
ETS Learning of Kernel Languages

by

John M. Abela

B.Sc. (Mathematics and Computer Science), University of Malta, 1991.

M.Sc. (Computer Science), University of New Brunswick, 1994.

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

in the Faculty of Computer Science

Supervisor: Lev Goldfarb, Ph.D., Faculty of Computer Science, UNB.
Examining Board: Joseph D. Horton, Ph.D., Faculty of Computer Science,

UNB.
Viqar Husain, Ph.D., Faculty of Mathematics and Statis-
tics, UNB.
Maryhelen Stevenson, Ph.D., Faculty of Electrical and
Computer Eng., UNB. (Chairperson)

External Examiner: Professor Vasant Honovar, Artificial Intelligence Labora-
tory, Iowa State University.

This thesis is accepted

——————————————–
Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

November, 2002

c© John M. Abela, 2002.

The woods are lovely, dark, and deep,
But I have promises to keep,

And miles to go before I sleep,
And miles to go before I sleep.

– Robert Frost
Stopping by the woods on a snowy evening

ii

To my wife, Rachel,
to our children, Conrad and Martina,

to our parents,
and, last but not least, to Kaboose.

iii

Abstract

The Evolving Transformations Systems (ETS) model is a new inductive learning

model proposed by Goldfarb in 1990. The development of the ETS model was mo-

tivated by need for the unification of the two competing approaches that model

learning – numeric (vector space) and symbolic. This model provides a new method

for describing classes (or concepts) and also a framework for learning classes from

a finite number of positive and negative training examples. In the ETS model, a

class is described in terms of a finite set of weighted transformations (or operations)

that act on members of the class. This thesis investigates the ETS learning of kernel

languages. Kernel languages, first proposed by Goldfarb in 1992, are a subclass of

the regular languages. A kernel language is specified by a finite number of weighted

transformations (string rewrite rules) and a finite number of string called the ker-

nels. One of the aims of this thesis is to show the usefulness and versatility of using

distance, induced by the transformations, for both the class description of formal lan-

guages and also for directing the learning process. To this end, the author adopted

a pragmatic approach and designed and implemented a new ETS learning algorithm

- Valletta. Valletta learns multiple-kernel languages, with both random and mis-

classification noise, and has a user-defined inductive bias. This allows the user to

indicate which ETS hypotheses (descriptions) are preferred over others. Valletta al-

ways finds an ETS language description that is consistent with the training examples

- if one exists. Since ETS is a new model, few tools were available. A number of new

tools were therefore purposely developed for this thesis. These include a string-edit

distance function, Evolutionary Distance, a technique for reducing strings to their

normal forms modulo a non-confluent string rewriting system, new refined formal

iv

definitions of transformations system (TS) descriptions of formal languages, and a

distance-driven search technique for Valletta’s search engine. The usefulness of Val-

letta is demonstrated on a number of examples of learning kernel languages. Valletta

performed very well on all the datasets and always converged to the correct class

description in a reasonable time. This thesis also argues that the choice of represen-

tation (i.e. the encoding of the domain of discourse) and the choice of the inductive

preference bias of a learning algorithm are, in general, crucial choices. ETS is not a

learning algorithm but, rather, a learning model. In the ETS model, the represen-

tation (or encoding) of the domain of discourse and the preference inductive bias of

an ETS learning algorithm are not fixed. The user chooses the representation and

the inductive preference bias, consistent with the ETS model, that he or she deems

appropriate for the learning task at hand. On the other hand, learning algorithms

such as backpropagation neural networks fix the representation (vectors) and have

a fixed inductive preference bias that cannot be changed by the user. This helps to

explain why such neural networks perform badly on some learning problems.

v

Acknowledgements

I do not know where to start! Lev Golfarb, friend, mentor, and my Ph.D. supervisor

comes first. I must thank Lev deeply for his patience, support, advice, and above

all, inspiration over the years. His unwavering faith in the ETS Model inspired and

encouraged me throughout. Next come my wife, Rachel, and our children Conrad

and Martina. They all had to make many personal sacrifices while I away from home

on my frequent, and often lengthy, visits to New Brunswick. I distinctly remember

the occasions I would be freezing on a cold November day in Fredericton while they

were still having barbecues on the beach back home in Malta. When Conrad was

younger he would often come to me while I was pounding away at the keyboard and

say ”Dada, could you please draw a chou-chou train with three coaches and with an

elephant in the wagon at the back - please - so I can colour it?”. Mixing science

and family was not always easy. I must thank my mother May, for putting up with

my endless complaining - especially at the end, all of my brothers and sisters, and

Rachel’s parents, Teddy and Louise, for taking the kids away at the weekends so

I could finish my work. Very special thanks also go to Prof. Joseph Horton for

advice, encouragement, and inspiration. Prof. Horton is also the chairman of my

Ph.D. committee. I would also like to thank Prof. Dana W. Wasson who is also on

my Ph.D. committee, Dr. Bernie Kurz, the graduate-studies advisor, the Dean of

Computer Science, Prof. Jane Fritz, and also all the staff at the Faculty Office. I

thank my friend Alex Mifsud for advice and useful discussion. Finally, last but not

least, I wish to thank my friends and fellow graduate colleagues Dmitry Korkin and

Oleg Golubitsky for endless hours of discussion and much useful advice.

vi

Contents

Abstract iv

Acknowledgements vi

List of Figures xiv

List of Tables xv

Preliminary Notation 1

1 Introduction 2

1.1 Background . 2

1.2 The ETS Inductive Learning Model 5

1.2.1 Some Preliminary Definitions 10

1.2.2 Transformations Systems . 11

1.2.3 Evolving Transformations Systems 12

1.2.4 Class Description in the ETS Model 13

1.2.5 Inductive Learning with ETS 15

1.3 Research Objectives . 17

1.4 Thesis Organization . 21

Part I - Setting The Scene 23

2 Preliminaries 24

2.1 Relations, Partial Orders, and Lattices 25

vii

2.2 Strings, Formal Languages, and Automata 29

2.3 Reduction Systems . 35

2.4 String-Rewriting Systems . 40

2.4.1 Definitions and Notation . 40

2.4.2 Length-Reducing String-Rewriting Systems 44

2.4.3 Congruential Languages . 45

2.5 Pattern Recognition . 47

2.6 Overview of Computational Learning Theory (CoLT) 49

2.6.1 What is learning after all? . 50

2.6.2 Gold’s results . 53

2.6.3 The Inductive Learning Hypothesis 55

2.6.4 Probably Approximately Correct Learning 56

2.6.5 The PAC Learning Model . 57

2.6.6 Inductive Bias . 59

2.6.7 Occam’s Razor . 61

2.6.8 Other Biases . 61

2.7 Grammatical Inference . 62

2.7.1 The Grammatical Inference Problem 62

2.7.2 Some GI Techniques . 66

2.8 String Edit Distances . 70

2.8.1 Notes and Additional Notation 78

3 Kernel Languages 81

3.1 TS Class Descriptions for Formal Languages 82

3.1.1 String Transformations Systems 83

3.1.2 String TS Class Descriptions of Formal Languages 86

3.1.3 Examples of String TS Class Descriptions 88

3.1.4 The Role of the Attractors in TS Class Descriptions 98

3.1.5 The Role of the Distance Function 100

3.1.6 Comparison with Other Forms of Description 103

3.1.7 Summary . 106

viii

3.2 Kernel Languages . 107

3.2.1 Preliminary Definitions . 109

3.2.2 Kernel Languages . 115

3.3 Evolutionary Distance (EvD) . 120

3.3.1 TS Descriptions for Kernel Languages 125

3.3.2 Some Properties and Applications of Kernel Languages 126

4 The GSN Learning Algorithm 128

4.1 Background . 128

4.2 Overview of the GSN Algorithm . 130

4.3 Results Obtained by the GSN Algorithm 139

4.4 Problems with the GSN Algorithm 141

Part II - Valletta: A Variable-Bias ETS Learning Algorithm 148

5 The Valletta ETS Algorithm 149

5.1 Overview . 150

5.1.1 How Valletta differs from the GSN Algorithm 152

5.1.2 How Valletta Works — An Example 155

5.1.3 Kernel Selection . 168

5.1.4 How Valletta Works — In Pictures 171

5.2 Valletta in Detail . 176

5.2.1 The Pre-processing Stage . 176

5.2.2 An Algorithm for Global Augmented Suffix Trie Construction 183

5.2.3 The Search Lattice . 186

5.3 How Valletta Learns . 188

5.4 Computing the f function . 196

5.5 Reducing C+ and C− to their Normal Forms 208

5.5.1 Feature Repair . 216

5.6 Summary and Discussion . 217

ix

6 Valletta Analysis 219

6.1 Time Complexity of the Preprocessing Stage 219

6.2 Time Complexity of String Reduction 221

6.3 Time Complexity of Computing f . 223

6.4 Convergence . 225

7 Experimentation, Testing, and Results 228

7.1 Valletta’s Testing Regimen . 229

7.2 The Darwin Search Engine . 236

7.3 Testing with the GSN DataSets . 241

7.4 Learning in the Presence of Noise . 243

7.5 The Monk’s Problems . 246

7.5.1 A Discussion of the Results 254

7.6 Comparison with the Price EDSM Algorithm 256

7.7 Representation and Bias . 262

7.7.1 What is Representation? . 263

7.7.2 Is Representation Important? 266

7.8 Analysis of the Results . 273

8 Conclusions and Future Research 285

8.1 Conclusions . 285

8.2 Contributions of this Thesis . 288

8.3 Future Research . 292

8.3.1 Extensions to Valletta . 292

8.3.2 A Distance Function for Recursive Features 295

8.3.3 ETS Learning of Other Regular Languages 296

8.3.4 Open Questions . 297

8.4 Closing Remarks . 298

Bibliography 299

A Using Valletta 310

x

B Valletta’s Inductive Bias Parameters 314

C Training Sets used to test Valletta 317

D GI Benchmarks 323

E GI Competitions 325

E.1 The Abbadingo One Learning Competition 325

E.2 The Gowachin DFA Learning Competition 326

F Internet Resources 327

F.1 Grammatical Inference Homepage . 327

F.2 The pseudocode LATEX environment 327

G The Number of Normal Forms of a String 329

H Kernel Selection is NP-Hard 332

H.1 The Kernel Selection Problem . 332

H.2 Transformation from MVC . 333

I Trace of GLD Computation 335

Vita

xi

List of Figures

1.1 Class description in the ETS model. 7

1.2 Learning in the ETS model. 9

1.3 The correct metric structure for the language anbn. 14

1.4 Optimization of the f function. 16

2.1 The Hässe diagram for the lattice P 28

2.2 A DFA that accepts the language ab∗a. 34

2.3 Properties of reduction systems. 39

2.4 The error of the hypothesis h with respect to the concept c and the

distribution D. 57

2.5 The Prefix Tree Acceptor for the strings bb, ba, and aa. 67

2.6 Learning DFAs through state merging 68

2.7 String distance computation using GLD. 77

3.1 The pre-metric space embedding of the language a∗b. 89

3.2 Closest Ancestor Distance between the strings abbab and acbca. . . . 122

3.3 Distances between the normal forms of 0, 110, and0010010. 123

3.4 Why EvD satisfies the triangle inequality. 124

4.1 The pre-metric space embedding of the language anbn. 132

4.2 The f1 and f2 functions. 134

4.3 Basic architecture of the GSN algorithm. 136

4.4 Adding a new dimension to the simplex. 137

4.5 Line graphs of the GSN results. 140

xii

4.6 Why we need to find the kernel k. 147

5.1 High-level flowchart of Valletta showing the main loops. 157

5.2 The GAST built from the strings: abccab, cabc, and cababc. 159

5.3 The search lattice for the strings: abccab, cabc, and cababc. 162

5.4 The search tree built by ETSSearch. 163

5.5 The parse graphs for the strings: abccab, cabc, and cababc. 167

5.6 Valletta’s kernel selection procedure. 169

5.7 Normal Form Distance (NLD). 170

5.8 How Valletta Works — The Pre-Processing Stage 171

5.9 How Valletta Works — The Learning Stage 172

5.10 How Valletta Works — Computing f2 and f3. 173

5.11 How Valletta Works — Computing f1. 174

5.12 How Valletta Works — String Reduction 175

5.13 The suffix tree for the string 010101. 178

5.14 The suffix trie for the string 010101. 180

5.15 The GAST for the strings: 010101, 00101, and 11101. 182

5.16 The record structure of each GAST node. 184

5.17 The partially completed GAST for the string aab. 185

5.18 The search lattice built from the strings in RC+ 187

5.19 The completed search tree for the set RC+ = {a, b, c, d}. 189

5.20 How Valletta expands the search. 195

5.21 Computing the distance between the normal forms. 198

5.22 Promoting the kernels used in f3 computation. 199

5.23 A depiction of how the Sα and Sβ functions work. 205

5.24 A depiction of the kernel selection process. 206

5.25 Computing the new f1 function. 207

5.26 The Edit-Graphs for the strings 1110100 and 00010101. 208

5.27 A parse of the string 000101110100 using non-confluent features. . . 210

5.28 The parse graph structure showing the cross-over nodes. 212

5.29 Removal of redundant nodes in parse graph reduction. 213

xiii

5.30 Removal of redundant edges in parse graph reduction. 213

5.31 How feature repair works. 216

6.1 The search tree created from the strings {a, b, ab, ca, bc, cab}. 226

7.1 Screen dump of Valletta when learning of A1101 was completed. . . . 233

7.2 The search tree created by Valletta for the a302 dataset. 234

7.3 High-level flowchart of the Darwin genetic algorithm search engine. . 237

7.4 Comparing the running times of the Valletta and GSN algorithms. . . 242

7.5 The new method for computing f1 used for Valletta. 245

7.6 Some robots of the Monk’s Problems. 246

7.7 The Alphabet used to encode the Monk datasets. 249

7.8 The alphabet used by MDINA. 252

7.9 The DFAs produced by the EDSM algorithm for different 0{1}∗ datasets.257

7.10 The DFA produced by the EDSM algorithm for the bin01 dataset. . . 259

7.11 The DFA produced by the EDSM algorithm for the kernel01 dataset. 260

7.12 Enumerating the search space. 271

7.13 Breakdown of running time by procedure for the a701 dataset. 273

7.14 Breakdown of running time by procedure for a702 dataset. 274

7.15 Breakdown of running time by procedure for a703 dataset. 274

7.16 The search tree created by Valletta for the a302 dataset. 276

7.17 The behaviour of the f , f1, and f2 functions for the a703 dataset. . . 278

8.1 A TCP/IP Farm for parallelizing Valletta. 295

8.2 A DFA for the regular language ab∗a. 296

A.1 The screen dump of Valletta during the learning process. 311

G.1 The reduction of the string ababababa modulo the feature set {aba, bab}.330

H.1 How to transform Minimum Vertex Cover to Kernel Selection. 334

xiv

List of Tables

2.1 The order relation for the lattice P . 28

2.2 String Edit Distance between the strings abcb and acbc. 71

2.3 Empty Distance Matrix for the strings acbcb and abca. 73

2.4 Completed Distance Matrix for the strings acbcb and abca. 74

4.1 A training set for the language anbn. 131

4.2 The transformations discovered by the ETS learning algorithm. . . . 131

4.3 The main steps of the GSN ETS learning algorithm. 138

4.4 The training examples used to test the GSN learning algorithm. . . . 139

5.1 The training set for the language K1 158

5.2 The Repeated Substrings array for the strings: abccab, cabc, and cababc.160

5.3 The set RC+ created from the strings: 010101, 00101, and 11101. . . 186

5.4 The normals forms of each independent segment. 211

7.1 Results obtained from testing Valletta. 232

7.2 A comparison of the results obtained for Valletta and Darwin. 240

7.3 The GSN datasets used for Valletta/GSN comparison. 241

7.4 The published results for the Monk’s Problems. 248

7.5 The kernels discovered by the Mdina algorithm. 253

7.6 The kernel01 training set. 261

7.7 Some strings from anbn and their Gödel Numbers. 265

7.8 A trace of the f , f1, and f2 functions for the a703 dataset. 277

I.1 Distance matrix after GLD computation of aba and abbba. 342

xv

Preliminary Notation

The following notational conventions will be used throughout this thesis.

R denotes the set of real numbers.

N denotes the set of non-negative integers. N
+ denotes the positive integers.

In the case when upper-case Roman or Greek letters are used:

• A ⊂ B denotes normal subset inclusion,

• |A| denotes the cardinality of the set A.

In the case when lower-case Roman or Greek letters are used:

• x ⊂ y denotes x is a factor (substring) of y,

• |a| denotes the length of the string a.

Unless explicitly stated otherwise, Σ always denotes a finite alphabet of symbols and

ε always denotes the empty string.

For any given set S, P(S) denotes the power set of S.

∅ denotes the empty set or the empty language over Σ. Which of the two will be

clear from the context.

The terms class and concept are used interchangeably.

1

Chapter 1

Introduction

The aim of this first chapter is to provide the motivation and background behind

the research undertaken for this thesis. This chapter also contains a brief overview

of Lev Goldfarb’s ETS inductive learning model, a listing of the primary research

objectives, and a discussion of the organization of the thesis.

1.1 Background

Evolving Transformations System (ETS) is a new inductive learning model proposed

by Goldfarb [41]. The main objective behind the development of the ETS induc-

tive learning model was the unification of the two major directions being pursued

in Artificial Intelligence (AI), i.e. the numeric (or vector-space) and symbolic ap-

proaches. In Pattern Recognition (PR), analogously, the two main areas are the

decision-theoretic and syntactic/structural approaches [16]. The debate on which of

the two is the best approach to model intelligence has been going on for decades -

in fact, it has been called the ‘Central Debate’ in AI [113]. In the very early years

of AI, McCulloch and Pitts proposed simple neural models that manifested adaptive

behaviour. Not much later, Newell and Simon proposed the physical symbol systems

2

paradigm as a framework for developing intelligent agents. These two approaches

more-or-less competed until Minsky and Papert published their now famous critique

of the perceptron, exposing its limitations. This shifted attention, and perhaps more

importantly funding, towards the symbolic approach until the 1980s when the dis-

covery of the Error Back Propagation algorithm and the work of Rumelhart et al

reignited interest in the connectionist approach. Today, the debate rages on with

researchers in both camps sometimes showing an almost childish reluctance to ap-

preciate, and more importantly address, the other side’s arguments and concerns.

This long standing division between these two approaches is more than just about

technique or competition for funding. The two sides differ fundamentally in how to

think about problem solving, understanding, and the design of learning algorithms.

Goldfarb, amongst others, has long advocated the unification of the two com-

peting ‘models’ [40, 41, 42, 45, 47, 49]. Goldfarb is not alone in his conviction that

the single most pressing issue confronting cognitive science and AI is the develop-

ment of a unified inductive learning model. Herman von Helmholtz [133], and John

von Neumann [134] both insisted on the need for a unified learning model. In the

Hixon Symposium in 1948, von Neumann spoke about the need for a ‘new theory of

information’ that would unite the two basic but fundamentally different paradigms

— continuous and discrete. In the very early 1990’s Goldfarb introduced his Evolv-

ing Transformations Systems (ETS) inductive learning model. In the ETS model,

geometry (actually distance) plays a pivotal role. A class in a given domain of dis-

course O is specified by a small non-empty set of prototypical members of the class

and a distance function defined on O. The set of objects that belong to the class

is then defined to be all objects in O that lie within a small distance from one of

the ‘prototypes’ of the class. Objects in the class are therefore close to each other.

