listing its component parts; a valid description must also describe the ways
in which those parts are combined and the interactions between them. This
view of structure is essential to a range of situations including taxonomic
information, such as the classification of plants by genus and species, or the
description of complex objects such as a diesel engine or human body in terms
of their component parts.

Currently, the representational formalisms most commonly used in AI are vector

spaces (and more broadly, numeric formalism) and logic (especially first order pred-

icate logic) [14]. The former are usually seen in statistics-based machine learning,

34

and the latter in “good old fashioned” AI (expert systems, theorem proving, etc).

The principal difference between these formalisms and ETS is that ETS was designed

with representation and inductive classification in mind.

Numeric formalisms are amenable to statistical approaches to classification but fail to

adequately account for object structure. The main problem is that the vector space

formalism itself contains only two operations (addition and scalar multiplication).

In order to create “interesting” objects, mathematical constructs that are external

to the formalism itself get imported1. Because objects (read: points in an abstract

space) lack any kind of structure, it is likewise impossible to create structured class

representation out of them.

First order logic was created to codify “the laws of thought”, but does a poor job of

describing the objects being thought about. Predicates merely name things without

describing their structure, and so it is difficult to build sensors that directly output

predicates: some classification is inevitably needed. The predicates of logic are

closely related to natural languages (and do roughly the same job), but when someone

uses a word, for example, “dog”, to name a particular animal, the audience depends

on their own internal conception of what a dog is. Predicates (and language) turn out

to be very useful tools of abstraction for humans, but they depend on our underlying

classification abilities. Any effort to build an AI system based on predicates that

has to interact with real phenomena is going to have to come to grips with this

eventually.

1See [45] Section 8 for a discussion of these issues

35

3.2 Classes and inductive learning

3.2.1 ETS class definition: classes are generative

The ETS formalism is strict on the meaning of “class”. What a group of objects

from the same class have in common is their shared generative mechanism: that is,

all elements of a given class are assembled/constructed in the same way.

Formally, ETS borrows this concept of generativity from Chomsky grammars [46]:

an ETS class description is a system of “rules” that can generate all members of the

class2. This is (almost) analogous to using a set of production rules to generate all

strings in a language, but with a few key differences. First, constructing a string

according to a set of production rules is a purely syntactic enterprise. While it is true

that the primitive units of ETS representation (henceforth “primitives”, see Section

3.3.1), like the characters that make up a string, are also “idealized” formal ob-

jects, they have a much more “representational” flavour than string characters: ETS

primitives stand for and mirror the structure of some observed real event. As such,

connecting ETS primitives together to form a struct (a “chunk” of representation -

more in Section 3.3.2) has semantics as well as syntax.

A second difference is that ETS primitives are temporally ordered—in effect, events

that occur in an object’s past must be described before events in the present. In

the case of strings, there is no such limitation: new characters can be added in any

position (as opposed to, for example, strictly writing from left to right).

Lastly, and perhaps most significantly, ETS has no “non-terminal” symbols like those

that are used in the process of generating strings via a grammar’s production rules.

2The real process that this formal mechanism seeks to model is real-world object formation.
Biological objects have the most elaborate formative processes (see: embryology), though all objects
must have formed somehow. See Section 3.2.2 for a more detailed discussion of this.

36

Because the steps used in the construction of a string are discarded and not stored

in the string itself, a given string could have been constructed in infinitely many

ways, and as a result inductive recovery of a grammar is not feasible from individual

strings.

Following from the above, it is clear that not any arbitrary grouping of objects can

be considered a class: for example, one could not construct a class that contains

both apples and wax apples, since they are formed in completely different ways.

Furthermore, while it is true that a set containing all members of a class could be

defined, this set alone would not adequately capture the nature of that class, because

the class itself has its own representation independent of its members. To return to

the analogy with strings, the entire set of strings in a language is not the same as

the rules used to generate them. However, in order to support inductive learning,

the relationship between class description and class members should be very tight:

having even a few members of a class should be sufficient to inductively discover the

class representation. This is emphatically not true of strings and their corresponding

generative grammars.

If one insists on the generative definition of a class, one discovers that most existing

“classes” in ML fail to meet it. Indeed, it is often the case that the class variable does

not really represent a class at all, but rather some additional property (or feature)

of the various objects. Groups that are often treated as classes but do not meet

our stricter definition might include: “things that are blue” (having a colour is a

property or feature of several objects, not a class description), or “photographs that

contain faces” (though the faces themselves could be construed as a class).

Alternatively, some examples of classes that fit the ETS definition might include:

human beings (sharing common evolutionary and developmental histories), stars

37

(stars are formed by the agglomeration of gas and dust), water molecules (formed

by the bonding of two hydrogen atoms to an oxygen atom), the process of a human

taking a walking step [47], the process of making a purchase [48].

3.2.2 Formative history

The concept of formative history is essential for ETS classification in general and

important for modeling Go in particular. The ETS formalism allows for (and insists

on) the representation of the formation of objects, and this is unusual in machine

learning, where thus far the focus has been on the features of finished objects.

In fact, as the next subsection will make clear, an “object” is represented in ETS as

its history, not as a set of properties.

One critical feature of biological “objects” stands out: any organism is not
built from scratch but rather its instantiation requires following some kind of
stored “formative history”. It appears quite reasonable to extend this form of
instantiation to all objects in the universe, including man-made objects, where
the “formative” history should be interpreted reasonably broadly. Indeed,
stones, pencils, web pages all have their formative histories, albeit of different
“kinds”. For example a web page has a quite complex formative history related
to its conception and execution. [14, p. 4]

Formative history is the series of steps taken to create a given object. For a water

molecule, formative history is the process of combining an oxygen atom with two

hydrogen atoms. For a human infant, formative history is the complex embryological

development process (which in turn is linked to the long-term evolutionary history

of the species). For a Go “shape”, formative history consists of the moves that were

played to construct it.

38

3.2.3 Objects as processes

On those who step into the same rivers ever different waters are flowing.

Heraclitus [49, p. 41]

In AI and related fields, objects are usually treated as non-temporal entities, often

represented as points in some static space. By contrast, in the ETS view, what I

have thus far been referring to as “objects” are more properly called “processes”.

The basic representational primitives of the ETS formalism represent events, and a

process (be it a Go shape, or a bumble bee, or a water molecule) is a collection of

these events, arranged temporally.

This process view is based on the principle that nothing in the world exists outside of

time: objects undergo continuous change. Even seemingly “stable” objects are in a

state of flux: biological organisms undergo metabolic processes, stars consume their

fuel, rocks are eroded by wind and water, electrons zip endlessly through the space

around nuclei. In ETS terminology, such “stable” processes are considered to be

“mature”. These processes have completed their formation and behave in more reg-

ular ways, but they are not static: “objects”, as understood in the traditional sense,

are epiphenomena, roughly corresponding to the “state” of an unfolding process at

some frozen moment in time.

Because ETS treats everything as a process, it is possible to model real-world dy-

namic phenomena very naturally. For example, one of the classes presented in [48] is

called “Material Acquisition”, and it produces elements that represent various pur-

chases being made. It is difficult to treat such real processes as static objects. The

same is true of the process of human walking, which is described in [47].

39

3.3 Modeling in ETS

3.3.1 ETS primitives and primal classes

The two interrelated basic units of the ETS formalism are primal classes and prim-

itive transformations [12, Definition 1]. Primal classes represent classes of similar

processes and primitive transformations represent events that transform several such

processes into several other processes. The internal structure of the event and asso-

ciated processes is suppressed.

More formally, an ETS concrete primitive is defined in terms of two tuples: its initial

primal processes and its terminal primal processes (or initials and terminals). Each

primal process is an element of some primal classes. For example, “Bob” and “Jim”

might be names of primal processes belonging to the class of persons depicted in

Figures 3.1 and 3.2. Typically, an ETS representation of data will include many

primitives that have the same structure, i.e., that capture the same kind of event

happening to different elements of the same primal classes. The set of all such “same

events” is called an abstract primitive, and a typical ETS representation of data will

include several different abstract primitives.

Figure 3.1 shows a pictorial representation of three abstract primitives and their

associated primal classes from three different “domains”, [47], [48], and this thesis.

The lines attached to the top of each primitive represent its initials, the lines attached

to the bottom represent its terminals. Each initial and terminal has an associated

line-style and small shape to denote to which primal class it belongs. It is convenient

to refer to a primitive as having, for example, two initial sites and three terminal

sites, meaning that the primitive accepts two initial processes and transforms them

into three terminal processes.

40

π4π25 π2

Lower Leg Sum of Money

Person

Bank Account

Local Space
Awareness

Figure 3.1: Three ETS primitive events, labelled π25, π2, and π4, along with their
associated primal classes, from three very different domains.

The primitives from Fig. 3.1 sit at very different “conceptual” levels: π25 is a physical

event that happens to part of a human (the lower leg); π2 occurs when a person and

a bank account interact in a particular way, and results in three new processes

corresponding to the same person, the same bank account with a reduced balance,

and the sum of money that has been withdrawn; π4 is an “informational” event that

operates on the “mental” processes of a Go player.

It should be clear from Figure 3.1 that ETS primitives can capture wildly different

kinds of events. The primitives that are needed to model a particular domain are

dictated by the types of events the domain’s primal classes undergo. With this in

mind, the first thing one needs to choose when modelling a domain is the set of

primal classes. This set should be small in size, and the individual primal classes

ought to be of comparatively low complexity. Thus, for example, if one wanted to

model the construction of houses, one would be well served to choose primal classes

corresponding to nails and boards, and allow the floor, wall and room classes to be

41

π2 π2a π2b

J JA B BA

J JA B BA$20 $40

Jim
Bob
Jim's Account
Bob's Account

-
-
-
-

J
B
JA
BA

A
Person class-P
Account class-
Money class-$

P A

P A $

Figure 3.2: An abstract primitive (left), and two concrete primitives.

assembled out of them.

A related fact about primitives and primal classes is that in order to be useful in

modelling real phenomena, they must be easily detectable. Although a primal class

is rightly called a class, one does not want to have to learn that class inductively,

since it serves as an atomic unit in the learning of other, more complex classes.

Likewise, one wants events that can be easily recorded via sensors, perhaps with

some additional software processing. Obviously, these concerns inform the choice of

primitives and primal classes: if your events are difficult to detect and your primal

classes require learning, you should search for simpler building-blocks to begin with.

Figure 3.2 shows abstract and concrete primitives. An abstract primitive is a pos-

tulated event that is only defined to the level of which primal classes make up its

initials and terminals (e.g., “persons”). A concrete primitive can be viewed as the

instantiation of an abstract primitive: it is an actual, observed event, defined by

the specific primal processes involved (e.g., “Jim”, “Bob”). Formally, we denote a

concrete event with a double subscript, e.g., π2a and π2b are both concrete instances

of the abstract primitive π2.

The first concrete primitive in Fig. 3.2 corresponds to Jim withdrawing $20 from

his account and the second corresponds to Bob withdrawing $40 from his account.

Strictly speaking, while some of the initials and terminals have the same label (e.g.,

42

‘J’), the ETS formalism insists that the terminal process must have undergone some

change as a result of the event. In the case of the bank accounts, this is easy to

see: though not expressly indicated, the terminal JA is the same account but with

a balance $20 lower than the initial JA. In the case of Jim himself, the difference is

harder to see, but conceptually, the “new” Jim has slightly more history than the

“old” Jim, on account of having participated in one more event.

Unlike logic, where a predicate is a kind of referential place-holder, or formal gram-

mars, where any meaning attached to the characters is purely external, ETS primi-

tives’ syntax and semantics are tightly linked.

The novel nature of ETS representation ... allows the introduction of struc-
tural primitives whose syntax and semantics are inseparable, and it also makes
such primitives fundamentally different from similar concepts in previous for-
malisms. [45, p. 5]

In logic, the rules that govern where a particular predicate can appear in the course of

a proof are purely formal; there are no rules derived from the predicates themselves.

Px ⇒ Qx is valid construction, regardless of whether P and Q stand for “tiger” and

“cat” or “alive” and “dead”.

In ETS, the attachment of a particular primitive to primal processes is governed

by the primitive’s structure: you cannot, for example, have a “car crash” primitive

modify a process corresponding to a grapefruit. Not only is it nonsensical (car

crashes happen to cars, not grapefruit), but it is also un-syntactic, since the “car

crash” primitive does not have “grapefruit” classes as its initials and terminals.

43

3.3.2 Structs

As primitives and primal processes are observed and recorded, they can be attached

to one-another to form a “structural history”, or struct. The word “recorded” in the

previous sentence is important: a struct is a transcription of gathered data about one

or more objects/processes. Figure 3.3 shows a pictorial representation of an example

struct.

The most immediate difference between a struct thus depicted and an ordinary di-

rected graph is that a struct contains temporal information, because the initial pro-

cesses of one primitive can only be connected (or attached) to the terminal processes

of a temporally preceding primitive; cycles are not permitted.

When a struct is presented pictorially, the temporal information is inherent in the

relationships between the primitives, not in the exact positions of the primitives on

π1b

π1k

π2f

π3n

π2e

π3c

tim
e

Figure 3.3: A struct, composed of six primitives belonging to three abstract primitive
types. The primitives are connected by primal processes, and the corresponding
primal classes are denoted by the shapes on the top and bottom of each primitive.
Primitive events are temporally ordered, from the top of the struct to the bottom.

44

π1a

π1b

π2i

π3l

π2h

π3k

π1c

π2j

π3m

π1d

π3n

π1e

π1a

π1b

π2i

π3l

π2h

π3k

π1f

π3o

π1g

σ1 σ2 A (σ1, σ2{f})

σ2{f}

σ1

π1b

π2i

π3l

π1f

π3o

π1g

σ2{f}

Figure 3.4: Struct σ1 is assembled with σ2{f}, which is a relabeling of (and hence
structurally identical to) σ2. The assembly is on their common primitives π3l, π1b,
and π2i.

the page. For example, in Fig. 3.3, π1b takes place before π3n because π1b initiates

one of the processes that participate in π3n. π2e takes place before π1k, but whether

it takes place at the same time as π1b or π3n, or before them, or between them, or

after them, cannot be determined from this struct, since there are no processes that

depend on all of them.

As Figure 3.4 shows, two structs, perhaps corresponding to two separate observa-

tions, that share some common structural history (i.e., connected primitives) can be

assembled to form a new, larger struct. This assembly depends on the concept of

relabeling : concrete primitives from different structs can be systematically renamed

so that they coincide.

The structs shown in Figures 3.3 and 3.4 are more properly called level 0 structs.

Higher level structs, which depend on classes, are created on top of these basic

structs.

45

3.4 Classes in ETS

3.4.1 Level 0 classes

A (sufficiently large) struct is actually a recording of several processes, each of which

is composed of sequences of events. Each of these new processes is an element of

some level 0 class. The goal of learning under the ETS paradigm is to inductively

construct representations of each class, so that subsequently observed elements of

each class can be recognized, where this recognition takes the form of an overlapping

partition of the underlying struct (Figure 3.5).

π4

π4 π4π4 π4

π1

π4 π4π4 π4

π2

π4

π2

π4

π4 π4

π4 π4

π4 π4 π4

π2

π4

π4

π4 π4

π4 π4

π7

π6 π6

π6 π6 π6 π6

π7 π7 π7

π7 π7

Figure 3.5: A struct containing three level 0 class elements, delineated by boxes.

3.4.1.1 Level 0 constraints

Central to the concept of a class in ETS is the concept of a structural constraint (or

informally, “a constraint”), which is an abstract specification of a family of structs

[12, Def. 9]. Denoted Con(Π1), a constraint has a set of concrete primitives (Π1), and

46

σ4σ3

π4b

π2f

π4a

π2f

π4a

π4b

π2f

π4b

π2f

π4aπ4a

π2f

π4a

π4c

Con (∏)1

σ1 σ2

π4b

Figure 3.6: In the box: a structural constraint. Structs σ1, σ2, and σ3 satisfy this
constraint, while σ4 does not. The context part of the constraint is shown in grey
(see Fig. 3.7).

a set of primal processes connecting some of these primitives. A struct that satisfies

the constraint is a struct whose primitives are Π1 (perhaps under relabelling) and

whose set of primal processes includes (but is not limited to) those specified by the

constraint, see Figure 3.6.

A constraint may be applied to an existing (“working”) struct. In this case, a struct

that satisfies the constraint is non-deterministically chosen, and then assembled with

the working struct to form a new struct. In order for the application to be valid, there

must be at least one primitive in common between the working struct and the added

struct (otherwise the assembly is not valid), and there must be at least one primitive

that is not already present in the working struct. Constraints may optionally have a

context part, which is a set of primitives that must already be present in the working

struct in order for the constraint to be applicable. Conceptually, the context might

be those events that “cause” the later (newly added) events.

A useful addition to the concept of a constraint in [12] is the addition of a null

constraint, denoted Θ. Θ is applicable to any struct, and does not change the struct

when it is applied.