The distance function is a measure of dissimilarity between objects and is usually

3

taken to be the minimum cost (weighted) sequence of transformations (productions)

that transforms one object into another. The assignment of a weight, a non-negative

real number, to each transformation is what brings in continuity to the production

system (symbolic) model [41]. Learning in the ETS model reduces to the problem of

finding the set of transformations and the respective weights that yield the optimal

metric structure. At each stage in the learning process, an ETS algorithm discovers,

or rather constructs, new transformations out of the current set until class separation

is achieved — hence the evolving nature of the model.

It must be emphasized that the ETS model in not a learning algorithm but,

rather, a learning formalism. Unlike the connectionist model, it is not tied to just

one particular method, i.e. vectors, of representing the objects in the domain of

discourse. This flexibility is desirable since it allows that practitioner to choose

the representation that gives the best class description. This point is discussed in

Chapter 8. One of the aims of this thesis is to show how and why the ETS model

allows for a much more compact, economical, and more importantly, relevant form

of class description especially in the presence of noise. Also, unlike many learning

algorithms, the ETS model does not assume a particular inductive preference bias

(see Chapter 2). In other words, the ETS model does not fix any preference for one

hypothesis over another. This versatility allows, in theory, for the construction of

ETS learning algorithms for every conceivable domain. Learning algorithms such as

Candidate Elimination, ID3, and even Back-Propagation, all have a built-in inductive

preference bias that cannot be changed by the user. The implication is that some

classes cannot be learned. This is an important, but very often misunderstood or

even ignored, point which is discussed in Chapter 7.

In this thesis the author presents an ETS learning algorithm for kernel languages.

Kernel languages are a subclass of the regular languages introduced by Goldfarb

4

in [49]. The algorithm, which is called Valletta after Malta’s capital city and the

author’s home town, is completely distance-driven, i.e. the distance function directs

the search for the correct class description. It appears that ETS algorithms are

unique in this regard. Valletta is a variable-bias algorithm in the sense that the user

can select an inductive preference bias1 (i.e. a preference for certain hypotheses over

others) before the learning process starts.

1.2 The ETS Inductive Learning Model

This section introduces and discusses the Evolving Transformations Systems (ETS)

inductive learning model. The number of formal definitions and notation have been

kept down to the absolute minimum. This is because the main objective of this sec-

tion is to introduce the main ideas behind the model. In particular, to indicate how

classes (or concepts) can be described using transformations systems and also how

learning is achieved in the model. To this end, only the most important definitions

and notation have been included. The ETS model has undergone significant develop-

ment since its inception. During the preparation of this thesis, the author’s colleagues

in the Machine Learning Group at UNB undertook the formal development of the

ideas contained in this section [54]. This has resulted in changes to the main defi-

nitions and notation. In this thesis, however, we shall be faithful to the definitions

and notation used by Goldfarb in his papers on the ETS Model [44, 45, 46, 47, 48, 49].

One of the main ideas in the ETS model is that the concept of class distance plays

an important, even critical, role in the definition and specification of the class. Given

a domain of discourse O, a class C in this domain can be specified by a non-empty

finite subset of C which we call the set of attractors, and which we denote by A, a

1See Section 2.6.5 for a definition.

5

non-negative real number δ, and by a distance function dC . The set of all objects in

O that belong to C is then defined to be:

{o ∈ O | dC(a, o) < δ, a ∈ A}.

In other words, the class consists precisely of those objects that are a distance of δ or

less from some attractor. We illustrate with a simple example. Suppose we want to

describe (i.e. specify) the class (or concept) Cat. Let O be the set of all animals, A

a finite set of (prototypical) cats, δ a non-negative real number, and dCat a distance

function defined on the set of all animals. Provided that A, δ, and dCat are chosen

appropriately, the set of all cats is then taken to be the set of all animals that are a

distance of δ or less from any of the attractors, i.e. the set of prototypical cats. This

is depicted below in Figure 1.1. In our case, the set A contains just one prototypical

cat although, in general, a class may have many prototypes. All animals that are in

the δ-neighbourhood of this cat are classified as cats.

This idea borrows somewhat from the theory of concepts and categories in psychology

(see Section 2.6 of Chapter 2). The reader is also referred to [102] for a discussion

of Eleanor Rosch’s theory of concept learning known as Exemplar Theory. Objects

are classified together if they are, in some way, similar. In our example, all the

animals that are cats are grouped together since the distance between any cat and

the prototype is less than the threshold δ. In other words, an animal is a cat if it

is similar to the cat prototype. The less distance there is between two animals, the

more similar they are — i.e. distance is a measure of dissimilarity.

Some clarification of the above example is in order. It is not clear how to define

a distance on the set of animals in order to achieve the correct specification of the

class cat. Of course, one does not actually define the distance function on the set

of animals but rather on their representation, i.e. the set of animals is mapped into

6

-

Domain of Discourse - Set of All AnimalsO

�

Figure 1.1: Class description in the ETS model.

some mathematical structure such as strings, trees, graphs, or vectors. The distance

function is then defined on this set. It cannot be over-emphasized that there is a

fundamental distinction between the set O of all animals and its representation, i.e.

the numeric or symbolic encoding of the elements of O. The issue of representation

is an important one. The reader is referred to Chapter 7 for a discussion. If one

were to represent the animals by their genome, i.e. the string containing the DNA

sequence, then it is conceivable that one could develop a string-edit distance function

that would achieve the above. This can only be done, of course, if one assumes that

the set of all strings that are DNA sequences of cats is a computable language. If a

language is computable then it must have a finite description and be described by

means of a grammar, automaton, Turing machine, etc. This is not asking too much.

In machine learning it is always assumed that the class to be learned is computable

— since otherwise it would not have a finite description. To summarize, in the

ETS model a class C in a domain of discourse O is specified by a finite number of

7

prototypical instances of the class, the attractors, and by a distance function dC such

that all the members of the class lie within a distance of δ or less from an attractor,

where δ is fixed for C.

The ETS model, however, is not just about class description, but also about

learning class descriptions of classes from finite samples to obtain an inductive class

description2. To give an overview of how this is done we must first give a working

definition of the learning problem.

Definition 1.1 (The Learning Problem — An Informal Definition).

Let O be a domain of discourse and let C be a (possibly infinite) set of related classes

in O. Let C be a class in C and let C+ be a finite subset of C and C− be a finite

subset of O whose members do not belong to C. We call C+ the positive training

set and C− the negative training set. The learning problem is then to find, using

C+ and C−, a class description for C.

Of course, in practice, this may be impossible since if the number of classes in C

is infinite, then C+ may be a subset of infinitely many classes in C. In other words,

no finite subset, on its own, can characterize an infinite set (see Chapter 2). We

therefore insist only on finding a class description for some class C ′ ∈ C such that C ′

approximates C. This depends, of course, on our having a satisfactory definition of

what it means for a class to approximate another. In essence, learning in the ETS

model reduces to finding a distance function (defined in terms of a set of weighted

transformations) that achieves class separation, i.e. a distance function such that the

distance between objects in C+ is zero or close to zero while the distance between an

object in C+ and an object in C− is greater than zero. An ETS algorithm achieves

this by iteratively modifying a distance function such that the objects in C+ start

moving towards each other while, at the same time, ensuring that the distance from

2Or inductive class representation (ICR).

8

an object in C+ to any object in C− is always greater than some given threshold.

This is depicted in Figure 1.2. The members of C+ are, initially, not close together.

(i)

-
+

+
+

+

+

+

+
+

-

-

-

-

-

-

-+

-
+

+
+

+

+

+

+
+

-

-

-

-

-

-

-+

-
+

-

-

-

-

-

-

-

+ +
+
+

+

Instance space X

Instance space X

Instance space X

(ii)

(iii)

Figure 1.2: Learning in the ETS model.

As the learning process progresses, the members of C+ start moving towards each

other until, finally, all the members of C+ all lie in a δ-neighbourhood.

9

1.2.1 Some Preliminary Definitions

The following definitions of metric space, pre-metric space, and pseudo-metric are

those favoured by Goldfarb and appear in many of his papers. The reader is referred

to [40] for an exposition.

Definition 1.2 (Metric Space).

A metric space is a pair (A, d) where A is a set and d is a non-negative, real-valued

mapping,

d : A× A→ R
+ ∪ {0},

that satisfies the following axioms:

1. ∀a ∈ A, d(a, a) = 0,

2. ∀a1, a2 ∈ A, a1 �= a2, d(a1, a2) > 0,

3. ∀a1, a2 ∈ A, d(a1, a2) = d(a2, a1), and

4. ∀a1, a2, a3 ∈ A, d(a1, a3) ≤ d(a1, a2) + d(a2, a3). �

Definition 1.3 (Pre-metric Space).

A pre-metric space is a pair (A, d) where A is a set and d is a non-negative,

real-valued mapping,

d : A× A→ R
+ ∪ {0},

that satisfies the following axioms:

1. ∀a ∈ A, d(a, a) = 0,

2. ∀a1, a2 ∈ A, d(a1, a2) ≥ 0,

3. ∀a1, a2 ∈ A, d(a1, a2) = d(a2, a1), and

4. ∀a1, a2, a3 ∈ A, d(a1, a3) ≤ d(a1, a2) + d(a2, a3). �

10

Definition 1.4 (Pseudo-metric Space).

A pseudo-metric space is a pair (A, d) where A is a set and d is a non-negative,

real-valued mapping,

d : A× A→ R
+ ∪ {0},

that satisfies the following axioms:

1. ∀a ∈ A, d(a, a) = 0, and

2. ∀a1, a2 ∈ A, d(a1, a2) = d(a2, a1). �

Notes to Definitions. A pre-metric space is therefore identical to a metric space

except that the distance between two distinct elements of A can be zero — i.e. for

some a1, a2 ∈ A, a1 �= a2, d(a1, a2) can be zero. Note, therefore, that the definitions

for metric space and pre-metric space differ only in Axiom 2. A pseudo-metric space,

on the other hand, places much less restrictions on the distance function d. In a

pseudo-metric space, we only require that for any a ∈ A, the distance d(a, a), i.e.

from a to itself, is zero. We also require the so-called symmetry axiom, i.e. for any

pair a1, a2 ∈ A, the distance d(a1, a2) is the same as d(a2, a1). The pseudo-metric,

therefore, does not have to satisfy the triangle inequality and this allows the distance

between two non-identical objects to be zero.

1.2.2 Transformations Systems

Definition 1.5 (Transformation System). (From [49])

A transformations system (TS), T = (O,S,D), is a triple where O is a set

of homogeneously structured objects, S = {Si}mi=1 is a finite set of transformations

(substitution operations) that can transform one object into another, and D is a

competing family of distance functions defined on O.

11

Notes to Definition 1.5. The definition of transformations system is meant to cap-

ture the idea that objects are built (or rather composed) from primitive objects and

that any object can be transformed into any other object by the inserting, deleting,

or substitution of primitive or complex objects. For example, if the set of objects

is the set of strings over some alphabet Σ, the transformations would be string in-

sertion, deletion, and substitution operations, i.e. rewrite rules. We always assume

that the set of transformations is complete, i.e. it allows any object to transformed

into any other object. The set of objects O is any set of structured objects such as

strings, trees, graphs, vectors, etc. The set O is called the domain of discourse and

its members are called structs. The set D is a family of competing distance functions3

defined on O. Each transformation is assigned a weight, usually a non-negative real

number. The distance between two objects a, b ∈ O is typically taken to be the mini-

mum weighted cost over all sequences of transformations that transform a into b. The

distance functions are called competing since one has to find the set of weights that

minimize the pairwise distance of the objects in the class. This point is elaborated

upon in Chapter 3.

1.2.3 Evolving Transformations Systems

Definition 1.6 (Evolving Transformation System). (From [49])

An Evolving Transformations System is a finite or infinite sequence of trans-

formations systems,

Ti = (O,Si, Di), i = 1, 2, 3, . . .

where Si−1 ⊂ Si.

Notes to Definition 1.6. An ETS is therefore a finite or infinite sequence of TS’s

with a common set of structured objects. Each set of transformations Si, except S0

3Not necessarily metrics.

12

is obtained from Si−1 by adding to Si−1 one or several new transformations. The set

of transformations Si, therefore, evolves through time.

We now proceed to see how transformations systems can be used to:

1. describe classes in O, even in the presence of noise, and

2. learn the classes in O from some training examples.

1.2.4 Class Description in the ETS Model

In the ETS model, a class C in a domain of discourse O is specified by a finite subset,

A, of prototypical members of the class and by a distance function dC . This distance

function is that associated (or rather, induced) by a set of weighted transformations.

The set A is called the set of attractors. The set of objects belonging to C is then

defined to be

{o ∈ O | dC(a, o) < δ, a ∈ A}.

Using distance to specify and define the class gives us enormous flexibility. We

illustrate with a simple example. Suppose the domain of discourse is the set, Σ∗,

of all strings over the alphabet Σ = {a, b}. In this case the transformations are

rewriting rules, i.e. insertion, deletion, and substitution string operations. Consider,

as an example, the following set of transformations and its weight vector:

Transformation Weight

a↔ ε 0.5

b↔ ε 0.5

aabb↔ ab 0.0

The transformation a ↔ ε denotes the insertion/deletion of the character a while

aabb ↔ ab denotes the substitution (in both directions) of the string aabb by the

string ab. The reader should note that the first two transformations are assigned a

13

non-zero weight while the last transformation is assigned a zero weight. Also, the set

of transformations is complete, i.e. any string in Σ∗ can be transformed into any other

string in Σ∗. Now suppose we wanted to describe the context-free language L = anbn.

We can accomplish this by letting the set of attractors be equal to {ab}, i.e. the set

containing just one attractor — the string ab. We then define the distance function

dL to be the minimum cost over all sequences of transformations that transform

one string into another. The cost of a sequence is the sum of the weights of the

transformations in the sequence. For example, to transform the string aaabb into the

string ab one can first delete an a using the transformation a ↔ ε and then replace

aabb by ab using the transformation aabb ↔ ab. Note that the cost of this sequence

is 0.5. The attractor ab and distance function d completely specify the language (or

class) anbn. Any string in the language can be transformed into any other string in

Instance Space �*

aaabb abaabbb

bababb

aaba

aba

a b
n n

baab baabab

abbb

aabbb
0.5

1.0

Figure 1.3: The correct metric structure for the language anbn.

the same language using only the zero-weighted transformation aabb ↔ ab. All the

strings in the language, therefore, have a pair-wise distance of zero. A string in the

language and another string not in the language will have a pair-wise distance greater

than zero. For example, as shown above, the distance from the string aaabb, which

is not in the language, to the string ab, which belongs to the language, is 0.5. We

14

say that the distance function dL gives the correct metric structure4 for the language

(class) L. This is depicted in Figure 1.3.

Is it easy to see that the distance function dL gives us a measure of how ‘noisy’ a

string is. The more ‘noise’, i.e. spurious characters, the string has, the further away

it is from a string in L. As we shall see in Chapter 3, this method of class description

gives us a very natural and elegant way for handling noisy languages and it is well

known that noise occurs very often in real-world Pattern Recognition (PR) problems

[16].

1.2.5 Inductive Learning with ETS

Learning in the ETS Model reduces to searching for the distance function that yields

the correct metric structure. Now since the distance function is itself defined in

terms of a set of transformations together with its weight vector, learning, in essence,

involves searching for the correct set of transformations and then finding the optimal

set of weights. As with all learning problems, one is given a finite set C+ of objects

that belong to some unknown class C and a finite set C− of objects that do not

belong to C. The task is then to take these training examples and infer a description

of a class C ′ such that approximates C (see Chapter 2). An ETS algorithm discovers

the correct metric structure by optimizing the following function:

f =
f1

c + f2

, (1.1)

where f1 is the minimum distance (over all pairs) between C+ and C−, f2 is the

average pair-wise intra-set distance in C+, and c is a small positive real constant

to avoid divide-by-zero errors. The aim here is to find the distance function such

that the distance between any two objects in C+ is zero or close to zero while the

distance between an object in C+ and an object in C− is appropriately greater

4In general, dL may be a metric, pre-metric, or a pseudo-metric.

15

than zero. We therefore try to maximize f1 and, more importantly, to minimize

f2. When the value of f exceeds a pre-set threshold t we say that we have achieved

class separation and, hence, the correct metric structure. During learning, an ETS

algorithm uses the value of f to direct the search for the correct set of transformations,

i.e. the set that describes the class C. Figure 1.4, below, shows a depiction of the

optimization of the f function. An ETS learning algorithm iteratively builds new

+
-

Instance space X

+

-

+
-+

-
+ -

+
-

+

-

+

-

Average interdistance
in C+

Minimum distance
between C+ and C-

f1

f2

- C-

C+

Figure 1.4: Optimization of the f function.

transformations systems until it discovers the set of transformations and the weight

vector that give class separation. The ETS algorithm, therefore, creates an evolving

transformations system (ETS) — a sequence of transformations systems (TS’s). Each

TS in the sequence is built from the TS preceding it through the addition of new

transformations until, finally, a TS is found that gives the correct metric structure.

The reader is referred to [49, 92] for an exposition and also to Chapter 4 in which

the GSN ETS learning algorithm is discussed.

16

1.3 Research Objectives

In the early 1990’s, two Master’s students at UNB who where working closely with

Lev Goldfarb, implemented the first ETS inductive learning algorithm. In his Mas-

ter’s thesis Santoso [107] described a basic algorithm for ETS inductive learning and

introduced a new string-edit distance function, Generalized Levensthein Distance, or

GLD, that was used to describe a subclass of regular languages called kernel lan-

guages. Nigam [92], together with Lev Goldfarb, then developed and implemented

the first grammatical inference5 (GI) algorithm that uses ETS principles. This algo-

rithm, hereafter referred to as the GSN algorithm, was the first implementation ever

of the ideas of Lev Goldfarb. The GSN algorithm was the first algorithm to describe

classes in terms of a distance function and to use distance to direct the search for

the correct class description. The domain chosen by Nigam and Goldfarb to develop

and test the algorithm was kernel languages. A kernel language consists of all those

strings over some given alphabet Σ that can be obtained by inserting, anywhere, in

any order, and any number of times, any string from a finite set of strings called the

features into a non-empty string called the kernel. The only restriction being that no

feature can be a substring of any other feature or of the kernel. This domain was an

example of a structurally unbounded environment (see Chapter 4). The concept of

a structurally unbounded environment was proposed by Goldfarb to describe those

environments that cannot be hard-coded into a learning algorithm. This prevents

‘cheating’ by the learning algorithm. The GSN algorithm did very well and, prima

facie, the results seeming nothing less than spectacular. The algorithm learned all of

the training classes from very small training sets even in the presence of noise. The

author felt that the results obtained from the GSN algorithm most definitely war-

ranted further investigation. To this end the author undertook to conduct further

5see Section 2.7 in Chpater 2 for a definition.

17

development of the GSN algorithm in order to answer the following questions:

1. Is the GLD distance function suitable for the class description of kernel lan-

guages?

2. Could the GSN algorithm learn in the presence of more noise?

3. What is the time and space complexity of the GSN algorithm?

4. What is the inductive preference bias of the GSN algorithm?

5. Can the GSN algorithm be modified to learn multiple-kernel languages?

The answers to the above questions can be found in Chapter 4. Nigam did not

analyse the time and space complexity of his algorithm. This is because his main

thesis objective was to present a ‘proof of concept’, i.e. to demonstrate the viability

of implementing an ETS grammatical inference algorithm. One problem with the

GSN algorithm is that, although still polynomial, computation of the f function is

still very compute intensive. This is because computing the f function requires a

total number of distance computations that is quadratic in the cardinality of the

training set and where each distance computation is itself quadratic in the length

of the two strings. This means that as the size of the training set is increased and

the strings get longer, the time required for computing f increases considerably. A

number of problems were also identified with the GLD distance function itself and

also with the learning strategy used by the GSN algorithm. A discussion can be

found in Chapter 4. Although the GSN algorithm had some problems it was still

felt that it merited further development and investigation. Many researchers in the

grammatical inference community, including Miclet [86], have advocated the devel-

opment of different approaches to the GI problem. The GSN algorithm employs a

fundamentally new learning model, ETS, and in general, was very promising. It did

18

not seem to have any problems which could not conceivably be overcome. The GSN

algorithm was therefore the starting point of the research undertaken for this thesis.

The initial aims of the research undertaken for this thesis were: to continue further

development of the GSN algorithm, to address the problems that were identified,

and also to extend the algorithm so it would learn larger concept classes6 with more

noise. The primary research objective can be stated as:

To investigate the role of distance for the purpose of the class description

and the ETS inductive learning of kernel languages.

We decided, after much deliberation, to restrict the learning domain, i.e. the class

of languages learnt by the algorithm, to kernel languages. This class of languages is

a structurally unbounded environment and, it turns out, has practical applications.

It was also decided that our new ETS learning algorithm would consider multiple-

kernel languages, with more noise, with larger training sets and longer strings, and

with much less restrictions on the positive training strings. For reasons that are dis-

cussed later on in this thesis, learning multiple-kernel languages is much harder than

the case when the language has only one kernel. All practical applications of kernel

languages that we came across were, as a matter of fact, multiple-kernel. The prob-

lems identified with the GLD distance function used by the GSN algorithm meant

also that a new string-edit distance algorithm that allowed the correct description

of kernel languages had to be developed. To this end we had to refine and continue

development of the definitions and the theory of TS descriptions of formal languages

and then to develop TS descriptions of kernel languages with particular attention

given to the case when the language is noisy. The GSN algorithm has a fixed prefer-

6A set of related classes.

19

ence inductive bias (see Chapter 2) and this means that some perfectly valid kernel

languages cannot be learnt. We decided very early on that the new algorithm would

have variable inductive bias. This would allow the user to change the inductive bias

according to the application. It eventually became clear that, rather than modifying

the GSN algorithm, a new algorithm would have to be developed. The new algo-

rithm was called Valletta. Valletta is loosely based on the GSN algorithm but uses a

completely new distance function, a new method for computing the f function, a new

pre-processing stage, and a new search strategy that allows for a variable inductive

bias. It must be stressed that Valletta is a means to an end. The main objective of

this thesis was not to produce an artifact but rather to investigate the role of distance

in the class description and learning of kernel languages. The main aim of Valletta

is to investigate the feasibility of using distance to direct the learning process itself

and to identify the issues and problems involved in such a task. We, of course, gave

due attention and importance to the time and space complexity of Valletta.

To summarize, in order to achieve the main research objective we had to consider

the following secondary objectives:

1. Refine the definitions of TS descriptions of formal languages.

2. Define formally the class of kernel languages and study their properties. Also,

to try and find practical applications of kernel languages.

3. Generalized Levensthein Distance (GLD) had a number of properties that made

it unsuitable for describing kernel languages. The new algorithm therefore re-

quired a new string edit distance function, and an efficient algorithm to imple-

ment it, that would address the problems with GLD.

4. Develop a new learning strategy that could learn multiple-kernel languages.

20

5. Show that the new algorithm always finds a TS description consistent with the

training examples (if one exists).

6. Comparison with other methods.

1.4 Thesis Organization

This thesis is divided into two parts.

Part I — Setting the Scene

As its name suggests, Part I contains background material and also the theory de-

veloped for the Valletta algorithm described in Part II. Chapter 2, Preliminaries,

contains the background material necessary for understanding the remainder of the

thesis. Chapter 2 includes only material which was deemed absolutely necessary for

understanding this thesis. Chapter 3, Kernel Languages, introduces and discusses

a subclass of the regular languages first proposed by Lev Goldfarb. In this chapter

Goldfarb’s original definitions are expanded and refines and also includes a discussion

of some of the interesting properties of this class of languages. Updated definitions

for Transformations System (TS) descriptions for formal languages can also be found

in Chapter 3. In Chapter 4, The GSN Algorithm, we discuss the Goldfarb, Santoso,

and Nigam ETS inductive learning algorithm and list its main problems. The GSN

algorithm was the starting point of the research undertaken for this thesis.

Part II — Valletta: A Variable-Bias ETS Learning Algorithm

Part II of this thesis presents the Valletta ETS inductive learning algorithm for kernel

languages. Chapter 5, The Valletta ETS Algorithm, starts off with a listing of the de-

sign objectives for Valletta and then proceeds to a detailed discussion of how Valletta

21

works. The various data structures and techniques developed for Valletta, including

the new string edit distance function used by the algorithm, are also discussed in

this chapter. Chapter 6, Valletta Analysis, contains an analysis of Valletta’s time

and space complexity. In this chapter we shall also see that Valletta will always find

a TS description consistent with a valid, i.e. structurally complete, training set. In

Chapter 7, Valletta Results, we discuss the results obtained from the testing regimen

that was designed for Valletta and also compare Valletta’s performance with that of

other grammatical inference algorithms. In Chapter 8, Conclusions, the author draws

some conclusions from his experience in developing and implementing the Valletta

algorithm and also discusses the results obtained. In this chapter we also discuss

if and how the research objectives were met. Chapter 8 also contains a number of

recommendations for future research, including improvements and enhancements to

Valletta, as well a discussion of some related open questions.

The reader is advised to read Chapter 2 before any of the other chapters. This

chapter contains important background material and will save the reader the effort

of consulting the various references for this material. Some of the material and

notation in Chapter 2 is new and, indeed, probably unique to this thesis. Chapter 3,

in which we formally introduce and discuss transformations system (TS) descriptions

for formal languages and kernel languages, as well as Chapter 4, where we discuss

GSN ETS inductive learning algorithm, can be skipped at first reading. The reader

who wants to get a quick, general overview of the ideas and results contained in this

thesis should first read Chapters 1 and 5 and then proceed to Chapters 7 and 8.

22

Part I

Setting The Scene

Computer Science is no more about computers

than astronomy is about telescopes.

E. W. Dijkstra

23

Chapter 2

Preliminaries

The aim of this chapter is to present the basic ideas, notions, definitions, and no-

tation that are necessary for understanding the material in this thesis. Most of the

material can be found in standard undergraduate textbooks but some of the defini-

tions and notation are unique to this thesis. In particular, the reader is advised to

read Sections 2.2 (Strings, Languages, and Automata), 2.3 (Reduction Systems), 2.4

(String Rewriting Systems), and 2.8 (String Edit Distances) since these contain ideas,

definitions, and notation that are either non-standard or developed purposely for this

thesis. Section 2.6 contains a brief synoptic survey of the principal concepts, results,

and problems in Computational Learning Theory (CoLT) and Section 2.7 presents

the main ideas in Grammatical Inference (GI) theory. The reader may choose to

skip either section if he or she is familiar with the topic. It was envisaged that the

reader may have to refer to this chapter regularly when reading the rest of this thesis

and therefore, apart from providing numerous references, the author adopted a di-

rect style — listing the main ideas and definitions and, as much as possible, avoiding

surplus detail.

24

2.1 Relations, Partial Orders, and Lattices

The intuitive notion of a relationship between two elements of a set is succinctly

captured by the mathematical notion of a binary relation. This section contains the

main definitions relevant to this thesis. The reader is referred to the excellent book

by Davey and Priestley [23] where most of the definitions come from. For all of the

definitions in this section, P always denotes an arbitrary (finite or infinite) set.

Definition 2.1. A binary relation, denoted by →, is any subset of the Cartesian

product P × P . For any binary relation →⊂ P × P :

domain(→)
def
= { a | ∃b, (a, b) ∈→}, and

range(→)
def
= { b | ∃a, (a, b) ∈→}.

�

Although most authors prefer to use the notation a ∼ b to denote ‘a is related to

b’, the alternative notation a→ b is used in this thesis. This is to emphasize that ‘a

is related to b’ does not necessarily imply that ‘b is related to a’ and also because this

is the standard notation used in the study of reduction systems and string-rewriting

systems.

Definition 2.2. The inverse relation to →, denoted by →−1, is defined in the

following manner: →−1 def
= { (b, a) | (a, b) ∈→}. �

For reasons of clarity the symbol← will henceforth be used to denote the inverse

of the relation →. This is because most of the relations considered in this thesis are

those in string-rewriting systems where, for any two strings a and b, a → b means

‘a is related to b if b can be obtained from a by replacing a substring x in a with the

string y ’. Arrows, therefore, are useful because they indicate the direction of the

replacement and eliminate (or perhaps reduce) confusion.

25

Definition 2.3. A relation → is a partial order if → is reflexive, anti-symmetric,

and transitive. If → is a partial order on P then P is a partially ordered set or

poset. �

Definition 2.4. Any two elements x, y ∈ P are called comparable (under →) if

either x → y or y ← x or x = y. �

Definition 2.5. If → is a partial order on P, then → is called a total order if any

two elements in P are comparable. In this case P is called a linearly ordered set

or a totally ordered set. �

Definition 2.6. Let → be a partial order on P. In this thesis a chain is a finite

sequence of elements of P, p0, p1, p2, ..., pn, such that pi → pi+1 for 0 ≤ i < n. �

Definition 2.7. Let → be a partial order on P and let x, y ∈ P . We say that y is

covered by x (or x covers y), and write x � y or y � x, if x → y and x → z

→ y implies x = z. We call � the covering relation on →. If ∃ z ∈ P such that

x→ z → y then we write x� y and say x does not cover y. �

For example, in the totally ordered set (N,≤), where N is the set of natural numbers,

m� n if and only if n = m + 1. In the case of (R, <), where R is the set of reals,

there are no pairs x, y such that x� y. Note that we insist that the covering relation

is irreflexive.

Definition 2.8. Let → be a partial order on P and let Q ⊆ P . Q is called a down-

set (or alternatively a decreasing set or order ideal) if whenever x ∈ P and

y ∈ Q and y → x then x ∈ Q. An up-set (or alternatively an increasing set or

order filter) is defined analogously. �

Definition 2.9. Let P be a partially ordered set and let Q ⊆ P . Then

(a) a ∈ Q is a maximal element of Q if a→ x, x ∈ Q implies a = x;

26

(b) a ∈ Q is the greatest (or maximum) element of Q if a→ x ∀x ∈ Q, and in

that case we write a = max(Q). �

A minimal element of Q, the least (or minimum) element of Q and min(Q) are

defined dually. One should note that Q has a greatest element only if it has precisely

one maximal element, and that the greatest element of Q, if it exists, is unique (by

the anti-symmetry of →).

Definition 2.10. Let P be a partially ordered set. The greatest element of P, if

it exists, is called the top element of P and is denoted by � (pronounced ’top’).

Similarly, the least element of P, if it exists, is called the bottom element and is

denoted by ⊥. �

Definition 2.11. Let P be a partially ordered set and let S ⊆ P . An element x ∈ P

is called an upper bound of S if x→ s∀s ∈ S. A lower bound is defined similarly.

We denote the set of all upper bounds of S by Su and the set of all lower bounds of

S by Sl.

One should note that, since → is transitive, then Su and Sl are always an up-set

and a down-set respectively. If Su has a least element, x, then x is called the least

upper bound (or the supremum) of S. Similarly, if Sl has a largest element, x,

then x is called the greatest lower bound (or infimum) of S. �

Recall from above that, when they exist, the top and bottom elements of P are

denoted by � and ⊥ respectively. Clearly, if P has a top element, then P u = {�}

and therefore sup(P) = �. Likewise inf(P) = ⊥ whenever P has a bottom element.

Notation. In this thesis the following notation will be used: x ∨ y (read as ‘x join

y’ in place of sup(x, y) and x∧y (read as ‘x meet y’) in place of inf(x, y). Similarly,∨
S and

∧
S are used to denote sup(S) and inf(S) respectively.

27

Definition 2.12. Let P be a non-empty partially ordered set. Then P is called a

lattice if x ∨ y and x ∧ y exist. If
∨

S and
∧

S exist ∀S ⊆ P , then P is called

a complete lattice. If P has maximal and minimal members then it follows from

the definition of infimum and supremum that these must be unique. Such a lattice is

called a bounded lattice. �

Example 2.1. Let P = {a, b, c, d, e, f} and let the relation → be defined as shown in

Table 2.1. Figure 2.1 shows the Hässe diagram for the lattice P .

a → b c → e
a → c d → f
b → d e → f
c → d

Table 2.1: The order relation for the lattice P .

b

d

c

a

e

f

Figure 2.1: The Hässe diagram for the lattice P .

28

2.2 Strings, Formal Languages, and Automata

This section contains the basic definitions and notation for strings, languages, and

automata as used throughout the thesis. The main purpose of this section is to

establish notation and, although it is assumed that the reader is familiar with the

above concepts, it is still recommended that this section is read since some of the

notation is non-standard and only found in literature on string-rewriting systems,

string combinatorics, and grammatical inference. The reader may wish to consult

[59, 62, 79, 115] for expositions.

Many of the definitions below come directly, or are adapted, from [79]. Yet others

come from [103] and some are indeed unique to this thesis.

Notation 2.13. Let Σ be a finite1 alphabet. Its elements are called letters, char-

acters, or symbols. A string over the alphabet Σ is a finite sequence of characters

from Σ. �

(a) We denote by ε the empty string (the sequence of length 0).

(b) Σ∗ denotes the set of all possible strings over Σ. Σ∗ is the free monoid

generated by Σ under the usual operation of string concatenation with the empty

string ε as the identity. Σ+ denotes the set of all non-empty strings, i.e.

Σ+ = Σ∗\{ε}.

(c) We use the usual exponent notation to denote multiple concatenation of the

same string. For any string s ∈ Σ∗, s0 = ε, s1 = s, and sn = sn−1 · s, where

· denotes string concatenation. If s = ab, then s3 = ababab. Note that we

often use parentheses to identify the string being repeated: (ab)3 = ababab while

ab3 = abbb.

1In this thesis, attention is restricted to finite alphabets only

29

(d) We denote the length of a string s ∈ Σ∗ by |s|. Formally, |ε| = 0, |a| = 1 for

a ∈ Σ, and |sa| = |s|+ 1 for a ∈ Σ, s ∈ Σ∗.

(e) Σn denotes the set of all strings of length n and Σ≤n denotes the set of all

strings of length less than or equal to n.

(f) For any string s ∈ Σ∗, s[i] denotes the ith character of s where 1 ≤ i ≤ |s|.

(g) For any a ∈ Σ and for any s ∈ Σ∗ we denote by |s|a the number of occurrences

of the character a in s. For any subset A ⊆ Σ and for any s ∈ Σ∗ we denote by

|s|A the number of characters in s that belong to A. Therefore, |s|A =
∑

a∈A |s|a.

(h) We denote by alph(s) the subset of Σ that contains exactly those characters that

occur in s. Therefore, alph(s)
def
= {a | a ∈ Σ, |s|a ≥ 1}.

(i) A string x ∈ Σ∗ is said to be a substring of another string y ∈ Σ∗ if ∃u, v ∈ Σ∗

such that y = uxv. Notice that ‘is a substring of ’ is a binary relation on Σ∗

that induces a partial order on Σ∗. If x �= y then we say that x is a proper

substring of y. If x is a substring of y then we write x ⊂ y. s[i..j] denotes

the substring of s that starts at position i and ends at position j. Notice that,

by convention, ε ⊂ s, ∀s ∈ Σ∗. The set of all substrings of s is denoted by

Substrings∗(s) def
= {x ∈ Σ∗|x ⊂ s}.

(j) A string x ∈ Σ∗ is said to be a prefix of another string y ∈ Σ∗ if ∃v ∈ Σ∗ such

that y = xv. If x �= y then x is said to be a proper prefix of y. We denote by

s(i) the prefix of length i of s. The set of all prefixes of s is denoted by

Prefix∗(s) def
= {s(i)| 1 ≤ i ≤ |s|} ∪ {ε}.

(k) A string x ∈ Σ∗ is said to be a suffix of some other string y ∈ Σ∗ if ∃v ∈ Σ∗

such that y = vx. If x �= y then x is said to be a proper suffix of y. We

30

denote by s(i) the suffix of length i of s. The set of all suffixes of s is

denoted by Suffix∗(s) def
= {s(i)| 1 ≤ i ≤ |s|} ∪ {ε}.

(l) A set of strings S ⊂ Σ∗ is said to be substring free if no string in S is a sub-

string of some other string in S. Formally, S is substring free if Substrings∗(s)∩

S = {s}, ∀s ∈ S. Prefix free and suffix free sets of strings are defined sim-

ilarly.

(m) A string x ∈ Σ∗ is said to be primitive if it is not a power of some other string

in Σ∗. I.e. if x �= ε and x �= yn for some y ∈ Σ∗ and some n > 1.

(n) A string s ∈ Σ∗ is called a square if it is of the form xx where x ∈ Σ+. A string

s is said to contain a square if one of its substrings is a square; otherwise,

it is called square-free.

(o) A string x ∈ Σ∗ is said to be a subsequence of some other word y ∈ Σ∗ if

x = a1a2a3 · · · an, with ai ∈ Σ, n ≥ 0, and ∃z0, z1, z2, · · · , zn ∈ Σ∗ such that

y = z0a1z1a2 · · · anzn. A subsequence of a string S is therefore any sequence of

characters that is in the same order as it appears in s.

(p) Two strings x, y ∈ Σ∗ are said to be conjugate if ∃u, v ∈ Σ∗ such that x = uv

and y = vu for u �= ε and v �= ε.

(q) Let u, v ∈ Σ+ be two non-empty strings and let u have two distinct occurrences

as substrings in v. Clearly then, there must exist strings x, y, x′, and y′ such

that the following must hold:

w = xuy = x′uy′ with x �= x′

The two occurrences of u either overlap, are disjoint, or are consecutive

(adjacent). Let us examine each possibility in turn. Without loss of generality,

suppose that |x| < |x′|. Then

31

• |x′| > |xu|. For this to be true there must exist some z ∈ Σ+ such that

x′ = xuz and w = xuzuy′. The two occurrences of u are therefore clearly

disjoint.