47

3.4.1.2 Level 0 class generating systems

The relationship between the class description and the class elements is that, when

put into action, the class description becomes a generating system that can produce

all members of the class.

The actual formation of a class element proceeds stepwise, with new pieces being

added to the struct corresponding the class element as it has thus-far formed (the

working struct). These new pieces take the form of a small struct, satisfying a

constraint that is applied by the class generating system, meaning that the new

struct is assembled with the working struct, implying that at least one primitive in

the new struct already exists in the working struct.

An ETS class generating system contains several sets of constraints, and has rules

describing the order in which to use them. At each step in the process of forming

a class element, the generating system non-deterministically chooses one constraint

from the corresponding set, and applies it.

An additional factor in the class generating process is the environment. No object

exists in isolation: the formation and existence of most things depends on other

nearby things. In ETS terms, processes can affect each other. Thus, at each step in

the action of the generating system, external processes (collectively known as “the

environment”) are given a turn to attach primitives to the working struct. This allows

for the formation of class elements to be influenced by other processes running in

the same setting, in a way that is much less drastic than the complete restructuring.

The environment may add “noise” to a forming class element, or it may add essential

structure. In the latter case, two class elements overlap on key events.

48

π4π4π4 π4

π6

π6

π6

π6

π4

π6

π6

π6

π6

π2

π4π4 π4

π6

π6

π6

π6

π4

π6

π6

π6

π6

π2

π4

π1

π4π4 π4

π6

π6

π6

π6

π4

π6

π6

π6

π6

π2π1c

env. Con (∏)1

Figure 3.7: One step in the formation of a class element. Left: the working struct
for a forming class element. Center: the same struct with a new primitive (grey)
added by the environment. Right: the middle struct after the constraint from Fig.
3.6 is applied. Note that the struct satisfying this constraint is shown in bold, and
that the constraint’s context part was already present in the working struct.

Level 0 classes are denoted with a C and an index corresponding to the particular

class; for example C2 and C5 are names of two level 0 classes. Elements of these

classes are denoted with a lower-case c, the class index, and a sub-index identifying

the particular class element; for example, c21 and c26 are elements of the class C2.

3.4.2 Higher level classes

ETS supports a hierarchy of class levels, allowing for natural modelling of multilevel

phenomena. Each class level organizes the level below, just as level 0 classes dictate

the arrangement of primitives. In the case of Go, level 0 classes correspond to

individual stones, and level 1 classes organize these stones into small Go shapes.

Level 0 classes are so-called because they have no lower levels—they are simply

partitions of the underlying struct. Level 1 classes have 1 lower level (the 0th) and

are composed of level 0 class elements. Generalizing, level n classes have n lower

49

levels and are composed out of level n− 1 class elements.

Level 1 classes are associated with the concept of level 1 structs, which are composed

of level 0 class elements. The connection between primitives in a level 0 struct is

properly called a class link ; in a level 1 struct, level 0 class elements are “connected”

by a level 1 class element link, or CEL1. A CEL1 takes the form of a set of one or

more shared constraints, on which two level 0 class elements overlap.

A convenient (though incomplete3) notation that I have adopted for depicting level

1 classes is an overlap graph, an example of which is shown in Figure 3.8. Overlap

graphs have level 0 class elements as nodes and edges for each level 0 constraint

that two elements overlap on. I have similarly used overlap graphs to depict level

1 and 2 classes overlapping on the corresponding level 1 and 2 constraints. The

two nodes and connecting edge shown in Figure 3.8’s overlap graph could be a

CEL1({C1, C2},Con(Π1)) relating those two primitives, though it is not always possi-

ble to directly “see” CEL1s in an overlap graph because CEL1 relations can be more

than pairwise.

3A more involved way to draw level 1 structs is presented in [12], Part III.

π2

π2

π4 π4

π4 π4

π3

π3

π4

π4

π4

π4

c11

c21

c11 c21
Con (∏)1

Figure 3.8: Left: a struct containing two class elements, c11 and c21, that overlap on
a shared constraint Con(Π1) (shown in grey). Right: an overlap graph showing the
class elements as nodes and their shared constraint as an edge. Temporal information
is absent from the overlap graph.

50

Level 1 classes use level 1 constraints in the process of generating level 1 class ele-

ments. The structure of the ETS definition of a level 1 constraint4 is:

Con1(C) =

〈
C ,

{
CEL1

(
Cj, Con(Πj)

) }
1≤j≤J

〉
, Cj ⊆ C

In other words, it is two sets, the set C of level 0 class elements, and the set containing

J level 1 class element links (CEL1’s) on particular constraints between one or more

of the level 0 class elements.

Following from this, the steps of a level 1 class generating system add class elements

to the level 1 working struct, and attaches these elements using the specified class

links. Higher level class generating systems operate in the same manner, where

classes at level n use CELn’s composed of level n−1 constraints to attach level n−1

class elements to the level n working struct.

These classes and their elements are denoted in the same manner as level 0 classes,

but carry an additional superscript indicating their level. For example, c32
1 and c32

4

are both elements of the level 2 class C2
3.

It is possible to have arbitrarily many class levels; exactly how many levels there

should be is dictated by the phenomenon being modeled, but as a general rule, high-

level classes should not become too conceptually distant from those at the lowest

level. As conceptual distance increases, ETS allows for the transition to a new stage

of representation, where the old high-level classes become the new primal classes,

and their overlapping areas become the new primitives. As the model of Go outlined

in the next chapter operates at a single stage, details of stage ascension are not

presented here.

4Refer to p. 45 of [12] for the complete definition.

51

Chapter 4

ETS Go Model

4.1 Overview

The first question to be settled when applying ETS to a given domain is which aspects

of the to model. In the case of Go, my main goal is to represent the evolution of

shapes as they play out across the board.

In Go, a great deal of complexity is created out of simple elements. Such emergent

complexity is captured in a natural way in ETS thanks to the formalism’s multilevel

class hierarchy. The main approach is to begin by modelling the simplest elements

of the game (stones) at the lowest level, and introduce more complex structures at

each new class level. Classes at each level are composed out of the previous level

classes, mirroring the way that complex shapes in Go are composed out of simpler

shapes, and ultimately out of stones. By handling this formally via levels, one can

manage the emergence of complex structures in a systematic way.

This structural representation of Go has four levels: a struct level, and three class

levels corresponding to stones, blocks, and groups. The standard ETS view is that

52

the struct level should be produced via sensing some real phenomenon (the game

board) and the class levels should be produced via a learning system. However,

since ETS learning algorithms have not yet been devised, and since developing one

is outside the scope of this thesis, the classes that will be described in this chapter

were “learned” analytically by me. In fact, the whole system was designed with

certain lower level classes in mind, to allow for the natural formation of higher-level

classes.

4.1.1 Primitives and primal classes

For reasons explored in Section 4.2, the struct level is actually the representational

level below stones. Primitives correspond to the Go player’s awareness of various

(small!) aspects of the Go board, and structs, which correspond to the player’s

awareness of board positions, are built out of these simple awareness components.

It is important to clarify “awareness” in this context. I have sought to make the (very

necessary) distinction between the player’s idea of the board and the board itself,

but do not want to make any strong statements about the actual psychological/neu-

rological mechanisms that support this idea. My “player” is an abstract Go-playing

agent (possibly a program implemented using this representational approach). Why

have a player at all? Go is a mental phenomenon—the things that the player knows

(groups, territory, influence, etc.) are not on the board ; they depend on the meaning

ascribed to the board by the player, so to claim that such aspects were present in a

representation of the board would be inaccurate.

Although structs are not meant to represent the board itself, they are closely linked

to it since they represent the player’s direct awareness of some part of the board.

53

Which parts of the board the player should be aware of at any given time is outside

the scope of how structs are formed, but struct formation is robust enough to allow

many scenarios, from taking the whole board in one “snapshot”, to examining it one

stone at a time.

4.1.2 Class level 0: stones and vertices

Figure 4.1: A black stone, white stone, and empty vertex, all captured as level 0
classes.

Level 0 classes partition structs into the basic elements of Go. There are three

families of level 0 classes: the first correspond to the player’s awareness of stones

and empty vertices, the second to the placement and removal of stones, and the

third to the player’s awareness of the proximity of stones and vertices to each other.

The second and third families of classes are discussed in detail in Section 4.5, but

some aspects of the first bear exploring here.

Stones and empty vertices are treated in exactly the same way and the classes that

represent each are structurally quite similar: essentially, each vertex is treated as

having three states (black, white, empty). Go is a game of empty space just as much

as it is a game of stones, and this is highlighted at the beginning and at the end of

the game. At the beginning, available space is vast so the eye is naturally drawn to

the few “interesting features” of the board: the initially-placed stones. At the end

of the game the board is crowded with stones and as a result the few remaining free

vertices that have not yet been absorbed into one player’s territory are the focus of

attention.

54

I have specified a level 0 class setting of 16 classes. Higher-level class elements will

be composed out of elements of these 16.

4.1.3 Class level 1: blocks and spaces

Figure 4.2: Two blocks and a “knight’s jump” space, all captured as classes at level
one.

Level 1 classes group the level 0 stones and vertices into blocks and spaces, where

a block is a set of connected same-coloured stones, and a space is a collection of

“connected” vertices. A block is a well-defined concept in Go: it is a group of stones

that live and die together. A space, however, is a useful invention arrived at in the

course of developing the model. It is not directly analogous to a block in that it must

be delimited by two or more stones (see the knight’s jump in Figure 4.2), and, most

importantly, need not contain all “connected” empty vertices. Classes of spaces are

used to describe the gaps between stones and blocks on the board.

4.1.4 Class level 2: groups

1 2

3

4 5

6

Figure 4.3: The formation of a black group that could be treated as a level 3 class.

Level 2 classes compose blocks and spaces to form groups of stones. A group, like a

block, is part of standard Go nomenclature, meaning any related collection of nearby

55

stones. A group is often more restrictively defined as some stones of one colour plus

any enemy stones that they have effectively captured [28], but my level 2 classes fit

the looser definition.

Level 2 is where the representational flexibility becomes apparent. I have only

sketched a few examples in Section 4.7, but in practice any kind of group can be

learned and represented. What is also essential about group classes is that they

embody the formation of the group as well as its shape, and learning useful methods

of forming good groups is the key task for any Go program using this system.

4.2 Representing spatial relations in Go

In keeping with the ETS tenet that “formative history is essential”, I will discuss

the thinking that led to the final set of primitives that I chose, after having tried

and discarded several others.

My intuition was that the most basic and process-like element of Go that a player

need be aware of is an individual stone. A stone, the most important “object” in

Go, is a good candidate to be modelled as a (regular) process because of its stable

behaviour: it is placed at some time, sits on the board in a (fixed) position, and

(possibly) is removed from the board at a later time.

However, it turns out that stones are not usefully represented as primal processes,

because it is difficult to relate primal processes spatially (i.e.: to depict where stones

are with respect to one another on the board), as the only way primal processes

interact is when they are transformed by a common primitive. By treating a stone

as a level 0 class element instead, such spatial relationships can be handled much

more naturally via the representational mechanism of overlap.

56

Since the spaces between stones are just as important as the stones themselves, it

makes sense to treat empty vertices as processes as well: in some sense, “empty” is

a third stone colour, besides black and white.

4.2.1 What are spatial and temporal relations?

There are two kinds of relationships between events and processes: spatial and tem-

poral. Temporal relationships describe the order in which events occur and processes

unfold in time. Spatial relationships describe where in space processes and events

are with respect to each other. Spatial relations are more complex, not only because

the number of dimensions involved is greater (three versus one), but because time

only “flows” one way, while objects can move freely in space.

Go only has two spatial dimensions, since an idealized goban is completely “flat”,

but even so, it is the spatial relationships between stones that pose the greatest

representational challenge, since the ETS formalism includes temporal relations au-

tomatically: primitives can be explicitly temporally ordered. A given primitive’s

initial processes finish before terminal processes begin (or, more properly, one set is

transformed into the other). ETS does not, however, include spatial relationships in

such an immediate way. Rather, they emerge, built out of the temporal relationships.

4.2.2 The emergence of spatial relations

Setting ETS aside for a moment, here is an example of another “representation

scheme” in which temporal relations are immediate but spatial ones are not:

He saw the two men in blanket capes and steel helmets come around the corner
of the road walking toward the bridge, their rifles slung over their shoulders.

57

One stopped at the far end of the bridge and was out of sight in the sentry box.
The other came on across the bridge, walking slowly and heavily. He stopped
on the bridge and spat in the gorge, then came on slowly to the near end of
the bridge where the other sentry spoke to him and then started off back over
the bridge. The sentry who was relieved walked faster than the other had done
(because he’s going to coffee, Robert Jordan thought) but he too spat down
into the gorge.

Ernest Hemingway, For Whom the Bell Tolls [50, p. 482]

The temporal relationships among the described (fictional) events are implicit in the

basic structure of the narrative quoted above. The order in which the author tells

us about the events maps directly to the actual order of the events themselves. This

order is not simply based on where they appear on the page: the written narrative is

most properly a representation when it is activated by being read—and as reading

takes time, the reporting of the events really is temporally ordered. By contrast, the

spatial relationship between those participants in the various events are not explicitly

part of the relationship scheme.

When we read “the other sentry spoke to him”, however, the words the author uses

to describe the event (the brief conversation) allow us to infer something about the

spatial relationship between the two sentries. The use of “spoke” instead of another

phrase (for example, “called out”) implies that they are standing close together. We

are not provided with any numeric distance information (though we could probably

infer some reasonable numbers).

This state of affairs is much the same as in ETS—processes that interact via events

are clearly spatially related, but exactly how they are related depends on the partic-

ular event in question.

The naive approach to modelling space in ETS would be to follow this logic: the

most obvious and explicit way to demonstrate that two processes are adjacent to each

58

Are Ad-
jacent

Car
Crash

Car 1

Wreck 1

White Stone

White Stone

Car 2

Wreck 2 Black Stone

Black Stone

Figure 4.4: Two ETS primitives that imply spatial interaction.

other is to have them interact via a common event: Figure 4.4. While the situation

on the left in Figure 4.4 is quite natural, the situation on the right is not, as the

event itself, which might be construed as the perception of adjacency between two

Go stones by the Go player, is a little contrived (though a few “unnatural” events

are to be expected because Go is an artificial domain), and ultimately leads to some

representational difficulties, as Figure 4.5 illustrates.

The ETS formalism suggests that an event completely restructures its initial pro-

cesses en route to generating its terminal processes. The terminal processes may be

similar to the initials—they may be elements of the same class—but they cannot

be the same process: at best they are the previous process after undergoing one

more event. An event like the right-hand primitive in Figure 4.4 appears to have

terminals that are the same processes as its initials, when in fact the identity of each

individual stone process is broken by the event: you cannot, according to the logic

of ETS, consider the terminal white stone to be the same instance as the initial one.

This failure of identity is problematic if, for example, later in the struct, it is necessary

to determine whether the original stone is also adjacent to some other stone as well.

This cannot be handled reliably because the same process corresponding to the

59

1 vertex
apart

2 apart

Black Stone White StoneWhite Stone

B.

1 vertex
apart

1 vertex
apart

Black Stone White StoneWhite Stone

A.

c1 1

c1 2

c1 3

1 vertex
apart

Black Stone

1 vertex
apart

White StoneWhite Stone

C.

Figure 4.5: Three dubious attempts to represent the spatial aspect of the pictured Go
position. A: Because each event generates new primal class elements, it is difficult to
say formally whether c13 represents the same black stone as c11. B: This approach
is highly numeric, and also suffers from the same problem as A. C: The same primal
class cannot simultaneously interact with two events; this is forbidden by the model.

original stone cannot interact with two other stones at once.

Besides the above, this approach to modeling space has a very numeric flavour: it

becomes tempting to introduce primitives like those in part B. of Figure 4.5 that

actually quantify space. While such primitives are not explicitly forbidden by the

model, the reintroduction of numbers via the back door into a non-numeric formalism

is dubious at best. One should not struggle against one’s model, but rather let its

logic guide one’s thinking.

60

4.2.3 Representing spatial relations via overlapping classes

ETS version 5 contains a powerful capability to overlap classes. When single-level

classes have events (primitives) in common, it means they are influencing each other

and sharing some formative history, without being completely transformed by the

interaction. This is a very natural way to handle physical adjacency: proximate

processes affect each other in certain limited ways.

In modelling Go, I have chosen to describe the physical relationship between imme-

diately adjacent stones in this way. My model does not, however, depict stones that

are not immediate neighbours as overlapping. Why? In Go it is natural to transform

physical distance into something akin to Levenshtein distance1. “How far apart are

two stones in actual distance?” is a less important question than “How many moves

does it take to connect these stones?”

4.2.4 From stones to structs

With the previous considerations in mind, and with a desire to keep things simple2,

I decided that the components (primitives and primal classes) of the level 0 classes

should be the simple elements of the player’s awareness of a stone or empty vertex.