• |x′| = |xu|. This means that x′ = xu and therefore w = xuuy′ contains a

square. The two occurrences of u are adjacent.

• |x′| < |xu|. The second occurrence of u starts before the first ends. The

occurrences of u are said to overlap. �

The problem of finding overlapping occurrences of the same substring within a

given string will arise later on in our discussion of kernel languages (see Chapter 3).

The following lemma will prove to be a useful and interesting result.

Lemma 2.1. Let w ∈ Σ∗ be a string over Σ. Then w contains 2 overlapping oc-

currences of a non-empty string u if and only if w contains a substring of the form

avava, where a ∈ Σ and v ∈ Σ∗.

The reader is referred to [79, page 20] for the proof. Any string of the form

avava is said to overlap (with itself). According to Lemma 2.1, a string has two

overlapping occurrences of a substring if and only if it contains a substring of the

form avava. This result is useful since it allows for an efficient procedure for searching

for overlapping substrings in strings.

Let us now turn our attention to sets of strings. The subsets of Σ∗ are called (for-

mal) languages. A language can be finite or infinite. If the language is infinite then

we are interested mainly whether or not is has a finite description. This description

can take many forms — a grammar, a regular expression, a finite state automaton,

a Turing machine, etc. These descriptions are used for specifying, generating, and

recognizing formal languages. In Chapter 3, a new form of description for formal

languages [115], the Transformations System (TS) Description is introduced. This

description was developed for the purpose of learning formal languages.

32

In this thesis we are concerned primarily with regular languages. Regular lan-

guages are the simplest languages in the Chomsky hierarchy and have been the sub-

ject of much study [3, 127]. For a finite alphabet Σ, the class of regular languages over

Σ is precisely the class of regular sets over Σ, i.e. the smallest class of subsets of Σ∗

that contains all the finite subsets and is closed under the operations of union, con-

catenation, and Kleene star (*). Regular languages can be specified (also generated

and recognized) by left linear grammars, right linear grammars, regular expressions,

non-deterministic finite state automata, and deterministic finite state automata. The

latter are important since a unique deterministic finite state automaton that has a

minimal number of states exists for each regular language. This gives us a canonical

description of the regular language. The reader may wish to consult [115, 56] for

further details and an exposition.

Definition 2.14 (Finite State Automata).

(a) A deterministic finite state automaton (DFA) A is specified by the 5-

tuple D = 〈Q, Σ, δ, s, F 〉 where

• Q is a finite set of states,

• Σ is a finite alphabet,

• δ : Q× Σ→ Q is the transition function,

• s ∈ Q is the start state, and

• F ⊆ Q is the set of accepting states.

(b) The transition function δ : Q×Σ→ Q of a DFA can be extended to Q×Σ∗ as

follows:

δ(q, ε) = q

δ(q, wa) = δ(δ(q, w), a).

33

(c) A string x ∈ Σ∗ is accepted by D if δ(s, x) ∈ F and

L(D)
def
= {x ∈ Σ∗|x is accepted byD} is called the language accepted by D.

�

Notice that if q is a state and a is an alphabet symbol then the transition function

ensures that |δ(q, a)| = 1, i.e. D can reach only one state from q after reading a.

This is what makes D deterministic. We can also define a nondeterministic finite

state automaton (NFA) by appropriately modifying the definition of DFA. The

transition function is changed to δ : Q×Σ→ 2Q and extended to Q×Σ∗ as follows:

δ(q, ε) = {q}

δ(q, wa) = ∪p∈δ(q,w)δ(p, a).

It turns out that for every regular language R, there exists a DFA D and an NFA

A such that both D and A both recognize R. NFAs are usually easier to work with

since if A is an NFA of n states that accepts a regular language R, a corresponding

DFA, D, that also accepts R, may have up to 2n states. Figure 2.2 shows the minimal

DFA for the language associated with the regular expression ab∗a.

b

1 2 3
aa

Accepting state

Start State

Figure 2.2: A DFA that accepts the language ab∗a.

34

2.3 Reduction Systems

The Norwegian mathematician and logician Axel Thue [123] considered the following

problem: Suppose one is given a set of objects and a set of rules (or transformations)

that when applied to a given object yield another object. Now suppose one is given

two objects x and y. Can x be transformed into y? Is there perhaps another object

z such that both x and y can be transformed into z?

In the case when the objects are strings, this problem became known as the word

problem. Thue published some preliminary results about strings over a finite al-

phabet. Although Thue restricted his attention to strings he did suggest, however,

that one might be able to generalize this approach to more structured combinatorial

objects such as trees, graphs, and other structured objects. This generalization was

later developed and the result was reduction systems. Reduction systems are so called

because they describe, in an abstract way, how objects are transformed into other

objects that are, by some criterion, simpler or more general. As discussed in Chap-

ter 1, in ETS theory we also want to capture the idea of a set of structs, or structured

objects, that are generated from a finite subset of simple (i.e. irreducible) structs

using operations (or transformations) that transform one struct into another. This

is essentially the opposite process of reduction. This notion and reduction systems

fall under the general name of replacement systems [67]. Replacement systems are

now an important area of research in computer science and have applications in auto-

mated deduction, computer algebra, formal language theory, symbolic computation,

theorem proving, program optimization, and now of course, also machine learning.

This section is important since the definitions, notation, and techniques presented

here are used throughout the thesis — in particular in the definitions of string-

rewriting systems later on in Section 2.4 and kernel languages in Chapter 3. The

reader is referred to [12, Chapter 1] and [63] for expositions.

35

Definition 2.15 (Reduction System). [12, page 10]

Let S be a set and let → be a binary relation on S. Then:

(a) The structure R = (S,→) is called a reduction system. The relation → is

called the reduction relation. For any x, y ∈ S, if x→ y then we say that x

reduces to y.

(b) If x ∈ S and there exists no y ∈ S such that x→ y, then x is called irreducible.

The set of all elements of S that are irreducible with respect to → is denoted by

IRR(R).

(c) For any x, y ∈ S, if x
∗←→ y and y is irreducible, then we say that y is a

normal form of x. Recall that
∗←→ is the reflexive, symmetric, and transitive

closure of →.

(d) For any x ∈ S, we denote by ⇓R (x)
def
= {y ∈ S |x ∗←→ y, y is irreducible}, the

set of normal forms of x modulo R.

(e) If x, y ∈ S and x
∗→ y, then x is an ancestor of y and y is a descendant of

x. If x → y then x is a direct ancestor of y and y is a direct descendant

of x.

(f) If x, y ∈ S and x
∗↔ y then x and y are said to be equivalent. �

Notation 2.16 (Reduction System). [12, page 10]

Let R = (S,→) be a reduction system. Then:

(a) For each x ∈ S:

Let ∆(x) denote the set of direct descendants of x with respect to →. Thus,

∆(x)
def
= {y |x→ y}. Also, let ∆+(x)

def
= {y |x +→ y} and ∆∗(x)

def
= {y |x ∗→ y}.

Thus, ∆∗(x) is the set of descendants of x modulo →.

36

(b) For each A ⊆ S:

Let ∆(A) denote the set of direct descendants of A with respect to→. Thus,

∆(A) = ∪x∈A∆(x). Also, let ∆+(A)
def
= ∪x∈A∆+(x) and ∆∗(A)

def
= ∪x∈A∆∗(x)

Thus, ∆∗(A) is the set of descendants of the subset A modulo →.

(c) For each x ∈ S:

Let ∇(x) denote the set of direct ancestors of x with respect to →. Thus,

∇(x)
def
= {y | y → x}. Also, let ∇+(x)

def
= {y | y +→ x} and ∇∗(x)

def
= {y | y ∗→ x}.

Thus, ∇∗(x) is the set of ancestors of x modulo →.

(d) For each A ⊆ S:

Let ∇(A) denote the set of direct ancestors of A with respect to →. Thus,

∇(A)
def
= ∪x∈A∇(x). Also, let ∇+(A)

def
= ∪x∈A∇+(x) and ∇∗(A)

def
= ∪x∈A∇∗(x)

Thus, ∇∗(A) is the set of ancestors of the subset A modulo →.

(e) Note that
∗←→ is an equivalence relation on S. For each s ∈ S we denote by

[s]R the equivalence class of s mod(R). Formally, [s]R
def
= { y | y ∗←→ S }. Also,

for any A ⊆ S, [A]
def
= ∪x∈A[x]R. �

Definition 2.17. [12, page 10]

Let R be a reduction system.

(a) The common ancestor problem is defined as follows:

Instance: x, y ∈ S.

Problem: Is there a w ∈ S such that w
∗→ x and w

∗→ y? In other words, do

x and y have a common ancestor?

(b) The common descendant problem is defined as follows:

Instance: x, y ∈ S.

37

Problem: Is there a w ∈ S such that x
∗→ w and y

∗→ w? In other words, do

x and y have a common descendant?

(c) The word problem is defined as follows:

Instance: x, y ∈ S.

Problem: Are x and y equivalent under
∗←→? �

In general these problems are undecidable [12]. However, there are certain con-

ditions that can be imposed on reduction systems in order for these questions to

become decidable.

Lemma 2.2. Let (S,→) be a reduction system such that for every x ∈ S, x has a

unique normal form. Then ∀x, y ∈ S, x
∗←→ y if and only if the normal form of x is

identical to the normal form of y.

Proof of Lemma 2.2 Let x, y ∈ S and let x′ and y′ denote the normal forms of x

and y respectively.

⇒ Suppose that x
∗←→ y and x′ �= y′. Then x

∗←→ y′ since x
∗←→ y (by assumption)

and y
∗←→ y′ (by definition). Now y′ is irreducible (by definition) and therefore x

has two distinct normal forms: x′ and y′. This is a contradiction.

⇐ Suppose that x and y have a common normal form z. Then, by definition, x
∗←→ z

and y
∗←→ z. The results follows from the symmetry and transitivity of

∗←→

The proof of this lemma was omitted in [12]. The above result means that if for all

x, y ∈ S we have an algorithm to check if x = y (very easy for strings), and also an

algorithm to compute the unique normal forms of x and y, then the word problem

becomes always decidable.

Definition 2.18. [12, page 11]

Let R be a reduction system.

38

(a) R is confluent if ∀w, x, y ∈ S, w
∗→ x and w

∗→ y implies that ∃z ∈ S such

that x
∗→ z and y

∗→ z.

(b) R is locally confluent if ∀w, x, y ∈ S, w → x and w → y implies that ∃z ∈ S

such that x
∗→ z and y

∗→ z.

(c) R is Church-Rosser if ∀x, y ∈ S, x
∗←→ y implies that ∃z ∈ S such that

x
∗→ z and y

∗→ z. �

Figure 2.3: Properties of reduction systems.

Definition 2.19. [12, page 12]

Let R be a reduction system. The relation → is noetherian if there is no infinite

sequence x0, x1, x2, · · · ∈ S such that xi → xi+1 for i ≥ i. If R is confluent and → is

noetherian then R is convergent. �

If R is a reduction system and → is noetherian then we are assured that at least

one normal form exists. If R is finite the word problem and the common descendant

problem are decidable. Furthermore, if R is noetherian and convergent then, for

every s ∈ S, [s]R has one unique normal form. In addition, if R is convergent then R

is confluent if and only if R is locally confluent (see proof of Theorem 1.1.13 in [12]).

39

2.4 String-Rewriting Systems

A string-rewriting system T is a set of rewriting rules of the form (l, r) where l, r ∈ Σ∗

for some finite alphabet Σ. The reduction system associated with T is R = (Σ∗,→T)

where →T is the reduction relation induced by T . If (l, r) ∈ T implies that (r, l) ∈ T

then T is called a Thue System otherwise it is called a semi-Thue System. In recent

years there has been a resurgence of interest in Thue systems [7, 12, 13, 63, 67].

This interest is perhaps due to the advances made in computer algebra, automated

deduction and symbolic computation in general [13]. There have also been a number

of new results in the theory of replacement systems and this has spurned on more

research. In this thesis we are concerned primarily with string-rewriting systems that

induce reduction relations that are noetherian and, in particular, those that have only

length-reducing rules, i.e where |l| > |r| ∀(l, r) ∈ T . This property is desirable since

it ensures that for any string x ∈ Σ∗, the normal forms of x exist and are computable.

It turns out that string-rewriting systems can be used to (partially) specify a subclass

of formal languages called Kernel Languages. This topic is discussed in Chapter 3.

2.4.1 Definitions and Notation

It is assumed that the reader is familiar with the main definitions of Reduction

Systems and the associated notation from Section 2.3.

Definition 2.20 (String-Rewriting Systems). Let Σ be a finite alphabet.

(a) A string-rewriting system T on Σ is a subset of Σ∗ × Σ∗ where every pair

(l, r) ∈ T is called a rewrite rule.

(b) The domain of T is the set {l ∈ Σ∗ | ∃r ∈ Σ∗ and (l, r) ∈ T} and denoted

by dom(T). The range of T is the set {r ∈ Σ∗ | ∃l ∈ Σ∗ and (l, r) ∈ T} and

denoted by range(T).

40

(c) When T is finite the size of T, which we denote by ‖T‖, is defined to be the sum

of the lengths of the strings in each pair in T. Formally, ‖T‖ def
=

∑
(l,r)∈T (|l| +

|r|).

(d) The single-step reduction relation on Σ∗, →T , induced by T is defined as

follows: for any x, y ∈ Σ∗, x→T y if and only if ∃u, v ∈ Σ∗ such that x = ulv

and y = urv. In other words, x→T y if and only if the string y can be obtained

from the string x by replacing the substring l in x by r to obtain y.

The reduction relation on Σ∗ induced by T, which we denote by
∗→T , is the

reflexive, transitive closure of →T .

(e) RT = {Σ∗,→T} is the reduction system induced by T .

(f) The Thue Congruence generated by T is the relation
∗←→T — i.e. the sym-

metric, reflexive, and transitive closure of →T . Any two strings x, y ∈ Σ∗ are

congruent mod(T) if x
∗←→T y. For any string w ∈ Σ∗, the (possibly infi-

nite) set [w]T , i.e. the equivalence class of the string w mod(T), is called the

congruence class of w (mod(T)).

(g) Let S and T be two string-rewriting systems. S and T are called equivalent if

they generate the same Thue congruence, i.e. if
∗←→S =

∗←→T . �

Notes to Definition 2.20. For any string-rewriting system T on Σ, the pair (Σ,→T)

is a reduction system. T is a finite set of string pairs (rules) of the form (l, r). Each

rule can be interpreted to mean ‘replace l by r’. The reduction relation induced by

T , →T , is usually much larger than T itself since it contains not just the rules of T

but also all those strings pair (x, y) such that, for some a, b ∈ Σ∗, y = arb is obtained

from x = alb by a single application of the rule (l, r). In practice, for obvious reasons,

→T is infinite.

41

Many of the properties of reduction systems discussed in Section 2.3 apply also

to RT . In particular, if T is a string-rewriting system on Σ and RT = (Σ∗,→T) is

the reduction system induced by T , then, for any two strings x, y ∈ Σ∗:

• →T is confluent if whenever w
∗→T x and w

∗→T y for some w ∈ Σ∗, then

∃z ∈ Σ∗ such that z
∗→T z and y

∗→T z. T is therefore confluent if whenever

any 2 strings have a common ancestor they also have a common descendant.

• →T is Church-Rosser if whenever x
∗←→T x then ∃z ∈ Σ∗ such that z

∗→T z

and y
∗→T z. Informally, →T is Church-Rosser if any pair of equivalent strings

has a common descendant.

• →T is locally confluent if whenever w →T x and w →T y for some w ∈ Σ∗,

then ∃z ∈ Σ∗ such that z
∗→T z and y

∗→T z. In other words, →T is locally

confluent whenever any two strings have a common direct ancestor they also

have a common descendant.

It is important to note that the above are not if-and-only-if conditions. For any

two strings x and y, x and y having a common descendant does not necessarily imply

that x is equivalent to y or that they have a common ancestor. Consider, as an

example, the string-rewriting system T = {(ax, z), (ay, z)} where Σ = {a, b, x, y, z}.

The strings axb and ayb have a common descendant since axb→T zb and ayb→T zb

but clearly cannot have a common ancestor.

As from this point onwards, purely in the interests of brevity and clarity, we shall

omit the subscript T and simply use→,
∗→, and

∗←→ instead of→T ,
∗→T , and

∗←→T .

Definition 2.21 (Orderings on Σ∗). Let � be a binary relation on Σ.

(a) If T is a string-rewriting system on Σ, � is said to be compatible with T if

l � r for each rule (l, r) ∈ T .

42

(b) � is a strict partial ordering if it is irreflexive, anti-symmetric, and tran-

sitive.

(c) If � is a strict partial ordering and if, ∀x, y ∈ Σ∗, either x � y, or y � x, or

x = y, then � is a linear ordering.

(d) � is admissible if, ∀x, y, a, b ∈ Σ∗, x � y implies that axb � ayb. In other

words, left and right concatenation preserves the ordering.

(e) � is called well-founded if it is a strict partial ordering and if there is no

infinite chain x0 � x1 � x2 · · · . If � is well-founded but also linear then it is a

well-ordering. �

Notes to Definition 2.21. It turns out that if T is a string-rewriting system on Σ

then →T is noetherian if and only if there exists an admissible well-founded partial

ordering � on Σ∗ that is compatible with T . (Lemma 2.2.4 in [12]). This is useful

because, for reasons outlined previously, we want to consider only string-rewriting

systems that are noetherian. For any string-rewriting system T , in order to establish

whether→T is noetherian we need only find (or construct) an admissible well-founded

partial ordering that is compatible with T . In our case we usually opt for the length-

lexicographical ordering, i.e. where strings are ordered according to length first

and then lexicographically.

Notice also that for any string-rewriting system T , the set of direct descendants

of a string x ∈ Σ∗ modulo T , ∆(x), is finite. This is true even if→T is not noetherian

and follows from the fact that any string x ∈ Σ∗ has a finite number of substrings

and therefore the rules in T can only be applied in a finite number of ways. On the

other hand, if→T is noetherian, then ∀x ∈ Σ∗, the set of all descendants of x, ∆∗(x),

is finite. This follows by König’s Infinity Lemma.

43

Definition 2.22 (Normalized String-Rewriting Systems). Let T be a string-

rewriting system on Σ. T is normalized if, for every rule (l, r) ∈ T ,

(a) l ∈ IRR(T − {(l, r)}), and

(b) r ∈ IRR(T). �

Notes to Definition 2.22. Informally, T is normalized if and only if, for each

rule (l, r) in T , the left-hand side l can only be reduced by the rule (l, r) itself and

the right-hand side r is irreducible. If T is a string-rewriting system that is not

normalized, i.e. it contains rules whose right-hand side that is reducible, there is a

polynomial time algorithm that on input T will output a string-rewriting system T ′

such that T ′ is normalized and equivalent to T [12, page 47]. Unless otherwise stated,

all string-rewriting systems that are considered from now on are normalized.