Each vertex has a “colour” (black, white, empty, edge) which is fixed regardless the

status of adjoining vertices, and as such the colour of each vertex is inaccessible

to the adjacent vertex class elements3. Formally, this means that each stone and

1“Levenshtein”, or “edit” distance refers to the number of operations it takes to transform one
object (usually strings) into another

2An earlier version of my model had 60 different primitives and 8 different primal classes
3The case in which a stone being laid leads to neighbouring stones being captured should not

properly be thought of as the new stone interacting with the existing stones and changing their
colour. Rather, the newly-placed stone causes a transformative event to occur: the old stone
processes ends and new ones (corresponding to the empty vertices) begin.

61

 WhiteBlack

π2π1

π4

π1 π2

π4

π1 π2

Figure 4.6: Logical progression. From left to right: 1. Go stones are class elements,
and neighbouring stones overlap. 2. Each stone must have some shared primitives
and some only belonging to itself. 3. These primitives need to be structurally
arranged. 4. The resulting struct.

vertex class element should contain primitives related to the player’s awareness of

a particular vertex’s colour, and these primitives should not be involved in overlap

with adjacent vertex processes.

In what sense is a stone “overlapping” with its neighbor? Conceptually, two adjacent

stones share a “sense of proximity”. Go players think of nearby opposing stones as

putting “pressure” on each other. Nearby allied stones are “working together”. These

qualitative phrases describe some kind of interaction between stones. From a purely

literal point of view, two adjacent vertices “share” the line that connects them.

These two concerns motivated the creation of two main types of primitives. One

type (of which there are four) corresponds to the player being aware of the colour of

a particular stone (or vertex). The other main type represents the player’s awareness

of the physical proximity of two stones/vertices. Combinations of these two types

of primitives are assembled to form stone and vertex classes, and each class element

shares some adjacency primitives with its neighbours.

62

4.3 Primitives and the primal class

This section presents the basic units of ETS as they are employed to model Go.

Defined here are one primal class and seven primitives, which together capture the

very basic elements of the game. Figure 4.7 shows the seven primitives I have chosen;

each primitive is discussed in one of the following subsections.

π3 (Empty)π2 (W)

π4

π6

π7

U RDL

π1 (B)

π5

π2 (W)

π1 - black colour awareness

π2 - white colour awareness

π4 - adjacency awareness

π5 - edge awareness

π3 - empty space awareness π6 - attention generation

π7 - attention termination

Figure 4.7: The seven Go primitives.

4.3.1 The primal class

The only primal class in this model of Go is the class of local space awareness pro-

cesses. A single such process represents a player’s continued attention to one half of

one of the many short “lines” that connect two vertices. Why divide a line connect-

ing two adjacent vertices into two parts? So that the player may be aware of only

once vertex at a time, independent of what is adjacent. This also simplifies handling

the edge of the board (discussed in Section 4.3.4).

63

π3

π4

Figure 4.8: The primal class corresponds to the player’s awareness of the part of one
line nearest a given vertex.

Local space awareness processes are short-lived, fast-running processes that interact

frequently with neighbouring processes. Because the Go board is organized into a

regular grid, each local space awareness process only has a few immediate neighbours

with which to interact.

When four local space awareness processes interact, the resulting event corresponds

to the player’s awareness of the colour-state (black, white, or empty) of that part

of the board—this should not be confused with the player’s awareness of a coloured

stone or empty vertex because the concept of an entire vertex or stone is represented

as a first-level class, and as such is not present as a single element in the struct.

When two local space awareness processes interact, the resulting event is the player’s

recognition that the lines these two processes represent are physically connected to

each other in the space between two vertices.

64

4.3.2 Colour primitives

The three colour-state awareness primitives, numbered π1, π2, and π3, represent the

player noticing the current state of a vertex: for example, π1 represents the player’s

awareness that a particular location contains something black. It is not proper to

call this primitive the detection of a black stone, as colour is only one aspect of a

stone.

A colour-state awareness primitive’s four initial processes correspond to four local

space awareness processes coming together, meaning that the player’s awareness is

momentarily focused on the state-of-affairs at the location where these four lines

meet. This event also generates four new local space awareness processes and sends

them off “in search” of others to interact with.

In keeping with my overall treatment of “emptiness” as simply the third state that a

particular location might contain, π3 represents the player noticing that a particular

location is “empty”, that is, it contains no black or white. Just as “blackness” or

“whiteness” is only one property of a stone, “emptiness” is only one property of an

unoccupied vertex.

These primitives’ four initial and four terminal sites are associated with the four

cardinal directions: left, up, down, right. This ordering is important because a

consistent scheme is required for relating vertices in a way that reflects the rigid

geometry of the board.

4.3.3 Adjacency primitive

The adjacency awareness primitive, π4, represents the player noticing that two short

lines are connected to one another. This is an important step in the larger recognition

65

U RDL

π1 π2

π4

π1 π2

π4

U RDL U RDL U RDL

Figure 4.9: Left-right vs. up-down adjacency depends on how the colour primitives
are attached to the adjacency primitive.

of the adjacency relationship between vertices.

The grid arrangement of the Go board dictates how adjacency primitives may be

attached to colour primitives. The same primitive is used in left-right and up-down

connections, since all the primitive registers is simple adjacency of two points. The

left-hand sites always match with right or down, and the right-hand sites always

mach with left or up.

Like the colour primitives, the adjacency primitive restarts two primal classes and

sends them “in search of” a nearby vertex.

When these first four primitives are combined to form structs, the result is a lattice,

potentially connecting all vertices on the board. As such, these four are the most

important primitives. The three remaining primitives deal with setting spatial and

temporal boundaries on this lattice.

4.3.4 Edge primitive

Primitive π5 is a special edge primitive. This primitive plays a role similar to that

of the colour awareness primitives, except that the “state” it captures is that of

66

This vertex ...

... is adjacent to ...

... nothing.π5

π3

π4

Figure 4.10: This vertex is adjacent to nothing (i.e. it is on the edge of the board).

being “off the board”. Figure 4.10 depicts this. Unlike the three colour awareness

primitives, the edge primitive has only one initial and one terminal. Semantically,

an adjacency primitive connected to an edge primitive says “this vertex is adjacent

to... nothing”.

An earlier version of this Go model treated the edge of the board as if it was a

fourth vertex-state and represented it using primitives similar to the colour awareness

primitives, treating the board as if it was surrounded by grey stones. However, this

proved undesirable because it merely displaced the edge: the question of what was

adjacent to the grey stones still needed to be answered. I also considered a three-site

version of the grey stone primitive (as it was only adjacent to one board vertex and

two other grey stones), but in order for this to be meaningful there would have had

to have been 4 slightly different primitives: one for each side of the board. Instead

I chose the simpler π5.

67

4.3.5 Attention generation primitives

The last two primitives, designated π6 and π7, were introduced to increase represen-

tational flexibility by allowing only part of the Go board to be represented at any

time. Primitive π6 creates a new local space awareness process. Broadly speaking,

this corresponds to the player “turning his attention” to a particular part of the

board. Primitive π7 has the opposite effect: it simply absorbs a local space aware-

ness process, and corresponds to the player’s attention departing from this part of

the board. A more complete view of these primitives might also include initials

and terminals corresponding to “abstract attentional resources”, but I have omitted

them for simplicity. As it makes more sense to discuss this in the context of complete

structs, I will return to this in more detail in Section 4.4.2.

π2

π4 π4π4π4

π2

π4 π4

π4 π4

π4π4

π4π4

π6

π7

π6 π6 π6 π6 π6 π6 π6

π7 π7 π7 π7 π7 π7 π7

Figure 4.11: The player briefly considers a white stone. This is a complete (if small)
example of a Go struct.

68

4.4 Structs

This section presents Go structs, which are composed of the seven primitives outlined

in the previous section. Figures 4.11 and 4.12 each depict a complete struct, and it

is apparent that these structs have regular alternating layers of colour and adjacency

primitives. This configuration is a product of the rules for how structs are generated

from board positions, which in turn depends on the assumptions made about the

meaning of the various primitives. The following subsections explore these and other

properties of Go structs.

π3

π1

π4 π4

π4 π4

π4 π4

π4 π4

π1

π4 π4π4 π4

π4

π4

π4 π4

π4 π4

π4π4 π4

π3

π3π2

π4

π2

π4

π4 π4

π4 π4

π4 π4 π4

π2

π4

π2

π4

π4 π4

π4 π4

π4 π4 π4

π4

π4

π4 π4

π4 π4

π4π4 π4

π3

Figure 4.12: An (abstract) struct corresponding to the pictured board position.

69

4.4.1 How structs are recorded

As we recall from Section 3.3.2, structs are empirical, but, as stressed in Section

4.1, Go is largely a mental phenomenon. As a result, sensors cannot be used to

record events directly (as in for example [47]); measurements have to be postulated.

The approach used here is similar to how the same issue is handled in modeling

Fairy Tales for document retrieval [51]: the events used to build structs are mental,

but as measuring “inside the listener’s head” is impossible, it is postulated that

the listener will react in certain predictable ways to the story as it is read. This

means that the story itself can be parsed and used to build a struct based on the

expected corresponding mental events. In the case of Go, it is possible via some

simple assumptions to build structs based on the recorded moves of a game.

The Go primitives and primal class all represent some aspect of the player’s aware-

ness. For purposes of this model, I have made this assumption about how awareness

functions: each type of observation (adjacency, colour, etc) needs to be refreshed

often or it will be “forgotten”. The result is structs with a lattice-like structure

produced by the continuously-updated awareness. The strict alternation of layers

of colour and adjacency primitives represents a continuous oscillation of the local

awareness processes between the center of their respective vertices and the frontier

between vertices as the player focuses on that part of the board.

Because there is only one primal class in this representation scheme it is true that

any primitive could legally be connected to any other, giving rise to a struct like the

ones in Figure 4.13. However, simply because a struct is possible does not mean that

it should be created: structs must correspond to reality since they represent actual

observed sequences of events, and so structs are limited by the kinds of observations

70

π2

π3

π4

π5 π1 π2

π4

π1 π2

Figure 4.13: Left: This struct does not violate any purely formal rules, but it corre-
sponds to a nonsense state-of-affairs, i.e., a situation that can never be observed on
a Go board. Right: a more subtle nonsense struct showing two stones to the left of
each other, a physical impossibility.

that can be made, which in turn are limited by the actual configuration of the Go

board.

If, in the future, a Go-playing engine were implemented that used ETS to model the

game, training structs could be generated by automatically parsing game records,

most likely in the form of the ubiquitous Smart Game Format (.sgf) file [52]. Since

the model allows for different structs to be created depending on what parts of the

board the player chooses to pay attention to, some rules for how this would be

accomplished need to be devised. Although it would be possible to ask Go players to

report on what they are paying attention to, in much the same way that the study

[40] operated, some simple initial heuristics could be defined. For example, one

could specify that the player always focuses on the most recently placed stone and

its neighbourhood, that it has an upper limit of 50 local state awareness processes,

and that it remains focused on the same location for 3 iterations before the next

stone is played. Longer term, the program should learn where attention is needed

as more sophisticated classes are assembled.

71

4.4.2 Temporal aspects of Go structs

The structs given in Figures 4.11 and 4.12 are both “snapshots” of part of the board

between moves, and so the only obvious temporal aspect is the continuous refresh

of the attention processes and primitives: time is passing while the player considers

the position on the board4. This is one of three temporal aspects of the game that

I have modelled.

The second and most obvious temporal aspect of Go is a sequence of moves, resulting

in stones being added to or removed from the board. At the level of structs, there is

no single event corresponding to the placing or removal of a stone, since stones are

not a struct-level phenomenon, but rather a level 0 class. When a stone is played,

the struct registers a change in the colour of a particular location (Figure 4.14).

Likewise, when stones are removed, the struct registers a corresponding change to

the empty state. Is it plausible to have the stone simply “appear” without the player

seeing his opponent place it? I chose to model it this way for simplicity, but this

kind of sudden appearance of a stone is exactly what a player experiences when

playing a game on computer-generated board instead of a real one, so it does not

seem problematic.

The third temporal aspect is the player’s shifting attention: this model of Go does

not require that the entire board be represented at once. There are two reasons for

this: first, the observation that a player need not remember the location of every

stone on the board simultaneously as a “quick glance” at the board is sufficient to

refresh his memory. Second, the ability to limit which parts of the board are under

scrutiny and retain the same representational capabilities could be useful in creating

a Go-playing engine for which resources (memory, processing power) are scarce.

4I have deliberately not stated that each process runs for some specific (numeric) time interval:
to do so is against the non-numeric nature of ETS.

72

π3π2

π4 π4π4π4

π2

π4 π4

π4 π4

π4π4

π4π4

π4π4π4

π4

π4

π4π4

π4π4

π1

Figure 4.14: An (abstract) struct showing a black stone being placed next to the
white stone.

There are two immediate consequences of this property that must be taken into

account should this representation scheme be incorporated into a Go-playing engine.

First, obviously, that engine must keep the entire board encoded in some non-ETS

format in memory, and this must be easily accessible to the program, just as the

real board is easily accessible to the player. Second, it must be the case that the

order in which the player’s attention sweeps over the various vertices must not affect

classification. This property of the model will be discussed in Section 5.1.3.

This principle of short-run awareness processes and continually refreshing observa-

tional events also dictates how the structs are shaped when the player’s attention

shifts to a different part of the board. When this occurs, the attention focused on

the previous area is quickly terminated and the ongoing processes are absorbed by

several attention termination primitives. Figure 4.15 gives an example of the player’s

attention sweeping across a group of stones. This figure is meant to be illustrative

and not realistic, as the player’s attention is tightly focused on one stone at a time.

73

π4

π4 π4π4 π4

π1

π4 π4π4 π4

π2

π4

π2

π4

π4 π4

π4 π4

π4 π4 π4

π2

π4

π4

π4 π4

π4 π4

π6

π7

π6 π6 π6 π6 π6

π7 π7 π7 π7 π7

Figure 4.15: Attention shifts across the board.

Although this bears some resemblance to how a beginner approaches the game, a Go-

playing engine would benefit from viewing a larger region at once. This figure also

illustrates something that has been implicit in previous figures that show structs:

at the edge of the player’s attention, the second site on the adjacency awareness

primitive is connected directly to the next such primitive in the struct, and not to

an intervening colour awareness primitive.

4.4.3 Spatial aspects of Go structs

A consequence of introducing temporal information when modeling the Go board

(which itself is two-dimensional) is that the resulting representation has three di-

mensions. An unfortunate side effect of this is that drawing structs in two dimen-

sions becomes cumbersome. This provides no extra challenge for software designed

74

to manipulate structs, but does make visualization more difficult for humans5, and

is the principal reason why most of the examples in this chapter are small. Fortu-

nately, when drawing higher-level classes that span larger structs, some notational

simplification is possible (see Sections 4.6 and 4.7).

4.5 Level 0 classes

Section 4.2 described the main aim of this representation of Go: to model the player’s

awareness of Go stones and board locations as overlapping classes. This section

describes those classes.

π4f

π4b π4d

π4h

π4j π4l

π1a

π1b

π4a

π4e

π4i

π4c

π4g

π4k

π1c

Figure 4.16: This struct, representing the player’s awareness of a single black stone,
is an element of the level 0 black stone class.

5This also highlights the need for new ETS visualization tools to be developed. If a 3-
dimensional phenomenon were to be modelled, the situation would be even worse: 4-dimensional
structs.

75

There are sixteen one-level classes, divided into three broad categories. The first

category contains three classes corresponding to black stones, white stones, and

empty vertices. The second category contains four classes of short-running processes

corresponding to the placement or removal of stones from the board. The third

category, which is the largest and most complex, contains nine proximity classes

that capture the spatial relationships between pairs of vertices in a detailed way.

Table 4.1: The level 0 class setting

Num Name Symbol Num Name Symbol

C1 Black stone C2 White stone

C3 Empty vertex

C4 Black play C5 Black removal X

C6 White play C7 White removal X

C8 Adjacent blacks C9 Adjacent whites

C10 Adjacent empties C11 Black beside white

C12 Black beside empty C13 White beside empty

C14 Black beside edge C15 White beside edge

C16 Empty beside edge

The constraints that generate each class element operate within the context of the

rules for how structs are assembled, as outlined in the previous sections. Because

structs are predictable, class constraints are allowed to be more natural—any system

for learning these classes would not need to introduce a set of special case rules to

carefully rule out a number of impossible circumstances.

For example, the constraint ConC2
6 (Figure 4.18) which describes one way that ad-

jacency primitive may be attached to a colour primitive, only specifies one of the

two initials on the adjacency primitive. The possible ways that the second primal

class might be attached are limited by the ways in which the struct can be validly

76

constructed (Figure 4.22).

4.5.1 Stones and vertices

π2

π4 π4 π4π4

π2

π4 π4 π4π4

π4 π4 π4π4

π4 π4

π4 π4

π4 π4

π3 π1

π3 π1

π4 π4

π4 π4

π4 π4

π4

π4

π4

π4

π4

π4

c21 c31 c11

Figure 4.17: An example element of one of each of the stone/vertex classes, repre-
senting a player’s awareness of the above pictured board state. Primitives shared
between two overlapping class elements are shown in grey.

Figure 4.17 shows elements of the black stone class, the white stone class, and the

empty-vertex class. These three classes, denoted C1, C2, C3, are structurally very

similar. This is appropriate in light of the elements being represented: black and

white stones differ only in colour, so it is natural that they have similar class de-

scriptions. Formally, empty vertices are treated as having a third, “empty” colour.

Figure 4.18 shows the constraint set for the white stone class. The black stone and

empty vertex class constraints are structurally the same: simply substitute a π1 or

77

π2

π4 π4π4 π4

π2

π4

π4π4 π4

π2 π2 π2

ConC21
ConC22

ConC23 ConC24

ConC25

π4

π4π4 π4

Figure 4.18: Constraints for the white stone class. The primitives in grey are the
context: these primitives must be present in the working struct in order for the
constraint to be applicable.

a π3 for the π2 primitives. The five constraints for this class have a context part,

shown in grey on the figure, and the primitives in the context must be present in the

working struct in order for the constraint to be applicable. I chose to include such

contexts because they allow for finer control in specifying the situations in which

each constraint can be applied; because of the small number of primitives and single

primal class, this kind of fine control is desirable. By contrast, in [47], the variety

of primitives and primal classes limited which constraints could be applied at any

point in a class element’s formation, so this kind of finer control was not needed.

The rules governing the application of these constraints are very simple: at each

step, apply any constraint that is applicable to the working struct. The next section

is an extended example of how this works in practice.

78

π3

π1

π4π4 π4

π6

π6

π6

π6

π4

π6

π6

π6

π6

π1

π4 π4π4 π4

π4 π4π4 π4

π1π1

1.

2.

π2

π4 π4π4 π4

π4 π4π4 π4 π4 π4

π6

π6

π4

π6

π6

π6

π6

π2 π1π13.

Figure 4.19: Three examples of a class element’s initial formation. The primitive
attached by the application of ConC1

1 is shown in bold, and the context is shown
in grey, and is provided by the environment. All other primitives are not part of
this new class element. 1. attention jumps to the black stone. 2. the black stone
is placed on the board. 3. attention shifts to the black stone from a neighbouring
stone.

4.5.2 Example: the generation of a class element

Since the application of a constraint represents the first step in the generation of a

new class element, and since all of the constraints have contexts, it is clear that the

context used by this first constraint must be supplied by the environment. There

are a few different ways in which this initial context can be produced. Figure 4.19

shows three of them.

Once a new class element has been created, the generating system operates indef-

initely until the player’s attention shifts away from the vertex, or the state of the

79

π4π4 π4

π6

π6

π6

π6

π4

π6

π6

π6

π6

Environment

π4π4 π4

π6

π6

π6

π6

π4

π6

π6

π6

π6

π2

ConC21

π4π4 π4

π6

π6

π6

π6

π4

π6

π6

π6

π6

π2

π4

ConC22

π4π4 π4

π6

π6

π6

π6

π4

π6

π6

π6

π6

π2

π4 ConC23
π4

π4π4 π4

π6

π6

π6

π6

π4

π6

π6

π6

π6

π2

π4

ConC24

π4 π4

π4π4 π4

π6

π6

π6

π6

π4

π6

π6

π6

π6

π2

π4

ConC25

π4 π4 π4

π4π4 π4

π6

π6

π6

π6

π4

π6

π6

π6

π6

π2

π4 π4 π4 π4

π2ConC21

π4

π4π4 π4

π6

π6

π6

π6

π4

π6

π6

π6

π6

π2

π4 π4 π4 π4

π2

ConC22

π4

π4π4 π4

π6

π6

π6

π6

π4

π6

π6

π6

π6

π2

π4 π4 π4 π4

π2

ConC22

π4

Figure 4.20: Assembly of an element of class C2, a white stone. Newly added prim-
itives and primal classes are shown in bold, contexts are in grey, and the particular
constraint applied is indicated at each step.

80

π2

π4 π4π4 π4

ConC21

π2

π4 π4π4 π4

π2

π4π4 π4

π2

π4 π4π4 π4

π2

π4π4 π4

π4 π4π4 π4 π4π4 π4

π2

c21 c22

Figure 4.21: Struct continuation must attach to the working struct. Above the
dashed line: the board position represented here (two adjacent white stones), and
the constraint being applied. Below: the two connected class elements, with one
of them shown in grey. Note that the middle primitives are shared between the
two classes. The newly-added primitive, which would be a valid continuation of the
right-hand class, is not a valid continuation of the class on the left, as the context of
the constraint being used is not within the working struct.

vertex changes via a stone play or removal.

The rule governing the constraints at each step is simple: apply any that can be

applied. However, in practice, the following will be the case. When ConC2
1 can be

applied, none of the others will be applicable. When any of the others are applicable,

ConC2
1 will not be. Thus, the propagation of a class element will alternate between

the application of a ConC2
1 , and then applications of the other four constraints (in

any order), followed by another ConC2
1 , followed by the other four, etc. Figure 4.20

shows the complete assembly of a white stone class element. Figures 4.21 and 4.22

81

π4

π2

ConC23

π4

π2

π4

π4

π2

π4

π2

π4

π1

1. 2. 3. 4.

π4 π4

π2

π4

π4

Figure 4.22: The constraint on the left only specifies one of π4’s initials. 1. and 2.
are valid ways of applying the constraint. 3. is not valid, not because the constraint
forbids it, but because this struct is never observed. 4. is structurally valid but does
not satisfy the constraint.

illustrate the applications of certain constraints in more detail.

What is the environment that provides the initial pieces of the new class element?

In some cases, as in part 2. of Figure 4.19, the environment is in fact another class

element. In other cases, such as part 1. of the same figure, the environment is an

external component, in this case governing the player’s attention to the specific part

of the board. Part 3. of the figure is a combination of the two.

4.5.3 Play and capture

Table 4.2: The level 0 play and capture classes.

Num Name Symbol Num Name Symbol

C4 Black play C5 Black removal X

C6 White play C7 White removal X

There are four level 0 classes describing placement and removal of stones, denoted

C4, C5, C6, and C7. Each class produces short-running processes that terminate once

information about the colour-state of its associated location has been transformed.

82

π2c

π3b

π3a

π4e π4gπ4f π4h

π4m π4oπ4n π4p

π1d

c41

π4i π4kπ4j π4l

π4q π4sπ4r π4t

c71

Figure 4.23: Left: an element from C4, the black play class. Right: an element from
C7, the white stone removal class.

Figure 4.23 shows an example of the black play class, and Figure 4.24 shows its

constraints. As was the case in the previous section, the only difference between this

class and the corresponding class for a white stone is use of π1 primitives in the place

of π2’s.

Figures 4.23 shows an example of a white stone being captured. This class is similar

to the black stone capture class (replace π2 with π1). It is also very similar to the

stone play class, except that the order of the colour awareness primitives is reversed.

This reflects the symmetry of placing and removing stones.

Because of this symmetry, the generating systems for all four classes are analogous

to one another. Figure 4.24 shows the constraints for C4. The generating system for

this class is as follows: at the first step, apply ConC4
1 , at the next four steps, apply

one of ConC4
2 , ConC4

3 , ConC4
4 , ConC4

5 , and finally at the last step apply ConC4
6 . At

this point, the class element is complete and the generating system terminates.

Figure 4.25 shows how an element of the white capture class overlaps the white stone

83

π1

π4 π4π4 π4

ConC4
6

π3

π4 π4π4 π4

ConC4
1

π3

π4

ConC4
2

π4

π3

π4

ConC4
5

π4

π3

π4

ConC4
3

π4

π3

π4

ConC4
4

π4

Step 1

Steps 2-5

Step 6

Figure 4.24: The constraints for C4, the black play class. Context primitives (i.e.,
those that must be present in the working struct before the constraint may be ap-
plied) are shown in grey.

class element that precedes it, and the empty vertex class that follows. Because of

its short and transformational nature, C7 could conceivably be treated at the next

representational stage as a primitive transformation instead of a primal class. In

other words, it is possible that C4, C5, C6, and C7 are classes not of ordinary processes

but rather of transforms.

84

π3d

π3c

π4i π4kπ4j π4l

π2a

π4e π4hπ4f π4g

π2b

π4m π4oπ4n π4p

π4q π4t

π4u π4x

π4r π4s

π4v π4w

c71

c31

c21

Figure 4.25: The capture of a white stone: c71, shown in grey, overlaps with c21, an
element of the white stone class, and c31, an element of the empty vertex class.

85

4.5.4 Proximity

Level 0 proximity classes describe the spatial relationships between vertices in a

more detailed way than the struct-level adjacency primal classes because they carry

information about which kinds of stones are “touching” each other. There are nine

of these classes, corresponding to all of the pairwise relationships between stones,

empty vertices, and edges.

Table 4.3: The level 0 proximity classes

Num Name Symbol Num Name Symbol

C8 Adjacent blacks C9 Adjacent whites

C10 Adjacent empties C11 Black beside white

C12 Black beside empty C13 White beside empty

C14 Black beside edge C15 White beside edge

C16 Empty beside edge

Figure 4.26 shows a struct containing two of these classes. It is easy to see in the

figure that the elements of these classes are a pair of colour awareness primitives

alternating with a single adjacency awareness primitive. Indeed, all of the seven

classes in this category produce elements of this form. The largest deviation from

this pattern occurs in C14, C15 and C16, in which one of the colour awareness primitives

is replaced by (naturally) an edge awareness primitive.

Before discussing the generating systems for these classes it is worth noting that the

relationships between all pairs of, for example, adjacent black and white stones, are

all members of class C11. A black stone to the left of a white stone and a black stone

to the right of a white stone are different elements of C11 (see Figure 4.28).

Figures 4.27 and 4.28 show the constraints for C10 and C11. C10, the adjacent empty

vertices class, has a simpler specification than C11, because there are only two ways

86

π2

π4 π4 π4π4

π2

π4 π4 π4π4

π4 π4 π4π4

π4 π4

π4 π4

π4 π4

π3 π1

π3 π1

π4 π4

π4 π4

π4 π4

π4

π4

π4

π4

π4

π4

c131 c121

Figure 4.26: The struct from Figure 4.17, with two proximity class elements outlined.
Grey primitives are those within either element. The primitives on which the class
elements overlap are bold.

two stones/vertices of the same type can be spatially related: left-right and up-down

(the same is the case for C8 and C9). Figure 4.27 shows the left-right constraints on

the left and the up-down on the right. The generating system for this class is quite

simple: at the first step, select either ConC10
1 or ConC10

2 ; in subsequent steps, choose

one of ConC10
3 , ConC10

4 , ConC10
5 , ConC10

6 , ConC10
7 , ConC10

8 . Note that for a given class

element, only 3 of these last 6 will ever be applicable.

Classes C11, C12, C13, C14,C15 and C16 have more complex generating systems, with

constraints analogous to those pictured in Figure 4.28. The dotted lines in the figure

separate C11’s constraints into two sets, and for convenience, the constraints for the

four possible orientations are divided into four columns. The generating system first

chooses one of the constraints for step one, and then in each subsequent step chooses

87

π3

π4

π3ConC10
2π3

π4

π3

ConC10
1

π3

π4

ConC10
6

π4

π3

π4

ConC10
5

π4

π3

π4

ConC10
4

π4

π3

π4

ConC10
3

π4

π3

π4

π3

ConC10
7

π3π3

π3

π4

π3ConC10
8

π3π3

Step 1

Steps 2-N

Figure 4.27: Constraints for C10, the adjacent empty vertices class. Context primi-
tives are shown in grey.

any constraint from the larger set that applies. As before, the choice at step one will

dictate which constraints are applicable in the latter steps.

An important aspect of these class elements is that they contain constraints that

are structurally identical to some of the constraints from other classes in the level 0

class setting. These shared constraints allow elements of different classes to overlap

in more sophisticated ways than merely sharing one or two primitives. Overlap on

constraints is an essential feature of any class setting, because the next-level classes

will depend on such shared constraints. Figure 4.29 illustrates the constraint-overlap

88

between elements of three level 0 classes. The simple struct in this example is part

of the struct used in Figures 4.17 and 4.26, with, for the first time, all present class

elements identified.

π1

π4

ConC11
12

π4

π1

π4

ConC11
6

π4

π2

π4

ConC11
10

π4

π2

π4

ConC11
11

π4

π1

π4

ConC11
7

π4

π2 π1

π4

ConC11
2 π1 π2

π4

ConC11
3

π2π1

π4

ConC11
1

π1

π4

ConC11
5

π4

π1

π4

ConC11
9

π4

π2

π2

π4

ConC11
8

π4

π1π2

π4

ConC11
4

π2π1

π4

ConC11
13

π2π1

π2 π1

π4

ConC11
14

π2 π1

π1 π2

π4

ConC11
15

π2π1

π1π2

π4

ConC11
16

π2 π1

Step 1

Steps 2-N

Figure 4.28: Constraints for C11, the black adjacent to white class. Context primi-
tives are shown in grey.

89

π3

π4

ConC128

π4

π4 π4π4

π4 π4π4

π4 π4π4

π4 π4

π4 π4

π4 π4

π3 π1

π3 π1

π4

π4

π4

π4

π4

π4

c121

π1

π4

ConC1212

π4

π1

π4

ConC13

π4

π3

π4

ConC34

π4

c31 c11

Figure 4.29: A struct containing three class elements: an empty vertex (solid box),
a black stone (dashed box), and the proximity relationship between them (grey
primitives). Element c31 shares constraints with c121; for reference, the constraints
from the respective classes are shown on the left. Likewise, c121 and c11 have common
constraints, depicted on the right side.

90

4.5.5 Example: a fully-classified struct

Figures 4.30, 4.31 and 4.32 show a larger example of the level 0 classes in action.

Figure 4.31 also illustrates the difficulty of drawing (but not creating) structs to

capture board positions for more than two or three vertices. There is no good way

to draw this effectively three-dimensional struct in two dimensions, especially if one

wants to indicate all of the overlapping class elements that it contains. Figure 4.32

gives a stylized depiction of the class elements in this struct, in the form of an overlap

graph, which has class elements as its nodes. Two nodes are connected by an edge if

they overlap on a shared constraint. This short-hand drawing of several ETS classes

has temporal and other information removed should not be mistaken for an actual

ETS struct: its only purpose is to aid in visualization.

1. 2.

Figure 4.30: An atari position and subsequent capture. The representation of this
board position and stone placement is shown in Figure 4.31.

91

+

+

++ +

+

++ +

+

Figure 4.31: A struct corresponding to the board positions in Figure 4.30. Note
that for simplicity, primitive numbers and some primal classes are suppressed. Only
a few of the 17 class elements within this struct are identified. The vertical bars
isolate the three class elements that correspond to the center vertex. The C7 (white
capture) element is shown in grey, the resulting C3 (empty vertex class) element is
bold, and primitives marked with a ‘+’ are those that compose the element of C4

(black play class) on the lowest vertex. Figure 4.32 shows an overlap graph of all 17
class elements.

92

X

Figure 4.32: An overlap graph corresponding to the struct in the previous figure.
Each node corresponds to one class element, and each edge between elements indi-
cates that these two elements overlap on a constraint.

4.6 Level 1 classes

This section describes level 1 classes, which are assembled from the classes in the

level 0 setting. In the previous section it was possible to present the entire level

0 class setting; however, there are many more classes in the level 1 setting, and

this section presents only a few examples. A further limitation on discussing level 1

classes is that exactly which Go structures should be treated as classes at this level

in order to facilitate play by an ETS-based Go program is a question to be settled

empirically, i.e., via learning.

93

The level 0 classes depicted individual stones and the immediate relationships be-

tween them. Level 1 classes each combine several level 0 classes to form blocks of

connected stones, and, in a similar way, the spaces between stones.

Table 4.4: Level 1 classes in this section

Number Name Colour

C1
1 1-stone block Black

C1
2 2-stone block Black

C1
3 n-stone block Black

C1
4 black/white block interface Black and White

C1
5 1-point jump Black

C1
6 knight’s jump White

C1
7 diagonal jump White

C1
8 long knight’s jump White

C1
9 3 points from edge Black

4.6.1 Previous level constraints

For simplicity, I will present the level 1 class constraints in this section as a pair

of sets. The first element of this pair is the set of all level 0 class elements that

participate in that level 1 constraint. The second element of this pair is a set of all

the class element links (CEL1s) that relate the various classes involved. The level 0

constraints named in these CEL1s are all depicted in Figure 4.33

Figure 4.33 contains all of the level 0 constraints that will be used in the level 1

class examples in this section. Potentially, any constraint from any level 0 class can

participate in a level 1 class; however, I have only depicted those constraints used in

the few level 1 class examples presented here. All of these constraints have analogs

in various level 0 class definitions, though that is not strictly necessary: a level 0

94

constraint may be used in a level 1 class definition if it specifies some part of the

struct corresponding to a particular element from the necessary level 0 class.