2.4.2 Length-Reducing String-Rewriting Systems

A string-rewriting system T is called length-reducing if (l, r) ∈ T implies that |l| > |r|.

In other words the left hand side of a rule is always longer than the right hand

side. The obvious implication of this property is that when a rule is applied to

a string x the resulting string x′ is always strictly shorter than x. Recall that if

S is any string-rewriting system on Σ then →S is noetherian if and only if there

exists an admissible well-founded partial ordering � on Σ∗ that is compatible with

S. Therefore, let � be the length-lexicographical partial order on Σ∗. Since l � r

clearly holds ∀(l, r) ∈ T and also since � is admissible and well-founded, then we

can conclude →T is noetherian. There are three particular types of length-reducing

used in this thesis.

Definition 2.23 (Monadic String-rewriting Systems).

Let T be a string-rewriting system on Σ. T is called monadic if T is length-reducing

44

and |r| = 1 or r = ε, ∀(l, r) ∈ T .

Definition 2.24 (Special String-rewriting Systems).

Let T be a string-rewriting system on Σ. T is called special if T is length-reducing

and r = ε, ∀(l, r) ∈ T .

Definition 2.25 (Trivial String-rewriting Systems).

Let T be a string-rewriting system on Σ. T is called trivial if r = ε, and l = a, a ∈ Σ,

∀(l, r) ∈ T . �

2.4.3 Congruential Languages

Let us now investigate, informally, the possibility (and later on the feasibility) of using

string-rewriting systems to define, and also test for membership of, formal languages.

Let T be a string-rewriting system over an alphabet Σ. How can we use T to

define a proper language L ⊂ Σ∗? In other words, are there any interesting, non-

trivial languages induced by T? Of course, we must define exactly what it means for

a language L to be induced by a string-rewriting system T . Let us examine some

possibilities.

• Let L1 be the set of all irreducible strings modulo T, i.e. L1 = IRR(T).

• Let L2 be the union of all the equivalence classes with respect to T .

Observe that L1 can be finite or infinite depending on T . It turns out that the set

IRR(T), i.e. the set of all irreducible strings modulo some string-rewriting system

T , is a regular language and a finite state automaton that recognizes L1 can be

constructed in polynomial time from T [12, Lemma 2.1.3, page 37]. Whether such

languages are useful or not is open to discussion but a review of the literature does

not reveal any particular use. L2, it turns out, is Σ∗ itself. It appears, therefore, that

45

T by itself is rather limited for the purpose of defining formal languages. Suppose,

however, that we use T together with a finite number of equivalence (congruency)

classes modulo T .

Definition 2.26 (Congruential Languages). [80]

Let T be a finite string-rewriting system on Σ. A congruential language is any

finite union, C, of congruency classes of T. �

A congruential language is specified by the pair (T,C). Since both T and C

are finite sets, we have a finite description of the language. Congruential languages

have been subject to study by various researchers [10, 11, 13, 80]. One interesting

result is that all NTS languages are congruential [11]. A context-free grammar is

said to be NTS if the set of sentential forms it generates is unchanged when the rules

are used both ways. It is quite common, and also sensible, to restrict attention to

congruential languages where T has only length-reducing rules. This will ensure that

→T is noetherian and this guarantees that the normal forms for each string exist

and are computable. An example of congruential languages where T has only length

reducing rules is given below.

Example 2.2. An Example of a Congruential Language

• Let Σ = {a, b} and let T = {(ab, ε), (ε, ab)}. This is the Dyck Language of

matching parenthesis.

A class of languages, Kernel Languages, that is very similar to congruential languages

but which also differ in a number of important ways, is described in Chapter 3.

46

2.5 Pattern Recognition

Humans have perceptive and cognitive abilities that we very often take for granted

- that is until we try to replicate these abilities on a computer. It is only then that

we realize how powerful and complex human perceptive and cognitive abilities are.

Human have absolutely no problem in differentiating between a picture of a horse

and that of a rabbit, or perhaps between the smell of an onion and that of an orange.

However, it is not easy to program these tasks on a digital computer. This difficulty

is probably because (From [27])

’each pattern usually contains a large amount of information, and the recog-

nition problems typically have an inconspicuous, high-dimensional, structure.‘

It has always been a dream of computer scientists and engineers to make a com-

puter recognize things that we recognize unconsciously [6]. The main objective of

pattern recognition, therefore, is to make inferences from perceptual data. In pattern

recognition we are concerned, amongst other things, with (From [26])

‘the assignment of a physical object or event to one of several pre-specified

categories’

To this end pattern recognition techniques make use of tools from statistics, prob-

ability, computational geometry, algebra, formal language theory, machine learning,

signal processing, and algorithm design. Pattern recognition is thus of central im-

portance to artificial intelligence and has far-reaching applications in engineering,

science, medicine, and business. The advances made in the last half century, such as

speech recognition, allow humans to interact more freely and effectively with humans

and the natural world.

Historically, the two major approaches to pattern recognition were the statistical

(or decision theoretic) and the syntactic (or symbolic) approaches. The advent of

47

artificial neural networks in the 1980s introduced yet another vector space based,

connectionist, approach. A description and discussion of the three approaches is

found in [108]. We conclude this of-necessity brief section by identifying the main

issues in pattern recognition:

Classification The problem of classification is basically that of assigning a given

object to a predefined class (concept, or category). This is something that hu-

mans do very well. In order for a machine to perform satisfactory classification

it must have, in some form, a representation ”spaces” for objects and classes of

objects as well as a computational procedure for determining whether a given

object belong to the class/category or not.

Class Representation and Structure If a machine is to perform correct classi-

fication it must, in some form, be able to store a representation of each class

of objects. What is the best way to represent classes? (see Chapter 8). How

will the latter choice affect the noise handling capabilities? This choice of

class representation is related to the choice of object representation ”space”.

One must be careful to distinguish between real-world objects such as faces,

sounds, or smells and their numeric or symbolic encoding. For artificial neu-

ral networks, for example, the class learned during the training procedure is

represented within the given ”architecture” by the final set of weights. The

objects themselves are encoded as vectors over the reals. In case of syntactic

pattern recognition, the objects are represented as strings over some alphabet,

while the class is represented as the corresponding grammar, i.e. as a set of

production rules (involving, of course, some secondary alphabet) [33].

48

2.6 Overview of Computational Learning Theory

(CoLT)

The process of learning, whether by animal or machine, has long fascinated philoso-

phers, psychologists and, more recently, cognitive scientists and computer scientists.

In fact, the ability to learn is considered by some to be of the most fundamental

attributes of intelligent behaviour [85]. Yet it is difficult to find a precise definition

of what learning is. The Collins English Dictionary defines learning as ‘the modifi-

cation of behaviour though practice, training, and experience’. This is perhaps too

informal. The area of Machine Learning concerns itself with answering the question

What is Learning?, as well as with the development of powerful and efficient algo-

rithms that learn from examples. In this section we shall not concern ourselves with

machine learning algorithms or techniques. The aim is to discuss the main issues in

the theoretical aspects of machine learning and present the main results relevant to

this thesis. In particular, machine learning theory is concerned with issues such as:

(from [88])

• What is learnable? and, more importantly, what is not?,

• Under which conditions is a particular learning algorithm assured of learning

successfully?

• How many training examples are required to learn a class (or concept)?,

• How does learning performance vary with the number of training examples

provided?,

• When and how can prior knowledge held by the learner guide the process of

generalizing from examples? Can prior knowledge be helpful?,

49

• How can the learner automatically alter its representation to improve its ability

to represent and learn the target function (or class)?,

• What is the best strategy for choosing a useful training experience, and how

does the choice of this strategy alter the complexity of the learning problem?,

• Learning in the presence of ‘noise’, and

• The time and space complexity of learning.

Various models and theories that deal with the above issues have been proposed.

The area is today called CoLT — short for Computational Learning Theory. CoLT is

not concerned with learning algorithms per se but rather with the issues mentioned

above.

2.6.1 What is learning after all?

The most logical starting point is to define the learning problem. The main machine

learning textbooks and, for that matter, also the main CoLT textbooks, do not seem

to give much importance to an exact and formal definition of what learning really

is. Most CoLT textbooks pose the learning problem as a function approximation

problem. The problem with using this framework, and a treatment of this issue

is outside the scope of this thesis, is that it does not give a satisfactory answer to

the question ‘What is a class (or concept)?’ To put it another way, What does a

learning algorithm (or process) learn? Many in the machine learning community are

quite comfortable with the assumption that a learning algorithm (or process) learns a

membership (or characteristic) function2. In other words, the learning entities learns

how to classify unknown instances as either belonging or not belonging to a given

2an indicator function in the case of yes/no classification

50

concept3. This tell us nothing about the concept itself — i.e. its description or

representation. There is evidence, from experiments performed by researchers in the

cognitive sciences [8], that humans learn more than just a classification function. It

is widely held that when a human learns a concept a representation of that concept

then exists in that person’s brain. If a human has never seen a cat and is shown a

number of cats as training examples, the human then learns to identify any animal

as being or not being a cat but also, and significantly, the human can describe cats in

terms of their attributes. The author distinctly remembers seeing a pencil drawing

of a rhinoceros drawn by an 18th century German artist. What was extraordinary

about this drawing, apart from the fact that it was a very good reproduction of a

rhinoceros, was that the artist had allegedly never seen a rhinoceros but had made

the drawing from a verbal description of a rhinoceros he got from a friend who had

visited Africa. Humans can describe and communicate what they learn and intelligent

activity (including language and thought) appears to involve the manipulation of

concepts (or classes) in the mind [31]. It is the author’s belief that a theory of

machine (or animal) learning must address the issues of the formation, learning, and

more importantly, the representation of concepts4. It is clear that humans do more

than just learn concepts. They can combine concepts (whether learned or innate)

together to form new ones, make plausible inferences from the concepts they have

learned, modify and apply each concept in different ways according to the context,

and use concepts to predict future action or events. It is for these reasons that the

author and his colleagues of the Machine Learning Group at UNB believe that a

theory of machine or animal learning should start with a theory of concepts and

categories (perhaps in conjunction with the cognitive science community). Once this

has been accomplished, then one can concentrate on the development of a formal

3in the case of a fuzzy concept, a degree of membership is returned
4in this thesis the terms concept and class are used interchangeably

51

theory of learning. The author’s colleagues of the Machine Learning Group at the

University of New Brunswick, at the time this thesis was being written, were working

this topic.

Concept learning can, informally, be characterized as follows (from [88]):

Given:

• a domain (or instance space) X ,

• a set of classes (or concepts) C ⊂ P(X),

• a finite subset c+ of some c ∈ C, called the positive training set, and

• a finite subset c− of objects not in c, called the negative training set.

For each concept c ∈ C, let Ic denote the indicator function of c, i.e.

∀x ∈ X , Ic(x) = 1 if x ∈ c and Ic(x) = 0 if x /∈ c.

Thus Ic is a boolean-valued function over the set of instances. Also, let T denote

the union of the positive and negative training examples, i.e. T = c+ ∪ c−. It is also

assumed that T is drawn at random from X according to some general probability

distribution D. The learning task is then to find a learning algorithm L such that,

∀c ∈ C and on input D, L outputs a hypothesis5 h(x) such that h(x) = Ic(x).

It must be emphasized that there is a fundamental distinction between the set X

and the symbolic or numeric encoding of its elements. Suppose, as an example, that

we want to learn the concept cat. In this case X could be the set of all animals.

Clearly, any learning algorithm requires that the animals are encoded as elements of

some mathematical structure (whether numeric or symbolic), i.e. as vectors, strings,

graphs, bitmaps, etc. An important issue, which is very often overlooked or even

5a boolean-valued function over X

52

ignored, is whether the particular encoding chosen affects learning. This issue is dis-

cussed in Chapter 8. Also, many in the CoLT community assume only that the class

or concept to be learned is simply a computable set under the particular encoding of

X . In our example, if the set of all animals X is encoded as strings over some finite

alphabet Σ, then the set of all cats (encoded as strings) is a computable language

over Σ, i.e. it has a finite description. This is a basic but important assumption since

if, under a particular encoding, the class of cats is not computable, then learning the

class is then clearly impossible. No other assumptions are made about the structure

of the class. It turns out that, as posed above, the learning problem is, in general,

unsolvable. This is, trivially, because any infinite (computable) class cannot be char-

acterized by any of its finite subsets. In other words no finite subset of any infinite

set has enough ‘information’ that allows us to infer with absolute certainty to which

set it belongs. For example, given a finite set of strings, S, that we are told belongs

to some infinite language L, we cannot inductively infer L from S with absolute cer-

tainty. This is because S is also a subset of infinitely many other languages apart

from L. This issue was addressed by E.M. Gold in the 70’s.

2.6.2 Gold’s results

E.M. Gold was the first to examine (symbolic) learnability formally. In his now

seminal 1976 paper, Language Identification in the Limit, Gold proved a number of

important results about learning infinite sequences of strings with unbounded length.

Gold was concerned mainly with what was learnable ‘in the limit’. Gold restricted

his attention to learning languages from finite sets of strings. He gave no importance

to the finiteness or even the bounds of the data. Gold published some beautiful

and deep results about this matter but an in-depth discussion of these is outside the

scope of this thesis. Gold considered only grammars in a class A which he called

53

‘admissible’. The class A is defined as follows:

Definition 2.27 (Admissible Classes of Grammars).

Let Σ be a finite alphabet. A class of grammars A is called admissible if:

(a) A is denumerable, and

(b) for any s ∈ Σ∗ and for any G ∈ A, it is decidable whether or not s ∈ L(G).

Note that the Chomsky classes of regular, context-free, and context-sensitive gram-

mars are all admissible. Gold’s main results can be paraphrased as follows:

• No admissible class of grammars that generate a superfinite class of languages

is identifiable in the limit from positive training examples only, and

• Any admissible class of grammars that generate a superfinite class of languages

is identifiable in the limit from positive and negative training examples.

A superfinite class of languages is one that includes at least one infinite language.

In this context, ‘identification in the limit’ means, informally, that as the number of

the training examples tends to infinity, we can identify with absolutely certainty the

language from which the examples are drawn. One implication of Gold’s results is

that we can never be absolutely sure that we have learned the right class — unless,

of course, we keep adding training examples and let the size of the training set tend

to infinity. We might, of course, happen to hit on the right hypothesis, i.e. when

h(x) = Ic(x), but we can never be really be absolutely sure. The only thing we can

ensure is that of finding a hypothesis h(x) that is consistent with the training set D,

i.e.

∀x ∈ D, h(x) = 1 if x ∈ c+ and h(x) = 0 if x ∈ c−,

54

and then hoping that h(x) approximates Ic over the unseen instances of X . Of course,

the more ‘representative’ (of the class) our training data is the more confident we

can feel that our learned hypothesis approximates the class c. But how can we be

sure? In general, we cannot. We just have to make an assumption. This assumption

is called the Inductive Learning Hypothesis.

2.6.3 The Inductive Learning Hypothesis

We noted that the main objective of learning is to find a hypothesis that is identical

to the indicator function, Ic, of the concept c over the entire set of instances X .

However, the only information6 we have about the concept c is the finite set of

training examples. But, as was argued in the previous section, we can never be sure

that our learned hypothesis is identical to the indicator function of c. The best we can

hope to achieve, therefore, is to find a hypothesis consistent with the training set D

and then assume that it approximates well (what exactly is meant by ‘approximates’

is explained later) the concept c over the other unseen instances. This assumption is

now stated:

Inductive Learning Hypothesis (ILH) Any hypothesis found to approximate the

target function well over a sufficiently large set of training examples will also

approximate the target function well over the unobserved examples. From [88].

The above definition of the ILH is rather informal. It is not exactly clear what

is meant by ‘sufficiently large set of training examples’. Having said that, the main

point here is that if a hypothesis is consistent with the training examples then one

can assume that it will also do well with (i.e. classify correctly) the other unseen

instances from X . The inductive learning hypothesis assumes that the training and

6we might have other information about the concept c but the argument will still hold

55

test examples are drawn from the same general distribution D. This is a funda-

mentally an unprovable hypothesis unless addition assumptions are made about the

target concept [90]. The ILH is considered to be a central and critical assumption

in CoLT. Before proceeding to discuss the PAC (Probably Approximately Correct)

Learning model let us first outline a number of problems and issues that arise from

our formulation of the learning problem:

• Absolutely correct learning is impossible. This follows from Gold’s results.

• For every finite training set D there may be many (possibly infinite) hypothesis

consistent with D. Which one does one choose?

• How can one choose the best hypothesis, i.e. the hypothesis that best approx-

imates the concept being learned?

• Under which conditions does the Inductive Learning Hypothesis hold?

The PAC model, which is discussed next, was designed to address (and hopefully

overcome) these problems.

2.6.4 Probably Approximately Correct Learning

Although there is no guarantee that the learning procedure L will find the right

hypothesis, i.e. h = c 7, we can, at least, insist that the learned hypothesis is close

to, or approximates the concept to be learned. If the set of instances, X , is finite,

we can measure how ‘close’ h is to the concept c by taking the symmetric difference.

In practice, X is infinite and therefore this method is not valid. Informally, the true

error of h is precisely the error rate we expect when applying h to future unseen

instances of X drawn according to the probability distribution D. This error is now

defined formally (from [88]).

7for convenience let h = {x ∈ X |h(x) = 1}

56

Figure 2.4: The error of the hypothesis h with respect to the concept c and the

distribution D.

Definition 2.28. The true error, which is denoted by errorD(h), of the hypothesis

h with respect to the target concept c and the distribution D is the probability that h

will misclassify an instance drawn at random according to D.

errorD(h) = Prx∈D[c(x) �= h(x)]

Figure 2.4 shows this error in graphical form. The error of the hypothesis h with

respect to the concept c and the distribution D is the probability that a randomly

chosen instance of X falls into the region where h and c disagree.

2.6.5 The PAC Learning Model

In contrast to Gold, Valiant took the view that it was more productive to examine

what was feasibly learnable rather than what was absolutely learnable. The main

differences between Gold’s paradigm and Valiant’s PAC model are:

• PAC considers only fixed-length strings, and so requires only a finite training

set.

57

• It has a polynomial bound on the time required to accomplish learning (the

polynomial bound is not on the number of training examples though).

• The form of concept description to be learned needs to be specified.

We can now proceed to define PAC learning.

Definition 2.29. Consider a concept class C defined over a set of instances X of

length n and a learner L using hypothesis space H. C is PAC-learnable by L using H

if for all c ∈ C, distributions D over X , an ε such that 0 < ε < 1/2, and δ such that

0 < δ < 1/2, learner L will with probability at least (1-δ) output a hypothesis h ∈ H

such that errorD(h) ≤ ε, in time (and space) polynomial in 1/ε, 1/δ, n, and size(c)8.

Notes to Definition 2.29.

• The learner L must, with arbitrary high probability (1-δ), output a hypothesis

having arbitrary low error (ε).