π1

π4

Con10

π4

π2

π1

π4

Con2

π4

π2

π1

π4

Con5

π4

π4

Con7

π4

π2

π1

π4

Con9

π4

π4

Con3

π4

π2

π1

π4

Con4

π4

π4

Con8

π4

π3 π3 π3 π3

π4

Con15

π4

π4

Con12

π4

π4

Con14

π4

π4

Con13

π4

π2

π4 π4π4 π4

Con6

π1

π4 π4π4 π4

Con1

π3

π4 π4π4 π4

Con11

Figure 4.33: A selection of constraints present in various level 0 classes.

4.6.2 Blocks of stones

Following the terminology from [28] (as was discussed in Section 2.3.1), a block is a

collection of connected, same-colour stones that share liberties. As a result, the block

classes presented here are composed of not only level 0 stone classes, but also level 0

adjacency classes, both for describing the connectedness of the stones in the block,

and describing the opposing stones/edges/empty vertices that delimit the block. The

example block classes presented here are all blocks of black stones, but it is easy to

see that blocks of white stones will follow the same pattern.

95

Con1

Con2

Con3

Con4

Con5

1. 2.

Figure 4.34: An element of C1
1, the black one-stone block class. Upper right: the

board position that resulted in this class element. Left: the complete struct, with
the contained black stone class shown in grey. Lower right: the associated overlap
graph with the particular overlapping constraints identified.

The simplest 2-level class is the one-stone block. The difference between a one-stone

block and the previous-level single stone is that a one-stone block class contains

information about the surrounding area as well.

Class Definition 1. Class C1
1, black one-stone block

An element of this class is pictured in Figure 4.34.

Class constraints:

• Con
C1

1
1 =

〈 {
c11, c121

}
,
{
〈{c11, c121}, Con2〉

} 〉
• Con

C1
1

2 =
〈 {

c11, c111

}
,
{
〈{c11, c111}, Con2〉

} 〉
• Con

C1
1

3 =
〈 {

c11, c141

}
,
{
〈{c11, c141}, Con2〉

} 〉
• Con

C1
1

4 =
〈 {

c11, c122

}
,
{
〈{c11, c122}, Con3〉

} 〉
96

• Con
C1

1
5 =

〈 {
c11, c112

}
,
{
〈{c11, c112}, Con3〉

} 〉
• Con

C1
1

6 =
〈 {

c11, c142

}
,
{
〈{c11, c142}, Con3〉

} 〉
• Con

C1
1

7 =
〈 {

c11, c123

}
,
{
〈{c11, c123}, Con4〉

} 〉
• Con

C1
1

8 =
〈 {

c11, c113

}
,
{
〈{c11, c113}, Con4〉

} 〉
• Con

C1
1

9 =
〈 {

c11, c143

}
,
{
〈{c11, c143}, Con4〉

} 〉
• Con

C1
1

10 =
〈 {

c11, c124

}
,
{
〈{c11, c124}, Con5〉

} 〉
• Con

C1
1

11 =
〈 {

c11, c114

}
,
{
〈{c11, c114}, Con5〉

} 〉
• Con

C1
1

12 =
〈 {

c11, c144

}
,
{
〈{c11, c144}, Con5〉

} 〉
• Con

C1
1

13 =
〈 {

c11, c41

}
,
{
〈{c11, c41}, Con1〉

} 〉
• Con

C1
1

14 =
〈 {

c11, c51

}
,
{
〈{c11, c51}, Con1〉

} 〉
Sets of constraints used by the generating system:

• A =
{

Con
C1

1
13 , Θ

}
• B =

{
Con

C1
1

2 , Con
C1

1
3 , Con

C1
1

4 , Con
C1

1
5 , Con

C1
1

6 , Con
C1

1
7 , Con

C1
1

8 , Con
C1

1
9 , Con

C1
1

10 ,

Con
C1

1
11 Con

C1
1

12 , Θ
}

• C =
{

Con
C1

1
14 , Θ

}
The generating system for this class chooses a constraint from set A at the first

step, optionally beginning with Con
C1

1
13 , which reflects the play of the stone that

forms this single-stone “block”, as is the case in the pictured example. At steps 2 to

n−1, the system chooses a constraint from set B, assembling the block’s surrounding

environment and handling situations in which the block’s neighbouring white stones

are played or removed. Finally, the class element may optionally terminate with

the application of Con
C1

1
14 , should the stone be captured (it is also possible for the

class generating system to terminate because a second black stone is added the the

block). I

97

Con5 Con2 Con5 Con2

Con4

Con3 Con3

Con4

Figure 4.35: An element of C1
2, the two-stone black block class. This particular class

element is sitting at the edge of the board.

Class Definition 2. Class C1
2, black two-stone block

An element of this class is pictured in Figure 4.35. This class contains all of the

constraints from class C1
1, which I have not duplicated here. The following constraints

are unique to this particular class.

• Con
C1

2
15 =

〈 {
c11, c81, c12

}
,
{
〈{c11, c81}, Con2〉 , 〈{c81, c12}, Con5〉

} 〉
• Con

C1
2

16 =
〈 {

c11, c81, c12

}
,
{
〈{c11, c81}, Con3〉 , 〈{c81, c12}, Con4〉

} 〉

The class generating system follows the same pattern as that of C1
1. It begins with

a constraint from the same set A, but before progressing to set B, the generating

system chooses one of Con
C1

2
15 or Con

C1
2

16 (depending on the orientation of the block).

98

After that, the generating system proceeds for many steps using set B, before finally

choosing constraints from set C in the two final steps (since the block might be

captured). I

It is possible to create class descriptions at this level with varying degrees of restric-

tiveness. The following class definition illustrates this: it is a class for any arbitrary

block of black stones. Such a class could be useful in a situation where a Go program

needs only a broad overview of the blocks on the board without examining them in

great detail.

Class Definition 3. Class C1
3, arbitrary black block

This class also contains all of the constraints from class C1
1, but replaces the con-

straints unique to C1
2 with a set of less restrictive constraints:

• Con
C1

3
15 =

〈 {
c11, c81

}
,
{
〈{c11, c81}, Con2〉

} 〉
• Con

C1
3

16 =
〈 {

c11, c81

}
,
{
〈{c11, c81}, Con3〉

} 〉
• Con

C1
3

17 =
〈 {

c11, c81

}
,
{
〈{c11, c81}, Con4〉

} 〉
• Con

C1
3

18 =
〈 {

c11, c81

}
,
{
〈{c11, c81}, Con5〉

} 〉

The class generating system is more involved, so it is not presented here, but it

follows the same pattern as the previous two classes: first, constraints that describe

the internal structure of the block are applied during the first m steps, and then

constraints describing the block’s immediate surroundings are applied from step m+1

to n. Finally, the block can optionally be captured. I

99

Con2 Con10
Con3 Con9

Con4 Con8
Con5 Con7

Figure 4.36: An element of C1
4, the block-interface class. The eight level 0 constraints

shown in the figure are those used in the formation of the eight level 1 constraints:
see Def. 4

.

In order to describe the relationship between different-coloured blocks at the next

level, it is necessary to capture at this level the interface between two immediately

adjacent blocks. The result is C1
4.

Class Definition 4. Class C1
4, the block-interface class.

This simple class has eight constraints:

• Con
C1

4
1 =

〈 {
c11, c111,

}
,
{
〈{c11, c111}, Con2〉

} 〉
• Con

C1
4

2 =
〈 {

c111, c21,
}
,
{
〈{c111, c21}, Con10〉

} 〉
• Con

C1
4

3 =
〈 {

c11, c111,
}
,
{
〈{c11, c111}, Con3〉

} 〉
• Con

C1
4

4 =
〈 {

c111, c21,
}
,
{
〈{c111, c21}, Con9〉

} 〉
• Con

C1
4

5 =
〈 {

c11, c111,
}
,
{
〈{c11, c111}, Con4〉

} 〉
• Con

C1
4

6 =
〈 {

c111, c21,
}
,
{
〈{c111, c21}, Con8〉

} 〉
• Con

C1
4

3 =
〈 {

c11, c111,
}
,
{
〈{c11, c111}, Con5〉

} 〉
• Con

C1
4

4 =
〈 {

c111, c21,
}
,
{
〈{c111, c21}, Con7〉

} 〉
Generation is a 2-step process; the class generating system first chooses one constraint
from this set:

100

• A =
{

Con
C1

4
1 , Con

C1
4

3 , Con
C1

4
5 , Con

C1
4

7

}
and then chooses one from this set:

• B =
{

Con
C1

4
2 , Con

C1
4

4 , Con
C1

4
6 , Con

C1
4

8

}

The choices dictate the orientation of the black and white stones. I

4.6.3 Spaces

In addition to classes of blocks, the level 1 class setting includes classes of spaces.

Spaces are “chains” of connected empty vertices, but they are not directly analogous

to blocks as I have defined them above. The purpose of a space class is to describe

the spatial relationship between two or more nearby but not touching stones, and

as such, the space classes include the particular stones that they relate. Similarly, a

space may also exist between a single stone and the edge of the board.

Another respect in which space classes differ from block classes is that a space class

need not contain all connected empty vertices, just those that are of interest. In

other words, while it is not possible to have two immediately adjacent blocks of the

same colour (since they would actually be one large block), it is possible to have

two immediately adjacent (or even overlapping) spaces. The reason for this is that

empty vertices do not behave in the same way as blocks of stones: they do not “live

and die” together. Spaces may be incrementally divided and filled.

The examples presented in this section are all jumps : positions that commonly arise

in Go games, resulting when a player places a new stone near one of his previous

stones. Figure 4.37 shows examples of three such patterns, along with the element

101

Con2 Con15 Con12 Con5

Con7 Con15

Con12 Con10

Con14

Con13

Con7 Con15

Con14

Con8

Figure 4.37: Examples of C1
5, a one-point jump, C1

6, a knight’s jump, and C1
7, a

diagonal play.

of the associated class. A one-point jump is the most elementary jump play, in

which a player adds a new stone on the same line as an existing stone, but with

a single empty vertex between them. The knight’s jump is so-called because of its

resemblance to the movement of a knight’s piece in chess: it is a combination of a

lateral and a diagonal step. The diagonal play is a more defensive move that places

102

two stones diagonally adjacent without actually connecting them.

A noteworthy feature of the following classes is that they have two groups of con-

straints: one group describes the particular configuration of empty vertices that

define the space, and the other group describes the stones attached to the edges.

This second group is important for overlapping these classes with the block classes

to form level 2 classes.

Class Definition 5. Class C1
5, a one-point jump.

Constraints for this class:

• Con
C1

5
1 =

〈 {
c121, c31, c122

}
,
{
〈{c121, c31}, Con15〉 , 〈{c31, c122}, Con12〉

} 〉
• Con

C1
5

2 =
〈 {

c121, c31, c122

}
,
{
〈{c121, c31}, Con14〉 , 〈{c31, c122}, Con13〉

} 〉
• Con

C1
5

3 =
〈 {

c11, c121,
}
,
{
〈{c11, c121}, Con2〉

} 〉
• Con

C1
5

4 =
〈 {

c11, c121,
}
,
{
〈{c11, c121}, Con3〉

} 〉
• Con

C1
5

5 =
〈 {

c121, c12,
}
,
{
〈{c121, c12}, Con4〉

} 〉
• Con

C1
5

6 =
〈 {

c121, c12,
}
,
{
〈{c121, c12}, Con5〉

} 〉
Sets of constraints used by the generating system:

• A =
{

Con
C1

5
1 , Con

C1
5

2

}
• B =

{
Con

C1
5

3 , Con
C1

5
4

}
• C =

{
Con

C1
5

5 , Con
C1

5
6

}

The generating system for this class has three steps, choosing a constraint from set

A at the first step, B at the second, and C at the third. I

103

Class Definition 6. Class C1
6, a knight’s jump.

Constraints for this class:

• Con
C1

6
1 =

〈 {
c131, c31, c101, c32, c132

}
,
{
〈{c131, c31}, Con15〉 ,

〈{c31, c101}, Con13〉 , 〈{c101, c32}, Con14〉 , 〈{c32, c132}, Con12〉
} 〉

• Con
C1

6
2 =

〈 {
c131, c31, c101, c32, c132

}
,
{
〈{c131, c31}, Con12〉 ,

〈{c31, c101}, Con13〉 , 〈{c101, c32}, Con14〉 , 〈{c32, c132}, Con15〉
} 〉

• Con
C1

6
3 =

〈 {
c131, c31, c101, c32, c132

}
,
{
〈{c131, c31}, Con14〉 ,

〈{c31, c101}, Con12〉 , 〈{c101, c32}, Con15〉 , 〈{c32, c132}, Con13〉
} 〉

• Con
C1

6
4 =

〈 {
c131, c31, c101, c32, c132

}
,
{
〈{c131, c31}, Con13〉 ,

〈{c31, c101}, Con12〉 , 〈{c101, c32}, Con15〉 , 〈{c32, c132}, Con14〉
} 〉

• Con
C1

6
5 =

〈 {
c21, c131,

}
,
{
〈{c22, c131}, Con7〉

} 〉
• Con

C1
6

6 =
〈 {

c21, c131,
}
,
{
〈{c21, c131}, Con8〉

} 〉
• Con

C1
6

7 =
〈 {

c131, c21,
}
,
{
〈{c131, c21}, Con9〉

} 〉
• Con

C1
6

8 =
〈 {

c131, c11,
}
,
{
〈{c131, c21}, Con10〉

} 〉
Sets of constraints used by the generating system:

• A =
{

Con
C1

5
1 , Con

C1
5

2 , Con
C1

5
3 , Con

C1
5

4

}
• B =

{
Con

C1
5

5 , Con
C1

5
6

}
• C =

{
Con

C1
5

7 , Con
C1

5
8

}

The generating system for this class has three steps, choosing a constraint from set

A at the first step, B at the second, and C at the third. I

104

Class Definition 7. Class C1
7, a diagonal play.

This class follows the same pattern as the previous two. Constraints 1-4 are unique

to this class, while constraints 5-8 (not listed here) are the same as those from C1
6

• Con
C1

7
1 =

〈 {
c131, c31, c132

}
,
{
〈{c131, c31}, Con15〉 , 〈{c31, c132}, Con13〉

} 〉
• Con

C1
7

2 =
〈 {

c131, c31, c132

}
,
{
〈{c131, c31}, Con15〉 , 〈{c31, c132}, Con14〉

} 〉
• Con

C1
7

3 =
〈 {

c131, c31, c132

}
,
{
〈{c131, c31}, Con12〉 , 〈{c31, c132}, Con13〉

} 〉
• Con

C1
7

4 =
〈 {

c131, c31, c132

}
,
{
〈{c131, c31}, Con12〉 , 〈{c31, c132}, Con14〉

} 〉

The class generating system is the same as that of C1
6 I

Figure 4.38 shows an element of the “long-knight” jump class, so-called because it

follows the knight’s jump pattern but extends the gap by an additional vertex. This

class is the most complex space class depicted so far. Note that the center “box”

of vertices is specified by a single constraint, but attaching the stones in the right

locations requires an intermediate set of constraints.

Class Definition 8. Class C1
8, long knight jump class.

Constraints for this class:

• Con
C1

8
1 =

〈 {
c31, c101, c32, c102, c33, c103, c34, c104

}
,
{
〈{c31, c101}, Con12〉 ,

〈{c101, c32}, Con15〉 , 〈{c32, c103}, Con13〉 , 〈{c103, c33}, Con14〉 ,

〈{c33, c103}, Con15〉 , 〈{c103, c34}, Con12〉 , 〈{c34, c104}, Con14〉 ,

〈{c104, c31}, Con13〉
} 〉

105

Con7 Con15

Con12 Con10

Con12 Con15

Con12 Con15

Con13

Con14

Con13

Con14

Figure 4.38: An element of C1
8, the long-knight jump class.

• Con
C1

8
2 =

〈 {
c131, c31, c101, c102

}
,
{
〈{c131, c31}, Con15〉 , 〈{c31, c101}, Con12〉 ,

〈{c31, c102}, Con13〉 ,
} 〉

• Con
C1

8
3 =

〈 {
c131, c31, c101, c102

}
,
{
〈{c131, c31}, Con12〉 , 〈{c31, c101}, Con15〉 ,

〈{c31, c102}, Con14〉 ,
} 〉

• Con
C1

8
4 =

〈 {
c131, c31, c101, c102

}
,
{
〈{c131, c31}, Con15〉 , 〈{c31, c101}, Con12〉 ,

〈{c31, c102}, Con14〉 ,
} 〉

• Con
C1

8
5 =

〈 {
c131, c31, c101, c102

}
,
{
〈{c131, c31}, Con12〉 , 〈{c31, c101}, Con15〉 ,

〈{c31, c102}, Con13〉 ,
} 〉

• Con
C1

8
6 =

〈 {
c131, c31, c101, c102

}
,
{
〈{c131, c31}, Con14〉 , 〈{c31, c101}, Con13〉 ,

〈{c31, c102}, Con12〉 ,
} 〉

• Con
C1

8
7 =

〈 {
c131, c31, c101, c102

}
,
{
〈{c131, c31}, Con13〉 , 〈{c31, c101}, Con14〉 ,

〈{c31, c102}, Con15〉 ,
} 〉

• Con
C1

8
8 =

〈 {
c131, c31, c101, c102

}
,
{
〈{c131, c31}, Con13〉 , 〈{c31, c101}, Con14〉 ,

〈{c31, c102}, Con15〉 ,
} 〉

• Con
C1

8
9 =

〈 {
c131, c31, c101, c102

}
,
{
〈{c131, c31}, Con14〉 , 〈{c31, c101}, Con13〉 ,

〈{c31, c102}, Con12〉 ,
} 〉

• Con
C1

8
10 =

〈 {
c21, c131,

}
,
{
〈{c22, c131}, Con7〉

} 〉
106

Con2 Con15 Con12 Con15

1
1

1
9

1
9

Con12 Con15 Con12

Figure 4.39: Top: an element of C1
9, the three-points-from-edge class. Bottom left:

a common opening play near the corner. Bottom right: the level 2 overlap graph
representing this position: two elements of C1

9 and one of C1
1 (1-stone black group).

• Con
C1

8
11 =

〈 {
c21, c131,

}
,
{
〈{c21, c131}, Con8〉

} 〉
• Con

C1
8

12 =
〈 {

c131, c21,
}
,
{
〈{c131, c21}, Con9〉

} 〉
• Con

C1
8

13 =
〈 {

c131, c11,
}
,
{
〈{c131, c21}, Con10〉

} 〉
Sets of constraints used by the class generating system:

• A =
{

Con
C1

8
1

}
• B =

{
Con

C1
8

2 , Con
C1

8
4 , Con

C1
8

6 , Con
C1

8
8

}
• C =

{
Con

C1
8

3 , Con
C1

8
5 , Con

C1
8

7 , Con
C1

8
9

}
• D =

{
Con

C1
8

10 , Con
C1

8
11

}
• E =

{
Con

C1
8

12 , Con
C1

8
13

}
The five-step generating system chooses a constraint from each of the above sets in

order. I

Finally, Figure 4.39 shows an element of C1
9, the “three-points-from-edge” class, and

illustrates how two elements of that class can overlap with a 1-stone black group to

107

form a common corner play. The definition of C1
9 is not presented, but it is similar

to the one-point jump definition.

In general, the classes at this level have many common constraints, and only a

few “key” constraints that differentiate them. Obviously, detection of these key

constraints is an important component of the recognition of a given class element.

Successful recognition of a class element would also depend on its maturity (that

is, how completely it has formed): the many shared constraints will make elements

from different classes in the early stages of their formation difficult to distinguish.

108

Con1

Con2

Con3

Con4

Con5

Con1

Con2

Con3

Con4

Con5

Con1

Con2

Con3

Con4

Con3

Con4

Con1

1.

2.

3.

4.

1
1

1
5

1
1

1
2

1
3

1.
2.

2.

3.

4.

1

Figure 4.40: The evolution of class elements as a four-stone wall is built, with the
resulting level 2 overlap graph shown below the double line. Each circled area is one
level 1 class element, and overlap is shown. The element shown with a dotted circle
does not overlap with the final four-stone class (the large outer loop).

109

4.7 Level 2 classes

Con10
2Con9

2Con8
2Con7

2

Con6
2Con5

2Con4
2

Con3
2Con2

2Con1
2

Figure 4.41: The board positions captured by some level 2 constraints

This section discusses level 2 classes, which are assembled from the classes in the

level 1 setting. Figure 4.41 shows some shapes that can be represented as level 2

constraints arranging overlapping level 1 classes in various ways.

It is at this level that the full representational power of this model begins to emerge:

level 2 classes combine the blocks and spaces described by level 1 classes to form

arbitrary groups of stones. As with the previous levels, these classes can overlap,

and can describe both the spatial and temporal organization of previous level blocks.

A typical level 2 class describes the formation and shape of a particular kind of group.

Such a class would describe the complete evolution of groups of stones that ultimately

form a territory, including nearby and captured enemy stones, since these stones have

a great effect on the formation of the group.

Unfortunately, the complexity of classes at this level makes them difficult for humans

to design: this is where ETS learning algorithms should be employed instead. With

110

such limitations in mind, this section presents a set of level 2 constraints which would

commonly appear in the formation of various kinds of groups. Section 4.7.3 shows a

tentative example of a level 2 class element.

4.7.1 Previous level classes and constraints

Table 4.5 lists the level 1 classes used to create the constraints used to describe the

shapes in Figure 4.41. Classes C1
10 throughd C1

18 were not defined in the previous

section, but all are very similar to previously described classes.

Table 4.5: Level 1 classes and constraints.

Number Name Colour

C1
1 1-stone block Black

C1
2 2-stone block Black

C1
3 n-stone block Black

C1
4 black/white block interface Black and White

C1
5 1-point jump Black

C1
6 knight’s jump White

C1
7 diagonal jump White

C1
8 long knight’s jump White

C1
9 3 points from edge Black

C1
10 1-stone block White

C1
11 n-stone block White

C1
12 knight’s jump Black

C1
13 diagonal jump Black

C1
14 2-point jump Black

C1
15 2-point jump White

C1
16 1-point jump Black and White

C1
17 knight’s jump Black and White

C1
18 black/white diagonal interface Black and White

The following are the level 1 constraints used in the examples in the remainder of

this section. Each is present in one or more level 1 class. To simplify the notation,

111

the superscripted class name has been replaced by a superscripted 1, indicating the

appropriate level.

Black and empty:

• Con1
1 =

〈 {
c11, c121

}
,
{
〈{c11, c121}, Con0

2〉
} 〉

• Con1
2 =

〈 {
c11, c122

}
,
{
〈{c11, c122}, Con0

3〉
} 〉

• Con1
3 =

〈 {
c11, c123

}
,
{
〈{c11, c123}, Con0

4〉
} 〉

• Con1
4 =

〈 {
c11, c124

}
,
{
〈{c11, c124}, Con0

5〉
} 〉

White and empty:

• Con1
5 =

〈 {
c21, c131

}
,
{
〈{c21, c131}, Con0

7〉
} 〉

• Con1
6 =

〈 {
c21, c132

}
,
{
〈{c21, c132}, Con0

8〉
} 〉

• Con1
7 =

〈 {
c21, c133

}
,
{
〈{c21, c133}, Con0

9〉
} 〉

• Con1
8 =

〈 {
c21, c134

}
,
{
〈{c21, c134}, Con0

10〉
} 〉

Black and white:

• Con1
9 =

〈 {
c11, c111

}
,
{
〈{c11, c111}, Con0

2〉
} 〉

• Con1
10 =

〈 {
c11, c112

}
,
{
〈{c11, c112}, Con0

3〉
} 〉

• Con1
11 =

〈 {
c11, c113

}
,
{
〈{c11, c113}, Con0

4〉
} 〉

• Con1
12 =

〈 {
c11, c114

}
,
{
〈{c11, c114}, Con0

5〉
} 〉

White and black:

• Con1
13 =

〈 {
c21, c131

}
,
{
〈{c21, c131}, Con0

7〉
} 〉

• Con1
14 =

〈 {
c21, c132

}
,
{
〈{c21, c132}, Con0

8〉
} 〉

• Con1
15 =

〈 {
c21, c133

}
,
{
〈{c21, c133}, Con0

9〉
} 〉

• Con1
16 =

〈 {
c21, c134

}
,
{
〈{c21, c134}, Con0

10〉
} 〉

112

Black and black:

• Con1
17 =

〈 {
c11, c81

}
,
{
〈{c11, c81}, Con0

2〉
} 〉

• Con1
18 =

〈 {
c11, c81

}
,
{
〈{c11, c81}, Con0

3〉
} 〉

• Con1
19 =

〈 {
c11, c81

}
,
{
〈{c11, c81}, Con0

4〉
} 〉

• Con1
20 =

〈 {
c11, c81

}
,
{
〈{c11, c81}, Con0

5〉
} 〉

4.7.2 Overlapping constraints: an example

Figure 4.42 shows the level 2 overlap graphs for Con2
6 and Con2

10. Formally, the

definitions of these constraints are:

Con2
6 =

〈 {
c101, c151, c102, c71, c72, c103

}
,
{
〈{c101, c151}, Con1

5〉,

〈{c151, c102}, Con1
8〉, 〈{c102, c71}, Con1

7〉, 〈{c102, c72}, Con1
5〉,

〈{c71, c103}, Con1
8〉, 〈{c72, c103}, Con1

6〉
} 〉

Con2
10 =

〈 {
c101, c161, c11, c121, c12, c171

}
,
{
〈{c101, c161}, Con1

6〉,

〈{c161, c11}, Con1
3〉, 〈{c11, c121}, Con1

1〉, 〈{c121, c12}, Con1
4〉,

〈{c12, c171}, Con1
4〉, 〈{c171, c101}, Con1

5〉
} 〉

Section 2.4 discussed Reitman’s study [40] on how Go players remember board po-

sitions, which concluded that players organize the board as a series of chunks, con-

sistent with earlier studies on chess players6. However, a major difference between

these studies was that the Go player’s chunks were thought to overlap.

As part of this study, Reitman had an expert Go player examine several board

positions and circle the stones that he thought formed meaningful patterns. Figure

6Discussed in [41], p779.

113

1
10

1
15

1
10

1
7

1
10

1
7

1
16

1
10

1
1

1
17

1
12

1
1

Con5
1 Con8

1 Con5
1

Con8
1

Con7
1 Con6

1

Con6
1

Con5
1

Con3
1

Con1
1

Con4
1

Con4
1

Figure 4.42: Overlap graphs for constraints Con2
6 (left) and Con2

10 (right).

4.43 reproduces two of these positions along with the groups indicated by the Go

expert. Each circled group can be treated as a level 2 constraint.

Four white stones in the left-hand position of Figure 4.43 are marked X: the Go

expert identified this block as being “related”. I draw the reader’s attention to the

fact that he also identified the black stone and three of the four stones in this block:

this is a situation where the arbitrarily-shaped black and white block classes are

useful, as the part of the block relevant to the identified shape can be specified by

Con2
7, and the rest of the block may have any configuration. This is a desirable

situation where the formation of some level 2 class that uses Con2
7 not only specifies

which classes must be present at the previous level, but also partially determines

which class elements are present, in this case by requiring some of the level 1 classes

overlap on multiple constraints. Figure 4.44 illustrates this.

Figure 4.45 shows the overlap graph (with constraints indicated) for the large overlap-

ping region of the right hand position in Figure 4.43. This combination of constraints

could be produced at some step in the formation of two or three level 2 class ele-

ments. Only the relationships between various stones and groups that are necessary

to form the constraints are depicted in the overlap graph.

114

X X

X X

Figure 4.43: Two annotated Go positions taken from [40]. The circles were added by
an expert Go player who was asked to indicate which stones formed a “meaningful
pattern”.

1
11

1
1

1
4

1
4

Con14
1

Con13
1

Con11
1

Con12
11

18

Con11
1

Con12
1

Con13
1

Con14
1

A. C. D.B.

Figure 4.44: Top: a Go position and the overlap graph for the corresponding con-
straint: Con2

7. Bottom: A and B are elements of C1
11 that could be used to satisfy

this constraint. C is an element of C1
11 that could not satisfy the constraint, and D

is neither a class element nor satisfies the constraint.

115

1
10

1
15

1
10

1
7

1
7

1
16

1
1

1
10

1
13

1
18

1
1

1
13

1
12

1
1

1
1

1
14

1
1

1
14

1
16

1
10

1
10

1
7

1
7

1
13

Con6
2

Con4
2

Con9
2

Con1
2

Con2
2

Con8
2

5 8 5
6

7

8

7

2
1

5

2

3

1

2

4

3

4

4

3

1

1

2

45

5
7

8
6

Figure 4.45: An overlap graph corresponding to the main set of stones on the right
side of Figure 4.43. Individual level 1 constraints are indicated by their subscript.

116

4.7.3 A tentative level 2 class element

9

10

14

13

4

5

6

78

1

2

3

11

12

A. B. C.

D. E.

15

Figure 4.46: The formation of this shape can be treated as a level 2 class element.

This section presents a pictorial example of the formation of a level 2 class element

representing a small area of black territory. Figure 4.46 shows the moves that resulted

in this class element, broken into five steps of formation, labelled A through E.

Figures 4.47 to 4.51 each show the class element at one of these steps. For clarity,

level 1 classes that represent blocks are shown with bold circles. Each diagram after

the first also shows the transitions between the two steps: dotted lines with a single

black arrow indicate that the upper class’s element overlaps with and terminates at

the beginning of the lower class’s element. Dashed lines with double white arrows

indicate that the same class element (at a later stage of its development) appears in

both steps. Some tentative constraints are circled at each step.

117

1
10

1
1

1
1

1
12

1
17

1
18

1.

2.

2.

3.

3.

3.
1

2

3

Figure 4.47: The level 2 class element at stage A. The external numbers correspond
to the order in which the corresponding stones were played.

118

1
10

1
1

1
1

1
12

1
17

1
18

1
1

1
1

1
2

1
11

1
11

1
5

1
13

1
18

1
18

1
18

1
18

1
7

1

2

3

4

5

6

78

Figure 4.48: The level 2 class element transitioning from stage A to stage B.

119

1
1

1
1

1
2

1
11

1
11

1
5

1
13

1
18

1
18

1
18

1
18

1
7

1
3

1
2

1
11

1
11

1
13

1
18

1
18

1
18

1
18

1
7

1
10

1
18

1
6

4

5

6

78

9

10

Figure 4.49: The level 2 class element transitioning from stage B to stage C.

120

1
3

1
2

1
11

1
11

1
13

1
18

1
18

1
18

1
18

1
7

1
10

1
18

1
6

1
3

1
2

1
11

1
11

1
13

1
18 1

18

1
18

1
18

1
7

1
18

1
1

1
18

1
12

9

10

11

12

Figure 4.50: The level 2 class element transitioning from stage C to stage D.

121

1
3

1
2

1
11

1
11

1
13

1
18

1
18

1
18

1
18

1
7

1
18

1
1

1
18

1
12

1
3

1
2

1
11

1
11

1
13

1
18

1
18

1
18

1
18

1
7

1
18

1
18

1
10

1
6

1
16

11

12

14

13

15

Figure 4.51: The level 2 class element transitioning from stage D to stage E, its final,
stable state.

122

Chapter 5

Discussion

This chapter discusses several properties of the ETS model of Go presented in the

previous chapter. Section 5.1 describes what this model offers in purely representa-

tional terms, exploring several aspects of the relationship between board positions

and corresponding classified structs.

Section 5.2 discusses to what extent this model of Go is a cognitive model for how

human Go players approach the game, mostly from the point of view of how ETS

classes correspond to the overlapping “chunks” Go players are thought to rely on

when they mentally manipulate board positions.

Finally, Section 5.3 sketches an answer to the very important question of how this

model could be used in a system that plays Go. Such software should be entirely

class-driven and must be developed from scratch based on the logic of the model.

123

5.1 Representational properties

5.1.1 Formative history

The level 0 and level 1 classes described in the previous chapter have a very spatial

flavour in that they usually represent a combination of stones that are present on

the board at the same time. However, as Figure 4.25 as well as the long example of

Figures 4.47-4.51 illustrate, these classes can be combined temporally to describe the

evolution of a board position. This kind of evolutionary representation, epitomizing

the ETS tenet that formative history defines objects, is well suited to Go, since

knowing how to make a shape is as important to the player as recognizing the shape

itself. Figures 4.47-4.51 identify only constraints that delimit spatial structures on

the Go board, but such a class would also contain constraints overlapping the classes

connected by the dashed arrows, defining how the shape evolves over time.

5.1.2 Class variability

Classes at level 0 and level 1 generate only a few (structurally) different objects.

A black stone, for example, differs from another only in which concrete primitives

compose it, and for how long the corresponding process runs (i.e., how long between

play and capture). However, the reader should not get the idea that ETS class

generating systems must be so inflexible in their outputs. These level 0 and level

1 classes have a high degree of element homogeneity because that is the nature of

Go; one stone is identical to another, but complexity arises at higher (conceptual)

levels. Accordingly, at higher representational levels, classes become more flexible

and expansive.