• It must do so efficiently — in time polynomial in 1/ε, 1/δ, n, and size(c).

• PAC-learnability depends on the number of training examples required by the

learner. The smaller ε and δ are, the more training examples are required. As

ε and δ approach 0, the number of training examples required tends to the

cardinality of the concept c.

• It is interesting to note that the time and space complexity of PAC-learning

is not expressed as a function of the number of training examples required

but of 1/ε, 1/δ, n, and size(c). This means that if we want a small error

with high probability we require very large training sets. What would really be

8one may assume the Kolmogorov complexity of c

58

better is if the number of training examples is polynomial to the size (structural

complexity) of the class. It must be noted, however, that, if the hypothesis space

is finite, then the number of training examples required is logarithmic to the

cardinality of the hypothesis space and also that it is possible to prove that

every concept is polynomially PAC-learnable [90].

Buntine, amongst others, criticized the PAC model on a number of grounds. In his

paper A Critique of the Valiant Model [17] he explains that the PAC model does

not use either common sense or practical experience in a number of ways. It uses

worst-case rather than average-case analysis and does not accommodate preferences

about hypothesis.

2.6.6 Inductive Bias

A learning algorithm considers a set of hypothesis during learning. This is called the

hypothesis space of the algorithm. Questions that arise are:

• What if the hypothesis required is not in hypothesis space?

• How can we ensure that the hypothesis we seek is in the hypothesis space

considered by the learning algorithm?

• If there are more than one hypothesis consistent with the training set, which

one do we choose?

The answer to the first two questions is that we can never be absolutely sure that

the hypothesis we seek lies in the hypothesis space considered by the algorithm. Of

course, we could design our learning algorithm to consider the space of every possible

hypothesis but this is clearly not feasible since the space would be too large. In

practice, some given information about the concept to be learned allows us to design

59

an algorithm that considers a hypothesis space that contains the required hypothesis.

The third question is more thorny. We cannot really have a foolproof way for choosing

one out of many consistent hypotheses that is ‘right’ in the sense that we can be sure

that it best approximates the required hypothesis. As always, we have to make

some assumptions. These assumptions are called the Inductive Bias of the learning

algorithm. The inductive preference bias can be loosely defined as the minimal set

of assumptions made by any learning algorithm regarding the:

• Inductive Language Bias: the choice of the hypothesis space (The Inductive

Language Bias), and

• Inductive Preference Bias: any preference of one hypothesis consistent with

the training set over another (The Inductive Preference Bias).

Note that the choice of the hypothesis space also includes the choice of concept

representation. For instance, if we are learning a regular language we can search in

the space of DFAs, or the space of regular grammars, etc. It has been stated many

times in CoLT literature that it is totally futile to have an unbiased learner. In

this thesis, unless otherwise stated, when we say ‘the bias’ or ‘the inductive bias’ we

mean the inductive preference bias. CoLT maintains that a fundamental property of

inductive inference is:

a learner that makes no a priori assumptions regarding the identity of

the target concepts has no rational basis for classifying any unseen in-

stances .

Many in CoLT consider concept learning as searching the chosen hypothesis space

for one (or more) hypothesis consistent with the training set. Clearly, the method

chosen to enumerate the hypothesis space during the search (assuming the hypothesis

space is countable) dictates which hypothesis will be chosen over other - assuming

60

the learning algorithm stops when it finds a hypothesis consistent with the training

examples.

2.6.7 Occam’s Razor

One of the popular inductive preference biases employed is that known as ‘Occam’s

Razor’. William of Occam was a British monk, logician, and philosopher who is

alleged to have said ‘entities should not be multiplied beyond what is necessary ’. This

can be paraphrased as if one has to choose between competing hypotheses, one should

always choose the simplest. Of course, what is the ‘simplest’ depends on the context

and the measure of simplicity used. This bias works in most cases. For example, if

we are learning a regular language we might use the bias that chooses a DFA with

the least number of states, or cycles, or perhaps the regular grammar with the least

number of rules.

2.6.8 Other Biases

Other preference biases have been proposed and employed in various learning algo-

rithms. An example is the so-called Epicurus’s Bias. This is based on the Epicurus

principle of multiple explanations which essentially says that if more than one theory

(or hypothesis) is consistent with the observations, then keep all theories. This is the

bias employed by Mitchell’s Version Space inductive learning algorithm. It must be

said, however, that this bias is impractical in many cases since it turns out that, very

often, the number of hypotheses consistent with the training examples is exponential

to the size of the training set.

61

2.7 Grammatical Inference

Grammatical Inference (GI) addresses the following problem: given a set of strings

that belong to some unknown formal language L, and possibly a set of strings that

do not belong to L, can a learning machine or agent infer L — i.e output a structural

description of L?. Apart from the obvious theoretical interest, this problem is also

of practical importance. GI is a integral part of syntactic and structural pattern

recognition and it has yielded many useful and interesting tools and methodologies

for structural learning. GI, it turns out, is by no means a simple problem. The first

grammatical inference algorithms date back to the sixties and are actually older than

the concept of ‘machine learning’ itself although today GI is considered as a sub-area

of machine learning. This section discusses the GI problem, presents some rather

depressing hardness and undecidability results, and gives a brief synoptic survey of

the more successful GI techniques.

2.7.1 The Grammatical Inference Problem

Grammatical inference is an instance of inductive inference which can be described

as the task of discovering syntactic structures from a corpus of training examples.

In this case the corpus of training examples is usually a finite set of strings, T , over

some fixed, finite, alphabet Σ which includes strings from some unknown language L

and possibly other strings that do not belong to L. The task of the learning machine

or agent is to infer L from T — i.e. to discover the rewrite rules that describe L. The

output is either a grammar for L or some other structural description of L such as an

automaton, expression, etc. Grammatical inference encompasses not only the theory

but also the methods and techniques for learning grammars from sets of training

examples.

Although the name grammatical inference suggests that it is a grammar that

62

is the output of the learning algorithm, this need not be the case — any other

structural description of a language such as automata, expression, TS description,

etc, can be used. The theory and techniques of grammatical inference have also been

applied to the task of learning languages of other structures such as 2-dimensional

strings (array grammars), trees, and graphs [86]. The most obvious (and traditional)

field of application of grammatical inference has been Syntactic Pattern Recognition

[33, 108]. In the last two decades, however, grammatical inference techniques have

also been applied to applications such as Speech Recognition, Natural Language

Processing, Biological Sequence Analysis, Gene Analysis, Image Processing, Machine

Vision, and Cryptography to name but a few [132].

Recall from Section 2.6 that any finite sample of strings of an infinite language

does not uniquely define (characterize) the language since a finite set of strings may

be associated with an infinite number of languages. This observation alone means

that our informal definition of the GI problem is impractical since inferring, with ab-

solute certainty, a grammar of a language from a finite set of samples from the same

language is, in theory, impossible. This rather obvious fact led early researchers in

grammatical inference and computational learning theory (CoLT) to propose some-

what more modest and constrained formalizations of the objectives of grammatical

inference. Given a set, C = C+ ∪ C−, of training examples, where C+ contains

strings belonging to some unknown language L, and C− contains strings not in L,

the learning machine or agent has to output a grammar G (or some other structural

description of a language) such that L(G) approximates L — given some definition

of approximation as discussed in the previous section on CoLT. Another requirement

is that the set of positive training examples, C+, must be structurally complete, i.e.

it contains enough information to allow us to successfully approximate L. A formal

definition of completeness is the following:

63

Definition 2.30. From [16, page 254]

A sample I is said to be structurally complete with respect to a grammar G over an

alphabet Σ if

(a) I ⊂ L(G),

(b) alph(I) = Σ (i.e. all the letters in Σ are contained in I), and

(c) every rule of G is used at least once in the generation of the strings of I. �

Definition 2.31. From [16, page 254]

A sample I is said to be structurally complete with respect to a DFA A over an

alphabet Σ if

(a) I ⊂ L(A),

(b) alph(I) = Σ (i.e. all the letters in Σ are contained in I),

(c) every transition of A is used in at least one string s ∈ I,

(d) every accepting state is used to accept at least one string s ∈ I. �

The definition of structural completeness often depends on the class of languages

under consideration, the representation used to describe the languages, and the in-

ference algorithm. The Valletta algorithm, described in Chapter 5, uses a different

definition of structural completeness.

The Theoretical and Practical Complexity of Grammatical Inference

Although GI dates back to the sixties and the area is arguably older than machine

learning itself there are still no universal, efficient algorithms that solve the problem.

This, we feel, is due more to the inherent hardness and complexity of the GI problem

rather on the amount of effort made over the last four decades. The somewhat

64

depressing hardness results have discouraged many researchers from working in this

area. In a book published in 1990, Miclet [16] wrote:

Historically, grammatical inference has always been closely related to pattern

recognition, except for a pure theoretical branch, which is not really connected

to algorithms. It is now clear that the interest of researchers in this domain

is decreasing, the publications are less and less numerous; the years 1970-

80 were the most fruitful, but since the early eighties, articles or congress

communications on the topic have been rare.

The main negative theoretical evidence for learning DFAs can be summarized as

follows: (from [29])

(a) Finding the smallest DFA consistent with a set of positive and negative training

examples is, in general, NP-hard [4, 38].

(b) The minimal DFA consistency problem cannot be approximated within any

polynomial of the size of the optimal solution [98].

(c) Approximate inference of finite automata from sparse labelled examples is NP-

Hard if an adversary chooses both the target machine and the training set

[70].

The results for context-free grammars are even worse [86, 76]. In this case even the

ability to ask equivalence queries does not guarantee exact identification in poly-

nomial time. One must emphasize, however, that these are general results. Most

researchers have concentrated on finding the conditions under which the negative

results can be overcome. The GI community is divided into those researchers who

are interested in the theoretical possibility of learning a grammar and those who are

mainly interested in developing algorithms for solving a particular practical problem.

Of course, the latter should be aware of the results obtained by the former. Many

GI algorithms have been developed over the last three decades. Many algorithms

65

restrict the learning domain, i.e. the class of formal languages that can be learned,

and therefore, as Miclet noted in [86], these algorithms are difficult to compare. We

conclude this section with a review of some of the techniques used in GI.

2.7.2 Some GI Techniques

One of the most popular techniques used for learning DFAs is the state merging tech-

nique. This technique was inspired by the procedure that is used to find the unique

minimal DFA from any given DFA — the so-called Moore optimization procedure.

It was Trakhtenbrot and Barzdin [127] who first proposed an O(mn2) state-merging

algorithm for constructing the minimal DFA consistent with a structurally complete

training set that contains both positive and negative training examples, where m is

the size of the PTA, or prefix-tree automaton, built from the positive training ex-

amples and n is the size of the target DFA. Trakhtenbrot’s and Barzdin’s algorithm

required, however, that the training set included all the strings of up to length l where

l depends on the target DFA and is equal to 2n − 1. It is clear that the number of

training examples becomes prohibitively large as n grows. Many other state-merging

algorithms were developed. Probably the most well-known is the state-merging algo-

rithm that won the Abbadingo DFA learning competition in 1998. The Abbadingo

DFA learning competition involved learning from both positive and negative train-

ing examples. The target DFAs, the training examples, and the testing strings were

drawn from a uniform random distribution. The reader is referred to Appendix E for a

description. The winning algorithm was developed by Ron Price [73] and is described

as an evidence-driven state merging (EDSM) algorithm. This algorithm is consid-

ered to be the current state-of-the-art in DFA learning algorithms. State-merging

algorithms work by first building a prefix-tree acceptor (PTA) for the positive train-

ing set. This is essentially a DFA, containing no cycles, that accepts only the strings

66

in C+. A prefix tree acceptor for the strings bb, ba and aa is shown in Figure 2.5 below.

1 3 6
aa

Accepting state

Start State

2 5

4

b

a

b

Figure 2.5: The Prefix Tree Acceptor for the strings bb, ba, and aa.

The algorithm then generalizes by defining an appropriate equivalence relation on the

set of states and merging equivalent states — cycles are thus created. The equivalence

relation is similar to that used in the Moore optimization procedure [115]. In essence,

two states are considered equivalent if no suffix9 leads from them to differing labels.

Cycles are created only if they do not allow the resulting DFA to accept strings in

C−. The set of negative training examples is therefore necessary since it prevents

over-generalization. The reader is referred to [73] which contains an exposition of

how the algorithm works and many useful references.

9i.e. k -tail

67

Figure 2.6 below, uses a very simple example to show how state-merging basically

works. It starts by building a PTA from C+ and then merge states, creating cycles in

the process. Price’s EDSM algorithm employs the strategy that it is best to perform

first those merges that are supported by the most evidence [73].

1 3
aa

5
a

8

b

6

b

4

b

2

b

7

(i)

1 3 8
aa

5
a

b
b

2,4
6,8

bb
(ii)

b 2,4
6,8

(iii)
1,3
5,7

a

Figure 2.6: Learning DFAs through state merging

Figure 2.6 (i) shows the Prefix Tree Automaton (PTA) for the set of strings S =

{b, ab, aab, aaab}. Note that L(PTA) = S. (ii) shows the DFA obtained by merging

the states 2, 4, 6, and 8. This does not yield any generalization. (iii) shows the DFA

obtained after merging states 1, 3, 5, and 7. This introduces a cycle in the DFA and

therefore results in generalization.

68

Various other techniques for GI have been developed. References [86, 76] contain

an excellent survey of the main methods developed over the last three decades. Miclet

in [86] also discusses an extension of the classical, i.e. Chomsky, grammatical models

to the case were the grammar’s rewrite rules are associated with a ‘probability’ of

rewriting. This gives us stochastic grammars and automata. These have been used

extensively in pattern recognition [16, 33] and various methods have been developed

for their inference. Stochastic grammars and automata have appealed to many re-

searchers and practitioners in pattern recognition because they have some ability for

handing noise. This point is discussed later on in Chapter 3.

69

2.8 String Edit Distances

In Chapter 1 we discussed the ETS inductive learning model and we saw that the

notion of distance plays a central role. In fact, the ETS model uses distance;

(a) to classify an unknown object as belonging or not belonging to a class C by

measuring its ‘distance’ to another object already known to belong to C,

(b) to partially define the class C itself (the class description of C is partially

specified using a distance function), and also

(c) to direct the learning process.

This thesis investigates the application of the ETS model to the problem of gram-

matical inference — i.e. learning a language from a finite subset. In grammatical

inference the set of objects, i.e. the instance space, is the set, Σ∗, of all strings over

some alphabet Σ and the classes are the formal languages over Σ. It is therefore

evident that in order to describe the classes and to test for class membership we

clearly require an appropriate definition of the ‘distance between two strings’ and

also an effective procedure for computing this distance. It turns out that there are

many ways of computing the distance between two strings. In this section we shall

discuss briefly the more popular ‘traditional’ methods used in many applications for

computing such distance and we shall then argue why such methods are inadequate

and, therefore, why it is necessary to develop new distance functions for strings.

Two methods that traditionally have been used to compute the string edit distance

between two strings s1, s2 ∈ Σ, denoted by d(s1, s2), are listed below [71].

String edit distance is defined to be the minimum number of character edit trans-

formations (i.e. insertion, deletion, and substitution of single characters) that

transform s1 into s2.

70

Weighted String Edit Distance is defined to be the minimum cost over all se-

quences of character edit transformations (as above) that transforms s1 into s2

(in the case when each edit transformation is assigned a cost, i.e. a positive

real number).

Table 2.2 shows the edit transformations that transform the string s1 = abcb into

the string s2 = acbc. Db denotes deletion of the character b and Ic denotes insertion

of the character c. The string edit distance between s1 and s2 is therefore 2 since

a minimum of 2 character insertions and/or deletion are required to transform abcb

into acbc. In this example the set of character edit operations (rewrite rules), which

we denote by O, is {a↔ ε, b↔ ε, c↔ ε}.

a b c b Ic

a Db c b c

Table 2.2: String Edit Distance between the strings abcb and acbc.

In the case of weighted string edit distance a weight vector, which we denote by

ω, stores the weights of the character edit operations. We illustrate with an example.

Example 2.3. Let s1 = aaaab, s2 = baaaa, the set of operations is O = {a↔ ε, b↔

ε} and ω = {0.1, 0.9}. �

In Example 2.3 an insertion or deletion of the character a has a weight of 0.1 and

an insertion or deletion of the character b has a weight of 0.9. The weighted string

edit distance is 0.8 since the least edit cost is achieved by first deleting 4 a’s from s1

to obtain the string b and then inserting 4 a’s to obtain baaaa. The reader should

note that, in this case, the weighted string edit distance is not equal to the normal

(unweighted) string edit distance since the least number of edit operations required

to transform s1 into s2 is 2 (a deletion and an insertion of b). The above example

also illustrates the fact that weighted string edit distance does not necessarily have

71

to use the same edit sequence (i.e. sequence of rewrite rules) that is used by nor-

mal (unweighted) string edit distance. String edit distance and weighted string edit

distance are usually called Levensthein distance and weighted Levensthein distance

respectively after V.I. Levensthein [77]. Levensthein is generally recognized as the

first to define string edit distance and to propose a method for its computation.

The string edit distance problem is an extensively studied topic. This is undoubt-

edly due to the fact that string edit distance has numerous applications including:

file comparison [64], spelling correction [58], searching for similarities amongst biose-

quences [91], speech processing [105], and error correcting codes [96]. The reader

is referred to [57, 106] for a comprehensive list of applications, references, and an

exposition.

Various algorithms for both Levensthein distance and weighted Levensthein dis-

tance have been developed since Levensthein’s seminal paper in 1965. Most use

dynamic programming techniques and run in O(mn) time, where m and n are the

lengths of the two strings, although some are asymptotically faster. One of the most

widely used algorithms for string edit distance is the dynamic programming algo-

rithm proposed by Wagner and Fischer in [135]. Before describing this algorithm

we first show that the string edit distance problem can be described by a recurrence

relation.

Notation 2.32. Let s1, s2 ∈ Σ∗ be two strings over some finite alphabet Σ. D(i, j)

denotes the string edit distance between s
(i)
1 and s

(j)
2 . �

D(i, j), therefore, is precisely the distance between the first i characters of s1 and

the first j characters of s2. The following recurrence relation defines the string edit

distance problem (Proof in [57]).

• D(0, 0) = 0,

• D(i, 0) = i,

72

• D(0, j) = j, and

• D(i, j) = min{D(i− 1, j) + w(ε, s[i]), D(i, j − 1) + w(s[j], ε), D(i− i, j − 1) +

w(s[i], s[j])},

where s[i] and s[j] are the ith and jth characters of s1 and s2 respectively and w(a, b)

is the cost (or weight) of substituting the character a by the character b. Computing

the string edit distance between s1 and s2 is therefore equivalent to filling in the

values in Table 2.3. This is accomplished by Algorithm 2.8.1 — a simple, quadratic-

time dynamic-programming algorithm proposed by Wagner and Fischer in [135]. The

algorithm is very short and elegant and can easily be parallelized. It consists of two

preprocessing loops that fill in the first row and the first column of the distance

matrix and two nested loops that compute the rest of the matrix.