124

1
3

1
5

1
5

Con2
1

Con5
1 Con3

1

Con4
1

+++

1
3

1
19

1
5

Con2
1

Con5
1 Con3

1

Con?
1

+++

Figure 5.1: Two level 2 constraints associated with the two “eyes” in the above
position. C1

3 is the black block class, C1
5 is the black one-point jump class, and

C1
19 is the not-previously-defined “black stone one point from the edge” class. The

constraint labelled Con1
? is the not-previously-defined empty+edge analog to Con1

4.
The overlap-connection labelled ‘+++’ is actually a whole set of constraints, since
the classes overlap on the entire center vertex.

Figure 5.1 shows a pair of level 2 constraints corresponding to two different “eyes”.

It is quite clear from the diagram that the two different board positions are captured

via two structurally very similar constraints. These two constraints might both be

present in the generating system of a larger class that describes the evolution of

blocks with two eyes, for example.

Many Go programs that manipulate patterns in a significant way (i.e., not Monte

Carlo programs) operate at the conceptual level of blocks and above. Since such

patterns are realized here as level 2 classes, the reader might wonder why one would

bother with the lower class levels at all. To see the answer to this, consider how

to represent level 2 classes without the framework of level 1 classes underneath

them. Level 2 class constraints depend on level 1 constraints, which in turn depend

on level 0 classes, meaning that level 0 and level 1 classes must be realized in a

125

complete way. The question then becomes: can you compress all of the level 0 and

1 class information down into the structs? It is probably possible, but to do so

would cost flexibility, since the new classes would each have to contain information

about stones and small patterns directly, in addition to the information about their

own structure. Instead, it is better to take advantage of the savings inherent in

hierarchical organization.

The ETS approach to modelling suggests that one should think carefully about

data. In the case of Go, designing appropriate primitives and level 0 classes forced

me to think about how to represent the spatial aspects of the Go board, the differ-

ence between stones and empty vertices, and the play and removal of stones. The

multi-leveled structure of ETS forces one to solve these problems systematically, and

prevents one from trying to model the more complex aspects of the phenomenon

without addressing the simple ones first.

5.1.3 Translational and rotational independence

Figure 5.2: The same configuration of Go stones under translation, i.e., in two dif-
ferent locations on the board.

An important capability of any Go-playing system is the ability to generalize knowl-

edge. A basic element of this is the ability to recognize the same Go position or move

sequence under a simple transformation, such as translation (move to a new location

on the board), mirroring (flip about one axis) and rotation (pivot by 90 degrees).

126

1

3

2

4 8

6

10

14

12

5

7

9

1113

15

1

3

2

48

6

10

14

12

5

7

9

11 13

15

Figure 5.3: These two Go positions are identical: they merely appear in opposite
corners; i.e., the first position can be transformed into the second by rotating the
board 180 degrees.

That the same Go stone configuration is represented in the same way regardless

of where it is on the board is obvious, since the entire representational hierarchy

from primitives to high-level classes is based on the relative position of the various

elements. The only case in which translating a position results in different structs is

when stones are moved to the very edge of the board, but the slight variation this

introduces is desirable because stones on the edge of the board have fewer liberties

and as such are not exactly the same as stones in the middle.

Rotation and mirroring are closely related (since both deal with various symmetric

transformations of a given position), and are handled more subtly in this Go model:

changing the orientation of a Go position does result in different structs (Figure 5.5).

However, the classification of these structs remains the same: the rotated position

is a different element of the same class (Figure 5.6).

A. B. C. D.

Figure 5.4: In isolation, A and B are the same pattern under mirroring. However,
as C and D illustrate, A and B cannot be treated as strictly equivalent, since their
relative position matter greatly when they are combined to form a larger position.

127

π1

π1

π2

π2

π2

π4 π4 π4π4

π2

π4 π4 π4π4

π4 π4 π4π4

π4 π4

π4 π4

π4 π4

π3 π1

π3 π1

π4 π4

π4 π4

π4 π4

π4

π4

π4

π4

π4

π4

A.

B.

π4 π4 π4π4

π4 π4 π4π4

π4 π4 π4π4

π4 π4

π4 π4

π4 π4

π3

π3

π4 π4

π4 π4

π4 π4

π4

π4

π4

π4

π4

π4

Figure 5.5: Two structs corresponding to the two opposite board positions shown at
left.

To understand why this is desirable, recall what ETS class elements have in common:

objects in the same class are generated in the same way. This is a natural way to

128

Con8 Con14 Con4Con13

Con3 Con14 Con9Con13

Con2 Con15 Con10Con12

Con7 Con15 Con5Con12

Figure 5.6: Four elements of class C1
16, representing the four possible orientations of

a black and white stone with one space between them.

describe two mirrored positions, since the same (re-oriented) plays were made to

create them (Figure 5.3). A further benefit of using classes in this manner instead of

simply making the structs of two mirrored positions the same is that the situation

depicted in Figure 5.4 can be avoided. A robust representation of the Go board must

be able to recognize the same game as seen from a different board orientation, as

well as tell the difference between the same shape appearing multiple times under

multiple mirroring in the same game.

5.1.4 Attention shift independence

In Section 4.4.2, I noted that classification of a Go position operated independently of

the order in which the particular stones were “considered” by the Go-playing agent,

but deferred an explanation of why until later, as such an explanation depends on

129

Con5Con7Con10Con7

Figure 5.7: Two structs corresponding to attention shifting across the same position
in opposite directions. Stone classes are indicated with boxes, and primitives that
are part of proximity classes are shown in grey. The order the stones are added to
the struct does not affect the overlap graph of resulting classes: both the struct on
the left and the struct on the right result in the same overlapping level 0 classes.

the structure of classes that had not yet been presented.

The key to attention shift independence is that different (but similar) structs are

elements of the same class: Figure 5.7 illustrates this. However, it is obvious that all

of a stone’s neighbours must be added to the struct before awareness of that stone

is dropped, or certain relationships will be left out. In practice, there are several

ways of scanning the board region that are acceptable, the simplest of them being a

simple pan from left to right. Any scan that progressively adds information about

immediate neighbours without “skipping around” will lead to the present classes

overlapping on the same constraints.

130

5.1.5 Overlapping hierarchies

Another aspect of ETS that makes it well-suited to modelling Go is its support for

a hierarchy of overlapping classes. Stones on the Go board influence each other in

complex ways, and allowing the same stone to be part of multiple groups (high-level

classes) is a natural way to account for these multifaceted relationships. To get a

sense of this, look at the extended example at the end of Chapter 4: the “wall”

constructed by white to keep black pinned in the corner is also likely to be part of

some piece of white’s territory.

In [4], Bouzy discusses the techniques used by his program INDIGO to represent

spatial patterns. He writes,

Human Go players are much stronger than the computer. The human skill in
Go is mainly due to the intuitive knowledge about space. Therefore, Go pro-
grammers must observe human Go players and mimic them. In this meaning,
Go computational models are cognitive models. [Experiments on Chess and
Go have shown that]... [human] experts use “chunks”. [4, p. 2]

The spatial model presented in [4], which, formally, is based in set theory, bears some

resemblance to the one presented here in Chapter 4. Bouzy’s groups (analogous to

my level 2 classes) are formed iteratively out of small “patterns” of nearby (same

coloured) stones (similar in scope to my level 1 classes). However, there are some key

differences, primarily to do with overlap1. Bouzy’s groups do not overlap one another:

two proximate groups don’t share one small pattern and instead each contain their

own (colour-specific) instance of it. The relationships between groups are calculated

externally and simply determine if one group is “stronger” than another. Essentially,

at a high level the board is decomposed into a graph with each node representing a

1Another important difference is that my model includes temporal information, while Bouzy’s
does not.

131

group (which can be either black or white but not mixed) and each edge indicating

that the two groups are adjacent, and which is stronger. Contrast that with level

2 classes that specify how two groups are interrelated, based on the sharing of (i.e.,

overlap on) particular level 1 classes elements.

Bouzy has moved away from spatial reasoning and towards Monte Carlo methods in

his more recent work on Indigo [32]. Despite this, my intuition is that his statement

that Go programmers can learn from the superiority of human spatial reasoning is

accurate. However, my model of Go suggests a different approach that relies on

“chunks” realized as overlapping hierarchies.

It is important to note that ETS classes contain temporal overlap as well as spatial;

that is, classes overlap each other at different times as well as in different places. For

an illustration, again refer to Figures 4.47-4.51, in which the dark arrows denote a

class element that overlaps a new, temporally subsequent class element. Also, Figure

4.25 shows an overlap graph where some of the overlap is between classes that turn

into one another as time passes: the white stone class overlaps the stone capture

class, which in turn overlaps the resulting empty vertex class.

5.2 Psychological plausibility

We turn again to [40], Reitman’s key study on Go players’ memory2. Reitman’s

results were consistent with the hypothesis that the expert Go player she tested

remembered Go positions as a collection of overlapping “chunks” (groupings of “re-

lated” stones).

2Some details of the study are described in Sections 2.4 and 4.7.2

132

A memory “chunk”, first described in Miller’s classic paper on “The magical number

seven”, is the name given to a single unit held within short-term memory. The

experimentally determined limit of human short term memory appears to be “seven

plus or minus two” chunks [53]. A key property of these chunks is that they are

of variable size: if a person can encode some amount of information into a single

cohesive unit, that whole unit becomes one of the seven (plus or minus two) elements.

The expert players in [40] and in the earlier Chess studies described in [41] vastly

out-perform the beginners at the task of game position recall not because they can

remember more chunks, but because their chunks are bigger, that is, they encompass

more of the board. A rank beginner, on the other hand, might have chunks the size

of a single stone or playing piece.

Newell and Simon neatly define a chunk as “any configuration that is familiar to the

subject and can be recognized by him”. [41, p. 781] This definition is of particular

interest here as it includes the concept of recognition. In my Go model, the natural

candidates for “chunks” are class elements (and recognizing that a particular element

is part of a given class is precisely the main task of an ETS classifier). Level 1 classes

encompass precisely the kinds of board positions Reitman found her subject used in

his chunks3. Consistent with her findings that chunks overlap, level 1 classes overlap

each other and can be composed to form larger positions.

That a player’s chunks increase in size as his skill progresses echos the multi-leveled

structure of my model. At the start of the “learning task”, an ETS-based learner

classifies structs according to (small) level 0 classes. As learning progresses, new

levels are added, each one with classes that correspond to more information covering

larger parts of the board. ETS also has a built-in mechanism for “decoding” chunks

3In fact, Figure 4.43 and the subsequent examples were based on a position from Reitman’s
paper, so as to demonstrate precisely this property of the model.

133

and retrieving the contained information: because class descriptions are generative,

recalling which class a shape came from allows you to reproduce the lower-level class

elements and project all the way from one high-level chunk to a low-level vertex-by-

vertex realization.

Another study on the ability of Go players to “replay” games that they are shown

also demonstrated that expert players have very accurate recall abilities. In [54],

one expert player was asked about how he remembered the game he was asked to

re-create (emphasis mine):

The subject reported that... he created a dialog of the ‘story’ as the moves
were added to the board. Meaningful moves were remembered because they
made sense in the context of the story. A few moves did not make sense with
respect to the story and therefore stood out, making it easier to remember
them. Although the subject was not explicitly asked, it would seem that the
dialog he created indicates that there was an element of prediction associated
with the next move. [54, p. 6]

One interpretation of this explanation is that the “story” the player identified corre-

sponds to a high-level class that he has learned. The expected moves are those that

are consistent with the way that class generates elements, which also accounts for

the important observation that his way of storing the game seemed to be predictive.

5.3 Towards an ETS Go engine

This section discusses how the model presented in this thesis might be used in a

system that plays Go. Developing such a system is a two-part process: first, learning

must be performed in order to populate the outlined class hierarchy with many more

classes. Then, the resulting class system information can be incorporated into a

134

class-driven Go program. The first task, learning, is a bottom-up process, as new

classes are incrementally assembled based on previous-level components. The second

task, choosing moves, is top-down, in that the unfolding of high-level classes in a

particular game drives the formation of lower-level classes, down to the level of stones

being placed.

5.3.1 Learning

This section does not describe how an ETS-based learner actually works, as the

development of algorithms and techniques for learning ETS classes from data is a

general problem that is separate from how such algorithms will be put to use. It is

sufficient for the present purpose to assume that learning can be done in an efficient

manner, and confine my discussion to what kinds of classes need to be learned from

what kind of training data4.

As the goal is to create a Go engine that depends entirely on classes, clearly a lot

of Go experience must be collected, in the form of many classes (mostly at level 2

but some at level 1) describing the complete evolution of territory shapes and dead

groups. The outlined class framework should be a sufficient scaffolding to support

learning many such classes. Learning must also be symmetric: that is, classes should

be either stored for both colours, or an efficient mechanism of “colour-swapping” a

given class should be included.

Such classes could be discovered via unsupervised learning based on the records of

expert-level games. It is quite trivial to produce structs from game records, and

“paving” a struct with level 1 classes and associated level 2 constraints should be

4See [12] Section 10 for a preliminary discussion of learning.

135

fairly straight-forward, given some general ETS structure-matching algorithms. In

order to determine which level 2 class elements are present in a given game, it would

be best to start from the endgame and generate the struct “in reverse”, assuming

that each territory, dead group, and captured group corresponds to one class element.

Although only classes up to level two have been presented in this thesis, it is possible

that still higher class levels might be learned, even to the point of stage ascension.

That this Go model has not explicitly defined level 3 classes does not rule them out.

5.3.2 Playing Go

At a high level, the proposed Go-playing methodology is the same as that tradition-

ally used to play games in that, for each play, the current board position must be

evaluated, and then a move selected. The main difference is that this entire process

is class-driven.

The Go-playing program first inductively recognizes the various class elements present

in the current position. The program should try to identify the level two classes in

various stages of formation that are present. Candidate moves are then supplied

by the generating systems of these classes, and the chosen move is one that does

the best to further the evolution of favourable class elements while disrupting the

evolution of unfavourable ones. This is the advantage of having a temporal repre-

sentation: identification of a class element at an early stage of its evolution allows

the anticipation of future circumstances.

136

5.3.2.1 Position evaluation

As is the case with human players, the process of choosing a move to play begins

with an examination of the current state-of-affairs, in this case by identifying all

present class elements. For most interesting (that is, non-quiescent) positions, the

classification process does not just identify a single class for each group of stones.

Instead, several (overlapping) classes in the process of being formed should be iden-

tified. Exactly how many should be discovered is an important question that must

be resolved for optimization purposes: too few and the program will fail to “see”

certain eventualities and make mistakes, and too many and it will be paralyzed un-

der the weight of complexity (an empty board is, after all, the initial phase in the

formation of every class). One possible solution might be to sort known classes based

on the similarity of their constraints, and only detect those possible classes whose

early stages of formation are highly similar to the position already on the board.

Another mechanism for narrowing the range of classes to consider might be the use

of even higher-level classes to control the unfolding of level 2 classes: these classes

would produce level 2 elements from level 2 classes that are in some way “more

important”.

Figures 5.8 and 5.9 illustrate how a particular board position can provide the “con-

text” for two different results, one that favours black, and one that favours white.

This is a situation where the constraints that capture the left-most position in Figure

5.8 are present in the generating systems of (at least) two very different classes: the

upper graph, representing the initial position, serves as predecessor for both lower

graphs, meaning that the lower graphs can be created from it via one operation.

From a class-generating point of view, the upper graph might represent the context

part of a constraint that exists in two (or more) level 2 classes, and the lower graphs

137

X X

Figure 5.8: The position at left can be resolved favorably for black (middle position)
or for white (right position), depending on who plays first.

1
2

1
20

1
4

1
13

1
3

1
10

1
10

1
10

1
4

1
7

1
7

1
4

1
4

1
4

1
2

1
20

1
4

1
13

1
10

1
10

1
10

1
7

1
7

1
10

1
7

1
7

1
2

1
4

1
4

1
21

1
21

Figure 5.9: Overlap graphs corresponding to the two ways the position in Figure 5.8
can be resolved. Arrow notation is the same as in Section 4.7.3.

are the bodies of those two constraints. Note that previously unidentified level 1

classes pictured here are C1
20: one-stone in atari, and C1

21: white one-point jump.

In general, the process of recognition need not be done “from scratch” at every turn,

since each play by the opponent is likely to affect only some part of the board. Indeed,

138

if the play represents the next step in the formation of some anticipated group (that

is, the corresponding level 2 class that the new play perpetuates has already been

identified at some previous stage), then the present class elements might change

very little from move to move. Thus, while fully classifying a position is likely to

be computationally intensive, a lot of work is saved thanks to the temporal nature

of a representation. Contrast this with traditional machine-learning approaches:

you cannot feed a position into a neural network and save any time in producing the

output because that position is very similar to the one that was previously processed.

It is obvious that human players maintain information on already classified positions

from move to move. While it is true that a human player can “take over” in the

middle of a game already in progress, to do so requires that the player study the

board for longer than they would if they had been involved in the game up until that

point. No human player purposefully forgets everything and approaches the board

afresh every move!