The algorithm runs in o(m,n) time where m = |s1| and n = |s2|. Table 2.4 shows

the distance matrix after termination of the algorithm. The weights used were 1 for

insertion/deletion (of any character) and 2 for substitution (of any two characters).

Using this weight vector the algorithm finds the minimum number of edit operations

that transform s1 into s2.

j 0 1 2 3 4 5
i ε a c b c b

0 ε
1 a
2 b
3 c
4 a

Table 2.3: Empty Distance Matrix for the strings acbcb and abca.

Various extensions to the Wagner and Fischer algorithm have been proposed including

one algorithm that uses only O(n) space. The reader is referred to [57] and [114] for

a discussion.

73

Algorithm 2.8.1: LevDist(x, y)

comment: Weighted String-Edit Distance Computation

comment: x and y are the input strings

n← len(x)
m← len(y)
comment: Dn,m is the distance matrix

D0,0 ← 0
comment: Initialize first row and first column

for i← 1 to m
do Di,0 ← Di−1,0 + w(x(i), ε)

for j ← 1 to n
do D0,j ← D0,j−1 + w(ε, y(j))

comment: Compute the rest of the distance matrix

for i← 1 to m

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

for j ← 1 to n

do

⎧⎪⎪⎨
⎪⎪⎩

deletioncost← Di−1,j + w(x(i), ε)
insertioncost← Di,j−1 + w(ε, y(j))
subscost← Di−1,j−1 + w(x(i), y(j))
Di,j ← min(deletioncost, insertioncost, subscost)

j 0 1 2 3 4 5
i ε a c b c b

0 ε 0 1 2 3 4 5
1 a 1 0 1 2 3 4
2 b 2 1 2 1 2 3
3 c 3 2 1 2 1 2
4 a 4 3 2 2 2 3

Table 2.4: Completed Distance Matrix for the strings acbcb and abca.

Weighted or unweighted Levensthein distance, in the case when only single-

character insertion, deletion, and substitution operations are allowed, can therefore be

computed with reasonable efficiency and little programming effort. Some researchers

have considered other types of operations such as block moves [124] and transpositions

(i.e. swapping adjacent characters) [95].

74

The string edit distances we have considered above have one important char-

acteristic in common — the only operations allowed are single-character insertion,

deletion, and substitution operations. This type of distance functions is not ade-

quate for the class description of all but the most simple languages. In the next

chapter we shall be looking at how string edit distances can be used to describe

formal languages and the fundamental inadequacy of this type of string distances

will become apparent. What is somewhat surprising is that an extensive search of

the literature on string edit distances revealed that nobody, apparently, considered

string edit distance where multi-character edit operations are allowed. This is some-

what surprising since, as Fu pointed out in [33], many classes (in syntactic pattern

recognition) cannot be described using only single-character edit operations. Also,

in molecular biology, it is widely assumed that neighbouring characters in biological

sequences are highly correlated and in proteins, in particular, characters in different

parts of the amino-acid sequence are correlated. In spite of this, many researchers in

bioinformatics still use Levensthein distance in applications such as protein sequence

classification. The reader should note that single-character edit operations are, in

essence, context independent. The single-character edit operation a ↔ ε allows the

character a to be inserted (or deleted) anywhere in the string. On the other hand, a

multi-character edit operation such as aba↔ aa allows for the insertion (or deletion)

of the character b only between two occurrences of the character a. Clearly, systems

that use the latter type of operations have more descriptive (or expressive) power.

The apparent lack of interest and effort in the development of distance functions

that use multi-character edit operations may be due to the following reasons:

(a) All the applications of string edit distance that the author came across do not

involve the class description and learning of formal languages. In particular,

they do not involve learning a class description that is defined in terms of the

75

edit operations. This idea is central to the ETS inductive learning model. It

may be the case that most researchers have no use for such operations, or that

perhaps they have not yet discovered the power of multi-character operations.

(b) It can also be the case that multi-character string edit operations are avoided

because of the perceived intractability of computing string edit distance when

using such operations. The theory of string-rewriting systems (see Section 2.4)

shows that the problem of transforming one string to another using multi-

character edit operations is, in general, undecidable and becomes decidable,

and therefore computable, only if certain restrictions are imposed. In fact, it

appears that, even after imposing certain restrictions on the type of operations

allowed in order to make the word problem decidable, computing string edit

distance when allowing for multi-character operations may well be NP-Hard.

In spite of the above, in the next Chapter we will demonstrate the usefulness of

multi-character edit operations and the associated distance functions for the purpose

of specifying certain classes of formal languages. We shall introduce a new string edit

distance called evolutionary distance (EvD) that will be used to specify and learn

kernel languages — a sub-class of the regular languages.

In his Masters thesis Nigam [92] proposed an ETS learning algorithm that used a

polynomial-time dynamic-programming string edit distance algorithm that allowed

weighted multi-character insertion and deletion edit operations which he called macro

operations. This string distance was called Generalized Levensthein Distance (GLD)

and had been proposed by Goldfarb and Santoso [107]. GLD did allow for the learning

of certain classes of kernel languages but it had a number of important limitations.

In spite of its limitations, GLD performed well on the class of languages considered

by Nigam in his thesis. GLD runs in O(nm) where n and m are the lengths of the two

strings. The GLD algorithm differs from conventional Levensthein distance in that

76

it uses two additional data structures — the so-called match matrices. Each match

matrix, one for each string, is used to store the position that each feature ends. This

is illustrated in Figure 2.7 below. For example, the cell 4, 3 in the top match matrix

contains a marker symbol since the feature ab (shown in red) ends at position 3 in

the string cabccbab.

� c a b c c b a b

�

c

b

b

a

b

c

c

c
c

a
b

cba

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

a

b

c

ab

cc

�

��
�

�

�

�
�

�

�
��

� � �
�
��Match Matrix for

the string cabccbab.

Match Matrix for
the string .cbbabcc

Features

ab
bc

Figure 2.7: String distance computation using GLD.

The match matrices are constructed in a pre-processing stage and are used by the

GLD algorithm when the distance matrix is being filled. For example, when comput-

ing the value of D5,5, the algorithm queries the match matrices and discovers that

feature cc (in blue) ends in position 5 of the string cabccbab and feature ab (in red)

ends in position 5 of the string cbbabcc. The algorithm therefore computes the value

in D5,5 by finding the minimum of:

(a) D5,4 plus the cost of inserting a c,

77

(b) D4,5 plus the cost of deleting a b,

(c) D5,3 plus the cost of inserting the feature cc,

(d) D3,5 plus the cost of deleting the feature ab,

(e) D4,4 in the case of a match.

A detailed explanation of how GLD works can be found in [107]. As already stated,

GLD has a number of important limitations. In Chapter 3, when we discuss kernel

languages, we shall see that any useful string edit distance function must be a pre-

metric or a metric, i.e. the triangle inequality must hold. We will see that, in the

presence of noise, the triangle inequality property plays a critical role and if the

distance function violates this property we will not be able to describe the class

(language). Also, testing for class membership becomes impossible. GLD is not a

metric and not even a pre-metric but a pseudo-metric. In Chapter 4, where we discuss

the GSN algorithm used by Nigam in his Masters thesis, we shall show that GLD, in

some cases, does not return the minimum cost edit distance and also that, in general,

it is not suitable for the class description of kernel languages.

This section concludes by fixing some miscellaneous (but useful!) notation and

making a number of observations.

2.8.1 Notes and Additional Notation

Notation 2.33. Let O be a set of string edit operations (single or multi-character),

and ω be a weight vector for O. We denote by δω
O to be distance function associated

with O and ω. We call δω
O the distance function induced by O and ω. �

Note that we are not specifying how the distance is computed. We assume that the

method of computing the distance between two strings is fixed. If, for example, we

78

fix the method for computing string edit distance to be the minimum cost over all

edit sequences that transform one string into another, then, for any strings s1 and

s2, δω
O(s1, s2) is the minimum cost over all edit sequences that transform s1 into s2

where the set of edit operations is O and the associated weight vector is ω.

Unweighted Levensthein distance is a special case of weighted Levensthein dis-

tance since if we assign a weight of 1 to each single-character deletion/insertion and a

weight of 2 to each single-character substitution, δω
O() returns the minimum number

of edit operations required to transform one string into another.

String edit distance functions are often metrics but not always necessarily so.

If the set of operations O contains at least one operation with a zero weight then

the corresponding distance function cannot be a metric since it would be possible

to transform one string into another, non-identical, string using only zero-weighted

operations. The distance between the two non-identical strings would then be zero.

For example, if s1 = ab, s2 = ba, the set of operations is O = {a ↔ ε, b ↔ ε} and

ω = {0.0, 1.0}, then s1 can be transformed into s2 using only two applications of the

zero-weighted operation a↔ ε. In this case, δω
O is a pre-metric.

Definition 2.34 (Equivalent Distance Functions). Let O be a set of edit opera-

tions and let ω and ω′ be two weight vectors. Then δω
O and δω′

O are called equivalent

if, for any s,s2 ∈ Σ∗, both δω
O(s1, s2) and δω′

O (s1, s2) generate the same set of minimum

cost edit sequences. �

Informally, two string distance functions are equivalent if, for any s1, s2 ∈ Σ∗, a

small change in weights does not change the minimum cost sequences that transform

s1 into s2. In Example 2.3, if we change the weight vector ω = {0.1, 0.9} into

ω′ = {0.09, 0.91}, the sequence of edit operations that yields the minimum cost does

not change — i.e. we still would have to delete the 4 a’s before the b and insert 4 a’s

after the b. In practice we usually fix O and let ω ∈ Ω where Ω is some fixed sub-

79

space of R
n
+ where n is the dimension of the weight vectors (and also the cardinality

of O). We then call δΩ
O() = {δω() |ω ∈ Ω} a family of string distance functions. It is

sometimes also desirable to make the operation weights ‘compete’ against each other

by restricting Ω to be the n-1 dimension unit simplex [41] where n = |O|. In this

case

Ω
def
= {ω = (w1, w2, . . . , wn) |Σn

i=1wi = 1}.

80

Chapter 3

Kernel Languages

The class of kernel languages is a subclass of the regular languages proposed by Gold-

farb in [49]. A kernel language consists of all those strings over some given alphabet

Σ that can be obtained by inserting, anywhere, in any order, and any number of

times, any string from a finite set of strings called the features into a non-empty

string called the kernel. The only restriction being that no feature can be a substring

of any other feature or of the kernel. This domain is an example of a structurally

unbounded environment (see Chapter 4). The concept of a structurally unbounded

environment was developed by Goldfarb to describe those environments that cannot

be ‘hard-coded‘ into a learning algorithm. This prevents ‘cheating’ by the learning

algorithm. In this chapter we first present updated definitions for Transformations

System (TS) descriptions of formal languages and follow these with the first formal

definitions for kernel languages, which are then extended to include languages with

multiple kernels. We discuss some important properties of kernel languages such as

confluence and closure, and present some interesting results. We also discuss how

noise is handled and present some practical applications of kernel languages.

81

3.1 TS Class Descriptions for Formal Languages

The traditional structures used to specify, generate, and recognize formal languages

are phrase-structure grammars (PSGs), finite-state and pushdown automata, regular

expressions etc. These structures were not designed, nor intended, for grammatical

inference. Their main weakness is their inherent awkwardness in handling noisy

languages and, as Bunke explained in [16], noise is very often present in real-world

classes. In grammatical inference, and indeed in machine learning as a whole, we

are concerned with such issues such as the form and type of class description (an

issue often ignored by many in the machine learning community) and also the issue

of determining class membership. In practice, classes (or concepts) are very often

‘noisy’ and we therefore require forms of class descriptions and procedures to test for

class membership that can handle noisy classes in a simple and elegant manner.

Recall from Chapter 1 that, in the ETS inductive learning model, classes of objects

are defined in terms of a finite number of members of the class, a set of weighted

transformations, and a distance function defined in terms of the transformations.

When the domain is Σ∗, the objects (or structs) are strings, the transformations are

rewrite rules, and the distance is usually a string edit distance such as Levensthein

distance. In this section we discuss a new form of description of formal languages

— the Transformations System (TS) Class Description. TS class descriptions for

formal languages were introduced by Goldfarb in [47]. This paper described how one

can specify a formal languages using a finite set of strings from the language, a set

of rewrite rules (or transformations) and a weight vector associated with the rules.

The string distance function induced by the rules and their respective weights is then

used to define the class and to test for class membership. In this section we expand

upon Goldfarb’s paper by updating and refining the definitions and by addressing

issues such as; how to best handle noisy languages, a comparison with other forms for

82

describing formal languages, and a discussion of the desirable properties of the string

distance function. A number of examples are also provided in order to illustrate the

basic concepts.

3.1.1 String Transformations Systems

A String Transformations System (STS) is a special instance of a Transformations

System (TS)1 where the set of objects (or structs) is the set, Σ∗, of all strings over

some finite alphabet Σ, the transformations are string rewrite rules, and the distance

functions are string edit distance functions defined on Σ∗. It must be pointed out

that the definitions that follow are somewhat different from those that appeared in

Goldfarb’s original paper [47]. In particular, we have generalized the definition of

the distance function and introduced new structures for dealing effectively with noise

and for testing for class membership. In the definitions that follow Σ will always

denote a finite alphabet, ε the empty string, and s1 →r s2 denotes the application of

the rewrite rule r on string s1 to obtain the string s2. For example, if s1 = cac and

r = (a, b), then s2 = cbc. Each rewrite rule is denoted by a pair such as (a, b) which

means replace ab by b. A chain is a finite sequence of n rewrite rules, r1, r2, . . . , rn

that is applied to a string s1 to obtain some other string s2. In other words, a chain

is an edit sequence. In the case when each transformation is assigned a weight, i.e. a

non-negative real number, the cost of a chain is usually taken to be the sum of the

weights of the transformations in the edit sequence. For all the definitions in this

section, the set of transformations R is always complete — every string in Σ∗ can

be transformed into any other string in Σ∗. This ensures that the word problem is

always decidable. Also, R is always a Thue system, i.e. (a, b) ∈ R ⇒ (b, a) ∈ R.

Each rewrite rule can therefore be applied ‘in both directions’.

1The reader is referred to Chapter 1 for the relevant definitions.

83

Definition 3.1 (String Transformations System). Let Σ be a finite alphabet. A

String Transformations System, M = (R,F, n, φ) is a 4-tuple where;

(a) R, the set of transformations, is a finite string-rewriting system over Σ with

|R| = m. R is indexed by the set {1, 2, · · · ,m} with ord(r), r ∈ R, being the

indexing bijection of R into {1, 2, · · · ,m}. We call ord(r) the ordinal value of

the rewrite rule r ∈ R. Also,

• for any a ∈ Σ, (a, ε) ∈ R, and

• for any s1, s2 ∈ Σ∗, (s1, s2) ∈ R⇒ (s2, s1) ∈ R.

(b) F = {∆ω}ω∈Ω is a family of distance functions, ∆ω : Σ∗ × Σ∗ → R+ where

Ω is the set of all m by n (n is fixed forM) matrices over R such that ∀ω ∈ Ω,
m∑

i=1

ωi,j = 1, for all 1 ≤ j ≤ n.

For every ω ∈ Ω and for every rewrite rule r ∈ R, we denote by wr the vector

consisting of row ord(r) in ω, i.e. wr = (ωord(r),1, ωord(r),2, · · · , ωord(r),n). We

call wr the weight vector for r. For any two strings x, y ∈ Σ we define

∆ω(x, y) as follows: Let π = s0 →r1 s1 →r2 s2 · · · →rv sv where s0 = x,

sv = y, and ri ∈ R, i ≤ i ≤ v, denote the chain (edit sequence) of length v

that transforms x into y and let ν = wr1 , wr2 , · · · , wrv denote the corresponding

sequence of weight vectors of the rewrite rules in π. Then

∆ω(x, y)
def
= minπ∈Π φ(wr1 , wr2 , · · · , wrq), q ∈ N,

where Π is the set of all chains that transform x into y and φ : (Rn
+)∞ → R is

a function (fixed for M) that maps sequences of n-dimensional vectors into R

such that the following always hold;

• ∆ω(x, y) = ∆ω(y, x), and

• ∆ω(x, x) = 0. �

84

Notes to Definition 3.1.

(i) We insist that, for every symbol a ∈ Σ, the rewrite rule (a, ε) is in R. This

means that R contains as a subset the trivial string-rewriting system over Σ, i.e.

all the single-letter insertion/deletion operations2. An important implication

of this is that R is complete, i.e. any string in Σ∗ can be transformed into any

other string. The word problem is therefore always decidable. It also follows

that for any x, y ∈ Σ∗, x →R y always holds and, therefore, there exists at

least one chain (edit sequence) s0 →r1 s1 →r2 s2 · · · →rv sv where s0 = x,

sv = y and ri ∈ R, 0 ≤ i ≤ v, for some v ∈ N. To obtain one such chain one

first reduces x to ε using single-letter deletions and then builds y from ε using

single-letter insertions. In practice, we usually find the chain and an ω that

minimizes ∆ω(x, y). This is precisely why we often refer to F as a family of

competing distance functions. This issue is expanded upon later on.

(ii) We also insist that, for any x, y ∈ Σ∗, (s1, s2) ∈ R implies that (s2, s1) ∈ R,

i.e. all rewrite rules are two-way. R, therefore, is a Thue system and→∗
R is the

Thue congruence induced by R.

(iii) Since, for any x, y ∈ Σ∗, ∆ω(x, y) = ∆ω(y, x), then, necessarily, for any (a, b) ∈

R, w(a,b) = w(b,a). In other words, the weight vector for replacing a by b must be

identical to that for replacing b by a since, otherwise, the symmetry condition

∆ω(x, y) = ∆ω(y, x) would not always hold.

(iv) In most cases we let n = 1, i.e. we assign each rewrite rule a single non-negative

real weight (a 1-dimension vector). However, for some applications it may be

desirable, or even necessary, to assign multi-dimensional vectors as weights.

For example, a rewrite rule may have a deletion cost, a similarity cost, and a

2We use the words operation and rewrite rule interchangeably

85

penalty. In this case, each transformation is assigned a weight vector from R
3.

Although we shall not elaborate here, we have tried to make the definition of

string distance as general as possible in order to allow the practitioner as much

flexibility as possible. The reader is referred to Example 3.2 below.

(v) Notice that, for any two strings x, y ∈ Σ∗, we do not specify how the distance

function ∆ω(x, y) is computed. We only insisted that it is a pseudo-metric3. We

could have defined ∆ω(x, y) to be the length of the shortest path or as the path

of least cost but this would restrict the generality, and therefore the usefulness,

of the distance function. We must also point out that, for noisy languages,

we require that the distance function obeys the triangle inequality condition,

i.e. for any three strings a, b, c,∈ Σ∗, d(a, c) ≤ d(a, b) + d(b, c). For noise-

less languages a pseudo-metric suffices but in noisy languages the lack of the

triangle inequality property, in general, makes correct classification impossible.

This issue will be discussed later on in this section and in the next chapter.

The examples of formal languages specified by string transformations systems

that we discuss later on in this section should convince the reader why we need

the distance function to be as general as possible.