5.3.2.2 Move selection

Once classification of the current position is complete, the program must choose

a move to play. Candidate moves are those that push the or more of the present

classes towards the next stage of their evolution. In other words, candidate moves

are “proposed” by the class generating system: this is the key element that makes

the proposed framework a class-driven Go player. This is a natural way to select

moves because the goal of each move is to further develop some piece of the pro-

gram’s territory and/or hinder its opponent. Towards the second goal, the program

might choose a disruptive move that interferes with the formation of a class that is

139

favourable to its opponent: adding a stone in the right place might push the nascent

position from one class (“black’s territory”) to another (“white captures”).

Naturally, this kind of move selection depends heavily on the ability of the program to

determine which classes are favourable, since it must know which classes to attempt

to perpetuate. A simple solution is to examine what each class ultimately produces,

and select classes that lead to large territories or large enemy captures over less

productive classes. Classes that result in enemy territories for the program’s own

stones being captured should be disrupted.

More subtly, higher-level classes could be employed to make these selections. These

classes would begin to encompass the concept of strategy, since they would seek

to produce favourable positions on a board-wide scale. I will not conjecture as

to the structure of these strategy classes, but to what extent they can be learned

automatically should be examined.

This kind of move selection does include a kind of “look ahead”, since it seeks to

influence the future development of territories, but because it operates on high-level

classes, it is more abstract than the traditional game-tree search that must treat

every individual play as a separate entity to be considered.

5.3.3 Opening game

The opening game is often treated as a special case by both human and computer

players. Opening moves are typically played joseki, or “from a book”. For human

players, this means that they memorize certain opening combinations. Computers

play much more literally “by the book” in that they typically employ a library of

opening plays.

140

A class-based Go program would also employ a kind of book to handle the opening,

but it is important to recognize what this book contains: opening plays should reflect

the initial constraints used to form desirable class elements. The opening game is a

kind of environment process that triggers the formation of several stone and group

processes.

Even special cases are heavily influenced by the workings of the class hierarchy.

5.3.4 Evaluating play

Clearly, the main goal of any Go program is competent play, and obviously the

strength of the proposed program should be tested, both against human players

other programs. More subtly, a second important goal of the proposed program is

human-like play. As was discussed in Chapter 2, Go programs, and game playing

programs in general, often play “strange” moves and have very inhuman weaknesses

that human players can eventually learn to exploit.

I propose that the “human-like” properties of a program’s play could be evaluated

in a kind of Turing test [55]: have a human player play several games against unseen

opponents, some of them human, the others various Go programs, and see how

accurately that player can tell the former from the latter. The human opponents

would have to include a range of skill levels on par with the various programs, so as

not to give their identity away with either too strong or too weak play.

141

Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, I have presented a simplified overview of the ETS formalism and

developed a preliminary ETS representation of the game of Go. I designed seven

primitives and a single primal class, which together form various structs correspond-

ing to an idealized Go player’s awareness of the game board. On the basis of these

structs, I designed three class levels dealing with increasingly complex elements of

the game. The aim of this work was twofold: first, to apply structural representation

to the game of Go and examine what benefits it brings, and second, to test the use

of ETS in a new domain.

The application of ETS to any new area necessitates rethinking that area’s basic

data, because event-based representation requires that data be packaged differently

than it is conventionally. ETS is meant to capture the formation of objects, and in

the case of Go, this representational requirement recasts the ubiquitously discussed

142

Go shape as a process of playing stones that evolve into a familiar pattern. This

view of shapes as evolving processes, taken together with the generative nature of

ETS class representation, seems to be a natural mechanism to use for move selection

in a Go-playing program.

The non-opaque structure of ETS classes means that class definitions can both be

learned automatically and designed by an expert player, allowing for flexibility that

is not available in other inductive learning paradigms (a Go expert could not improve

a neural network by manually editing the edge weights, for example).

The ETS formalism appears to be a natural tool for representing Go, largely be-

cause the formalism’s hierarchical structure is well equipped to capture the game’s

hierarchical structure. Lowest-level classes correspond to stones, i.e., elements that

are immediate in their presence on the board. Elements of higher-level classes corre-

spond to more subjective structures, because they attempt to capture patterns and

groups that are judged by players to be meaningful/significant. Elements at each

level naturally overlap one another, which is consistent with how human players

think about the board.

Go also appears to be a useful test domain for ETS. This work helped to clarify that

the natural way to model spatially-related patterns is to compose them of overlapping

class elements. During the development of this work, a few refinements have been

made to the ETS formalism, including a generalization on the definition of a struct-

level constraint that allows for more robust generation of class elements that are

heavily affected by their local environment. Had I been able to make use of that

generalization in this thesis, it may have saved some trouble in designing primitives

and level 0 classes. Essentially, to compensate for the older definition, which did not

allow the insertion of “noise” primitives into a class element’s working struct, I had

143

to construct a rigid (and fairly uninteresting) struct level in order to support classes

of stones that gave sufficient flexibility. Still, because the change to the definition is

a generalization, the work in this thesis is not incompatible with it, but merely uses

a subset of the available flexibility.

During the course of developing my Go representation, several classes of short-

running and dynamic processes, e.g., those corresponding to the play and removal of

stones, emerged. The ETS formalism as it currently stands does not specify much

about the body of a transform [12, Part IV], but the above class elements seem to

perform transformational functions. This lends credence to the notion that ETS

transforms are simply classes of processes that happen to produce more short-lived

and unstable elements.

6.2 Future work

As this thesis is a preliminary work on the uses of ETS for playing Go, it is clear

that there is much to do, both with respect to refining the presented representation,

and to using it in a Go-playing program. I sketched the workings of such a program

in the previous chapter, so I will not discuss it in great detail here.

Some additions and improvements to the presented Go representation ought to be

investigated:

• Reconsider the chosen primitives and resulting structs and level 0 classes on

the basis of the new constraint definition. Perhaps less rigid and more organic

structs could be created.

144

• Investigate the use and nature of class levels beyond the three presented in this

thesis.

• Investigate the possibility of ascending to a new stage of representation on top

of the high-level classes.

Once the representation scheme is finalized, it should be possible to construct a

Go-playing program on its basis. Such an effort would include these tasks:

• Conduct learning to populate the class hierarchy. To do so might require

the development of new ETS-based learning algorithms, which is a significant

endeavour in its own right.

• Experiment with unsupervised learning based on game records, and with de-

signing classes in cooperation with an expert Go player.

• Compare the performance of the developed program with existing Go pro-

grams, both in terms of playing strength and playing style.

More generally, one might take this work as a foundation for the following:

• Investigate how well the outlined framework agrees with how human players

think about the Go board.

• Investigate the application of ETS to other games. Perhaps in other stone

games, e.g, Othello, some of the low-level representation presented here could

be re-used.

The development of a full Go-playing program on the basis of this thesis would be a

very good test of ETS: it would transform the work presented here from a preliminary

example into a full-fledged application of the formalism.

145

Bibliography

[1] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 1st ed.,
Prentice Hall, 1995.

[2] J. Burmeister and J. Wiles, “The challenge of Go as a domain for AI research: a
comparison between Go and chess,” Proc. 3rd Australian and New Zealand Conf.
on Intelligent Information Systems, IEEE Western Australia Section, Nov. 1995,
pp. 181–186.

[3] American Go Association, “Mueller on computer Go’s “revolutionary” ad-
vances,” American Go E-Journal, vol. 8, no. 23, July 23, 2007.

[4] B. Bouzy, “Spatial Reasoning in the game of Go,” 1996; http://www.math-
info.univ-paris5.fr/∼bouzy/publications/SRGo.article.pdf.

[5] T. Huang, G. Connell, and B. McQuade, “Experiments with learning opening
strategy in the game of Go,” Int’l Journal of Artificial Intelligence Tools, vol.
13, no. 1, 2004, pp. 101–114.

[6] E.C.D. van der Werk, H.J van den Herik, and J.W.H.M Uiterwijk, “Learning
to score final positions in the game of Go,” Theoretical Computer Science, vol.
349, no. 2, 2005, pp. 168–183.

[7] E.C.D. van der Werk et al., “Learning to predict life and death from Go game
records,” Information Sciences, vol. 175, no. 4, 2005, pp. 258–272.

[8] M. Enzenberger, “The Integration of a Priori of Knowledge into a Go Play-
ing Neural Network,” 1996; http://www.cgl.ucsf.edu/go/Programs/NeuroGo-
PS.html.

[9] M. Enzenberger, “Evaluation in Go by a Neural Network Using Soft Segmenta-
tion,” 10th Advances in Computer Games Conf. (ACG-10), Kluwer, 2003, pp.
97–108.

146

[10] N. Richards, D.E. Moriarty, and R. Miikkulainen, “Evolving Neural Networks
to Play Go,” Applied Intelligence, vol. 8, no. 1, 1998, pp. 85–96.

[11] B. Bouzy and G. Chaslot,“Bayesian generation and integration of K-nearest-
neighbor patterns for 19x19 go,” IEEE 2005 Symposium on Computational In-
telligence in Games, G. Kendall and S. Lucas, eds., 2005, pp. 176–181.

[12] Lev Goldfarb, David Gay, “What is a structural representation? Fifth varia-
tion,” Faculty of Computer Science, U.N.B., Technical Report TR05–175, De-
cember 2005; http://www.cs.unb.ca/∼goldfarb/ets5/index.html.

[13] L. Goldfarb, “On the foundations of intelligent processes I: An evolving model
for pattern learning,” Pattern Recognition, vol. 23, no. 6, 1990, pp. 595–616.

[14] L. Goldfarb, “On the concept of class and its role in the future of machine
learning,” What is a Structural Representation, L. Goldfarb, ed., in preparation,
2007; http://www.cs.unb.ca/∼goldfarb/ETSbook/Class.pdf.

[15] The British Go Association, 2004, “Introduction to the game of Go,” 2004;
http://www.britGo.org/intro/intro1.html.

[16] P. Shotwell, “The Origins of Go,” American Go Association, 2002;
http://www.usgo.org/resources/downloads/originsofgo.pdf.

[17] The British Go Association, “Go: The Most Challenging Board Game in the
World,” 1999; http://www.britgo.org/intro/booklet.pdf.

[18] M. Müller, “Computer Go,” Artificial Intelligence, vol. 134, 2002, pp. 145–179.

[19] Nihon-Kiin, Go: The Worlds Most Fascinating Game, vol. 1, R. Kajiki and T.
Konami, Trans., Tokyo, 1973.

[20] C.E. Shannon, “Programming a computer for playing chess,” Philosophical Mag-
azine, vol. 41, 1950, pp. 256–275.

[21] T. Hershman, “Chess: Man vs. Machine Plays Out,” Wired News, Oct. 2002;
http://www.wired.com/news/culture/0,1284,55839,00.html.

[22] F. Hsu, M.S. Campbell, A.J. Hoane, Jr., “Deep Blue system overview,” Proc.
9th Int’l Conf. Supercomputing, ACM, 1995, pp. 240–244.

[23] C. Matthews, Teach Yourself Go, McGraw-Hill, 1999.

[24] Free Software Foundation, “GNU Go Documentation,” 2004;
http://www.gnu.org/software/gnugo/gnugo toc.html.

[25] T. Wolf, “GoTools – the Tsume-Go program,” 2001;
http://alpha.qmul.ac.uk/∼ugah006/gotools/.

147

[26] N. Jacobs, “Relational Sequence Learning and User Modeling,” Ph.D. thesis,
Departement Computerwetenschappen, Katholieke Universiteit Leuven, 2004.

[27] G. Chaslot, “11th Annual Computer Olympiad,” 2006;
http://www.cs.unimaas.nl/Olympiad2006/.

[28] K. Chen, “Computer Go: Knowledge, Search, and Move Decision,” ICGA Jour-
nal, vol. 24, no. 4, 2001, pp. 203–215.

[29] K. Chen, “Soft decomposition search and binary game forest model for move
decision in Go,” Information Sciences, vol. 154, no. 3–4, 2003, pp. 157–172.

[30] M. Müller. “Decomposition search: A combinatorial games approach to game
tree search, with applications to solving Go endgames,” IJCAI-99, vol. 1, 1999,
pp. 578–583.

[31] B. Bouzy, “The move decision strategy of Indigo,” ICGA Journal, vol. 26, no.
1, 2003, pp. 14–27

[32] B. Bouzy, “History and Territory Heuristics for Monte-Carlo Go,” New Mathe-
matics and Natural Computation, vol. 2, no. 2, 2006, pp. 1–8.

[33] B. Bouzy and T. Cazenave “Computer Go: an AI-Oriented Survey,” Artificial
Intelligence Journal, 2001, pp. 39–103.

[34] B. Bruegmann, “Monte Carlo Go,” 1993;
ftp://ftp.cgl.ucsf.edu/pub/pett/go/ladder/mcgo.ps.

[35] B. Bouzy and B. Helmstetter, “Monte Carlo Go Developments”, 10th Advances
in Computer Games Conf. (ACG-10), Kluwer, 2003, pp. 159–174.

[36] S. Gelly and Y. Wang, “Exploration exploitation in Go: UCT for Monte-Carlo
Go,” NIPS-2006, Online trading between exploration and exploitation, December
2006.

[37] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo Planning,” Lecture
Notes in Artificial Intelligence, vol. 4212, 2006, pp. 282–293

[38] E. Berlekamp, D. Wolfe, Mathematical Go Endgames, Nightmares for the Pro-
fessional Go Player, Ishi Press Int’l, 1994.

[39] J. Burmeister and J. Wiles, “AI Techniques Used in Computer Go,” Proc. of
the 4th Conf. of the Australasian Cognitive Science Society, Univ. of Newcastle,
1999.

[40] J.S. Reitman, “Skilled perception in Go: deducing memory structures from
inter-response times,” Cognitive Psychology, vol. 8, no. 3, 1976.

148

[41] A. Newell and H.A. Simon, Human Problem Solving, Prentice-Hall, 1972.

[42] A. de Groot, Thought and Choice in Chess, Mouton, 1965.

[43] D. Fotland, “David Fotland’s Many Faces of Go”, 2002; http://www.smart-
games.com/manyfaces.html.

[44] G.F. Luger, Artificial Intelligence: Structures and Strategies for Complex Prob-
lem Solving, 4th ed., Addison Wesley, 2002.

[45] L. Goldfarb, “Representational formalisms: what they are and why we havent
had any,” What is a Structural Representation, L. Goldfarb, ed., in preparation,
2007; http://www.cs.unb.ca/∼goldfarb/ETSbook/ReprFormalisms.pdf.

[46] M. Sipser, Introduction to the Theory of Computation, PWS Publishing Com-
pany, 1997.

[47] L. Goldfarb and I. Scrimger, “On ETS Representation of human movement,”
What is a Structural Representation, L. Goldfarb, ed., in preparation, 2007;
http://www.cs.unb.ca/∼goldfarb/ETSbook/Walking.pdf.

[48] L. Goldfarb, I. Scrimger, B.R. Peter-Paul, “ETS as a tool for decision modeling
and analysis: planning, anticipation, and monitoring”, 2007 Decision and Risk
Analysis Conf., 2007. Also submitted to the journal Risk and Decision Analysis.

[49] R. Waterfield, trans., The First Philosophers: The Presocratics and the Sophists,
Oxford University Press, 2000.

[50] E. Hemingway, For Whom the Bell Tolls, Simon & Schuster, 1995.

[51] S. Falconer, “On the Evolving Transformation System Model Representation of
Fairy Tales,” master’s thesis, Faculty of Computer Science, UNB, 2005.

[52] A. Kierulf, “Sensei’s Library: Smart Game Format,” 2007;
http://senseis.xmp.net/?SmartGameFormat.

[53] G.A. Miller, “The magical number seven, plus or minus two: Some limits on our
capacity for processing information,” The Psychological Review, vol. 63, 1956.
pp. 81–97.

[54] J. Burmeister et al., “Memory performance of master Go players,” Games in AI
Research, H.J. van den Herik and H. Iida, eds., Universiteit Maastricht, 2000,
pp. 271–286.

[55] A.M. Turing, “Computing machinery and intelligence,” Mind, vol. 59, 1950, pp.
433–460.

149

Vita

Candidate’s full name: James Ian Scrimger

Universities attended: University of New Brunswick

New Brunswick, Canada

2004-2007

Mount Allison University

New Brunswick, Canada

2000-2004

B.Sc. (Computer Science and Philosophy)

Conference presentations and poster sessions:

L. Goldfarb, I. Scrimger, B.R. Peter-Paul, “ETS as a tool for decision modeling

and analysis: planning, anticipation, and monitoring,” Decision and Risk Analysis

Conf., 2007. Also submitted to the journal Risk and Decision Analysis.

L. Goldfarb, B.R. Peter-Paul, I. Scrimger, “ETS Representation of Human Move-

ment,” UNB Computer Science Research Expo, April 4, 2007.

Tech reports:

L. Goldfarb and I. Scrimger, On ETS Representation of human movement, Technical

Report TR07-184, Faculty of Computer Science, UNB, 2007