3.1.2 String TS Class Descriptions of Formal Languages

We now investigate the possibility, or rather the feasibility, of using string transfor-

mations systems (STSs) to describe (i.e. specify) formal languages. Unlike formal

grammars, which were designed to specify, generate, and recognize formal languages,

STS descriptions of formal languages were developed by Goldfarb [47] primarily to

describe formal languages, especially in the presence of noise, and also, as we shall

see in Part II of this thesis, for learning languages.

3See the Introduction of Chapter 2 for a definition.

86

Definition 3.2 (String TS Class Description).

Let Σ be a finite alphabet. A String TS Class Description over Σ is a 3-tuple

(M, A, ω) where:

(a) M = (R,F, n, φ) be a string transformations system over Σ as in Definition 3.1.

(b) A is a set of pairs of the form (s, δs) where s ∈ Σ∗ and δs ∈ R is a non-

negative real called the delta-neighborhood value for s. A is called the set

of attractors.

(c) ω is a weight matrix in Ω as in Definition 3.1. �

Definition 3.3. The language specified by the string TS class description (M, A, ω),

denoted by L〈M,A, ω〉 is the set of all strings x ∈ S such that, for some (a, δa) ∈ A,

the distance between x and a is less than or equal to the delta-neighbourhood value

for a. Formally,

L〈M, A, ω〉 def
= {x ∈ Σ∗ |∆ω(x, a) ≤ δa for some (a, δa) ∈ A}

�

Definition 3.4 (STS Language).

A language L ⊆ Σ∗ is called an STS Language when L = L〈M, A, ω〉 for some

string TS description (M, A, ω). �

Informally, an STS language is specified by the set of attractors and their corre-

sponding delta-neighbourhood values, the set of transformations (rewrite rules), and

the weight vectors. The distance function induced by the transformations and their

weights is used to determine class membership. This is achieved by computing the

distance of the unclassified string x to each of the attractors. If, for some attractor,

(a, δ), d(a, x) ≤ δ, then x is considered as belonging to the language. Notice that

each attractor has its own delta-neighbourhood value.

87

3.1.3 Examples of String TS Class Descriptions

We now present some examples of TS class descriptions of formal languages. Some

are for regular languages, some for context-free languages, and one is for a real-world

language.

Examples of Regular Languages

Example 3.1 (The Regular Language a∗b).

This is language L8 of the GI benchmarks listed in Appendix D. A grammar for this

language is G3.1 = (Σ, N, S, P) where Σ = {a, b}, N = {S}, and P contains the

following productions:

S → aS

S → b

L(G3.1) = {b, ab, aab, aaab, aaaab, · · · }. A string TS class description for this lan-

guage is (M = (R,F, n, φ), A, ω) where: n = 1,

R =

a ↔ ε

b ↔ ε

ab ↔ b

, ω =

0.5

0.5

0

, A = {(b, 0)} , φ(νπ) =
∑
r∈π

wr.

where π is a minimum-cost path that transforms one string into another. �

Notes to Example 3.1. L(G3.1) is a very simple regular language. We use it to

illustrate the main ideas involved in specifying formal languages using string trans-

formations systems. Notice that we have three transformations: insert/delete a,

insert/delete b, and replace a by b. The first two transformations are assigned a

non-zero weight while the third is assigned a weight of zero. It is easy to see that

any string in the language can be transformed into any other string in the language

using only the zero-weighted operation ab↔ b. The distance between any two strings

in the language is therefore always zero. For this language we define the distance

88

between two strings x, y to be the minimum cost over all chains (edit sequences) that

transform x into y. For L(G3.1), the cost of a chain is defined to be the sum of all

the weights of the transformations in the chain. Formally,

∆ω(x, y)
def
= minπ∈Πφ(νπ) with φ(νπ) =

∑
r∈π

wr.

where Π is the set of all chains that transform the string x into the string y (using

only the transformations in R) and νπ is the sequence of weights associated with

the chain π. To test for membership of the language one need only compute the

distance between the unknown string z and the attractor b. As explained above, the

distance between b and any other string in the language is zero while the distance

between b and any string not in the language is greater than zero. Consider for

example the string aba. To transform this string to b one can use the following chain:

aba →(ab,b) ba →(a,ε) b. In fact, any chain that transforms a string not in L(G3.1)

to b, for that matter, to any string in L(G3.1), must include at least one non-zero

weighted transformation (rewrite rule).

Instance Space �*

aaabb abaab

babb
abbab

aba

a*b

baa bbab

abbb

aabb

0.5

1.0

Figure 3.1: The pre-metric space embedding of the language a∗b.

Figure 3.1 shows the pre-metric space embedding of L(G3.1). Note that all the strings

in the language are contained in a single point in the pre-metric space. Any string

89

not in the language is proportionately far away from this point depending on the

number of non-zero weighted required to transform it into a string in L(G3.1).

Example 3.2 (The Regular Language a∗ ∪ b∗).

A grammar for this language [47] is G3.2 = (Σ, N, S, P) where Σ = {a, b}, N =

{S,A,B}, and P contains the following productions:

S → A

S → B

A → a

A → aA

A → a

A → aA

B → b

B → bB

L(G3.2) = {a, aa, aaa, . . . b, bb, bbb, . . .}.

A string TS class description for this language is (M = (R,F, n, φ), A, ω) where:

n = 1,

R =

a ↔ ε

b ↔ ε

aa ↔ a

bb ↔ b

, ω =

0.5

0.5

0.0

0.0

, A = {(a, 0)(b, 0)} , φ(νπ) =
∑
r∈π

wr.

�

Notes to Example 3.2. This language was chosen because it has two attractors.

Strings in L(G3.2) can be transformed, using only the zero-weighted rewrite rules,

into one, and only one of the attractors. Notice also that both delta-neighbourhood

values are set to 0, i.e no noise is allowed.

90

Example 3.3 (A Simple Kernel Language).

This is a simple kernel language. Strings in the language L3.3 are obtained by in-

serting into the kernel string cac, anywhere and any number of times, the feature

string bab.

L(G3.3) = {cac, babcac, cbabac, cacbab, cababcbab · · · }. The inserted feature strings

are shown in red. A regular expression for L3.3 is (bab)∗c(bab)∗a(bab)∗c(bab)∗.

A string TS class description for this language is (M = (R,F, n, φ), A, ω) where:

n = 2,

R =

a ↔ ε

b ↔ ε

c ↔ ε

bab ↔ ε

, ω =

0.33 0.0

0.33 0.0

0.33 0.0

0.0 1.0

, A = {(cac, 0.5)} , φ(νπ) = D
S+ε

,

where;

D =
∑
r∈π

ω(ord(r),1), and (3.1)

S =
∑
r∈π

ω(ord(r),2). (3.2)

ε is a small positive real constant to prevent a divide-by-zero error when S is zero,

and π is a minimum deletion cost chain (edit sequence). �

Notes to Example 3.3. L3.3 is an example of a kernel language. Kernel languages,

a subclass of the regular languages, are defined formally and discussed later on in this

chapter. In essence, the kernels play the role of the attractors. A kernel language is

specified by a set of strings K called the kernels and another set of strings F called

the features. The only requirement is that F is substring-free, i.e. no feature is a

substring of another feature, and also that no feature is a substring of the kernel.

91

Example 3.3 is different from all the previous examples in that;

(a) it allows for noise,

(b) each rewrite rule is assigned a weight vector rather than a scalar as before,

(c) the delta-neighbourhood of the kernel is non-zero.

Note that, as in the previous examples, any noiseless string in the language

L3.3 can be transformed into any other noiseless string in L3.3 using only the zero-

weighted rewrite rule bab↔ ε. The reason that the STS description of L3.3 is rather

more involved than those of the previous examples is because this particular STS

description can handle ‘noise’ in the language — i.e spurious characters added to

the strings of L3.3. To see how we first discuss the distance function used. In all of

our previous examples each rewrite rule is assigned a weight (a scalar). This weight

is deletion cost of the particular rewrite rule. String distance was then defined to

be the minimum cost over all chains that transform one string into the other. Any

string s ∈ Σ∗ was then said to belong to the language if the distance between S and

one of the attractors was zero. This scheme works well but is inadequate when the

language is noisy. Suppose, for example, that we want to allow noise and that we

wish to classify strings that have some noise to be classified as belonging to L3.3.

Consider the string babcbabacbbabbabb. The characters of the kernel are shown in

black, the feature bab in red, and the noise is shown in blue. To transform this string

into the kernel cac one must first delete all occurrences of the feature bab. This can

be done with zero cost. One then must delete the ‘noise’ using the non-zero weighted

rewrite rule b ↔ ε. Since the amount of noise is relatively small we may consider it

reasonable to classify this string as belonging to L3.3. We can achieve this by setting

the delta-neighbourhood value of the kernel cac to small positive real value, say 1.33.

For any string s ∈ Σ∗, if the distance from s to cac is less than or equal to 1.33 the

92

string is classified as belonging to L3.3. This sounds reasonable enough except that it

does not always work. Consider the string acbca. The minimum cost distance to the

kernel cac is, in fact, 1.33. However, this string cannot reasonably be considered to

be in L3.3. Not only is the kernel cac not contained in acbca but, also, the kernel is

not even a subsequence. Furthermore, the feature bab does not occur in this string.

This example illustrates the problem with using minimum cost edit distance. This

type of distance function measures the difference between two strings rather than the

similarity. In addition, it measures the absolute difference. This type of distance was

used by Nigam [92] in his ETS learning algorithm for kernel languages. A discussion

of the problems of this kind of distance in found in Chapter 4 where we also discuss

Nigam’s algorithm. The definition of distance we used in the STS description for

L3.3 avoids this problem. We use a new method for computing string distance that

we call normalized string edit distance. Each rewrite rule is assigned a weight vector,

wr = (ω(ord(r), 1), ω(ord(r), 2)), rather than a scalar. The first component is the

deletion cost of the rewrite rule while the second is the similarity value. Distance

between any two strings s1, s2 ∈ Σ∗ is then computed in the following manner:

(a) First find an edit sequence (chain) that transforms s1 into s2 and that has the

minimum deletion cost. Let D equal to the sum of the deletion costs of the

rules in the chain.

(b) Let S be equal to the sum of the similarity values of the rules in the same chain.

(c) The distance is then computed by dividing D by S;

D

S + ε
.

We illustrate with an example. Consider again the string babcbabacbbabbabb. To

transform this string into the kernel cac we first delete the 4 occurrences of the

93

feature bab and then the ‘noise’ by deleting the two b’s. The rewrite rule bab ↔ ε

has a deletion cost of 0 and a similarity cost of 1 while the rewrite rule b↔ ε has a

deletion cost of 0.33 and a similarity cost of 0. The distance is therefore,

0.66

4.0 + ε
= 0.165

This method of computing distance avoids the problems mentioned earlier. The use

of distance allows an elegant and very natural way to deal with noisy languages.

The reader should note, that unlike the case with stochastic grammars [33, 137], one

does not need special rules to deal with the noise. All the noise is handled by the

primitive single-character insertion/deletion rewrite rules which are always present

since, by definition, R is complete. In the example above we have not shown how to

detect features inserted inside other features. This is accomplished by using the EvD

distance function that is introduced and discussed later on in Section 3.3.

Examples of Context-Free Languages

Example 3.4 (The Language aibi, i > 0).

A grammar for this language [126, page 322] is G3.4 = (Σ, N, S, P) where Σ = {a, b},

N = {S}, and P contains the following productions:

S → ab

S → aSb

L(G3.4) = {ab, aabb, aaabbb, . . .}.

A String TS class description for this language is (M = (R,F, n, φ), A, ω) where:

n = 1,

R =

a ↔ ε

b ↔ ε

aabb ↔ ab

, ω =

0.5

0.5

0.0

, A = {(ε, 0)} , φ(νπ) =
∑
r∈π

wr.

94

Notes to Example 3.4. This language is interesting because it has two attractors.

Notice that each string in the language can be transformed into the attractor ab

using only the zero-weighted rewrite rule aabb ↔ ab. The attractor ε is included

only because it belongs to the language. We call this type of attractor a dormant

attractor.

Example 3.5.

This language consists of all strings over the alphabet Σ = {a, b} in which a occurs

as many times as b. A grammar for this language [101, Exercise 1.3] is G3.5 =

(Σ, N, S, P) where Σ = {a, b}, N = {S}, and P contains the following productions:

S → ab

S → ba

S → SS

S → aSb

S → bSa

A String TS class description for this language is (M = (R,F, n, φ), A, ω) where:

n = 1,

R =

a ↔ ε

b ↔ ε

ab ↔ ε

ba ↔ ε

, ω =

0.5

0.5

0.0

0.0

, A = {(ab, 0)(ε, 0)} , φ(νπ) =
∑
r∈π

wr.

�

Notes to Example 3.5. This example is interesting because its only attractor is the

empty string ε. The reader should note how compact and economical the description

is when compared to the corresponding grammar.

95

An Example from Pattern Recognition

Example 3.6.

The human electrocardiogram (ECG) can be described by a simple regular language

that consists of strings that are a concatenation of the substrings prbtb, prbtbb, and

prbtbbb. The characters p, r, and t are the waveform primitives for the pulses and

b is the waveform primitive for the quiescent times [126, page 118]. A grammar for

this language is G3.6 = (Σ, N, S, P) where Σ = {p, r, t, b}, N = {S,A,B,C,D,E,H},

and P contains the following productions:

S → pA

C → tD

E → b

H → b

S → pA

C → tD

E → b

H → b

S → pA

C → tD

E → b

H → b

A String TS class description for this language is (M = (R,F, n, φ), A, ω) where:

n = 1,

R =

p ↔ ε

r ↔ ε

t ↔ ε

b ↔ ε

prbtb ↔ ε

prbtbb ↔ ε

prbtbbb ↔ ε

, ω =

0.25

0.25

0.25

0.25

0.0

0.0

0.0

, A = {(ε, 0)} , φ(νπ) =
∑
r∈π

wr.

�

96

Notes to Example 3.5. Human ECG signals can be encoded as strings over the al-

phabet {p, r, t, b}. A regular expression for this language is {prbtb+prbtbb+prbtbbb}∗.

This is a kernel language with prbtb, prbtbb, and prbtbbb as the features and ε as the

sole kernel. Again, the reader should note how compact and elegant the TS descrip-

tion is when compared to the grammar for the same language. The language contains

no noise and, therefore, the delta-neighbourhood value of the attractor ε is set to 0.

One important point we must make is that the distance function should be de-

signed in such as way so as to prevent the misclassification of strings that contain

features inside other features. For example, consider the string prbprbtbtb. This string

contains the feature prbtb inside another occurrence of the same feature. Unless the

string distance function is designed properly, this string will be classified as belonging

to the language. One can first delete the inner occurrence of the feature prbtb and

then delete the outer one to obtain the kernel ε. This happens if the distance function

allows what we call deletion with concatenation, i.e if deletion of an inner substring

is followed by the concatenation of the remaining parts of the string. One of the

problems of the GLD distance function used by Nigam in his ETS learning algorithm

for kernel languages was precisely this. GLD allows deletion with concatenation and

therefore recognizes strings that contain features inserted inside other features even

though they do not belong to the language. Evolutionary distance (EvD), which we

introduce in the next section, addresses (and solves) this problem.

Goldfarb’s paper [47] also includes a TS description of another real-world lan-

guage. This is the language over the alphabet {a, b, c, d, e} that consists of strings

that are string encodings (chain-codes) of telocentric and submedian chromosomes.

This language is context-free and was first described in [33]. The context-free gram-

mar for this language has 20 production rules while the TS description has only five

weighted rewrite rules.

97

3.1.4 The Role of the Attractors in TS Class Descriptions

It can be argued that the most important component of a TS description of a formal

language is the set of transformations R. Note that, in each of the examples of TS

descriptions that we presented, each set of transformations contained a set of zero-

weighted transformations and a set of non-zero-weighted transformations. The zero-

weighted transformations, which we shall henceforth denote by R0, are the features

of the language. The non-zero transformations, which we shall henceforth denote by

RP, are usually the primitive (i.e. single-character) insertion/deletion rewrite rules.

The primitive transformations are included to ensure that whole set is complete

— i.e. every string in Σ∗ can be transformed into every other string in Σ∗. The

transformations in RP also are responsible for handling ‘noise’. After reviewing the

examples of TS descriptions it should become evident to the reader that the zero-

weighted transformations (or rewrite rules) play a primary role in the specification

of the language since they capture the similarity between the strings of the language.

The attractors play a secondary but critical role. The attractors act as templates

or prototypes of the strings in the language. Without the attractors, specifying the

language would become very difficult — if not impossible. We illustrate with an

example. Let the set of transformations R be {b↔ ε, a↔ ε, aabb↔ ab} and let the

corresponding weight vector be (0.5, 0.5, 0.0). The only rewrite rule that has a zero

weight is aabb ↔ ab. Note that R can be used to describe the language anbn, for

n ≥ 1 by defining the language to be all those strings in Σ∗ that can be transformed

into the attractor ab using only the zero-weighted rewrite rule aabb↔ ab. We cannot,

however, define the language only in terms of this rewrite rule. This is because the

rewrite rule aabb ↔ ab induces an equivalence relation on Σ∗ where the language

anbn is but one equivalence class. We must therefore have a method for excluding

the other equivalence classes. Notice that R0 is the Thue system consisting of the

98

single rewrite rule aabb↔ ab and
∗←→R0 is the Thue congruence generated by R —

i.e. the symmetric, reflexive, and transitive closure of ↔R0 . Now, let ∼⊂ Σ∗×Σ∗ be

a relation on Σ∗ defined as follows:

∼ def
= {(a, b) ∈ Σ∗ × Σ∗ | a ∗←→R0 b}.

In other words, two strings in Σ∗ are related if one can be transformed into the other

using the rewrite rule in R0, i.e. aabb↔ ab. What are the equivalence classes of ∼?.

Each equivalence class consists of all those strings that can be transformed into each

other using this rewrite rule. Notice that R0 is obviously confluent and therefore each

equivalence class contains only one irreducible string (normal form). Each equivalence

class can therefore be specified by its (unique) normal form. The language anbn is one

particular equivalence class and is precisely all the strings that have ab as their normal

form. Another equivalence class is the set of strings that can be reduced to the normal

form abb, i.e. {abb, aabbb, aaabbbb, aaaabbbbb, . . .}. In fact, there are infinitely many

equivalence classes. In general, this scenario is always the case. R0, which contains

the zero-weighted transformations, induces a natural equivalence relation on Σ∗. The

role of the attractors is then to specify which equivalence classes are included in the

language. This is required even when R is confluent. Sometimes, particularly when R

is non-confluent, the attractors are used to specify a proper subset of an equivalence

class. Consider, for example, the kernel language that consists of all strings over the

binary alphabet that can be obtained from the kernel 101 by inserting anywhere,

any number of times, and in any order, the features 00, 11, and 010. In this case

R = {0 ↔ ε, 1 ↔ ε, 00 ↔ ε, 11 ↔ ε, 010 ↔ ε}. The corresponding weight vector

is (0.5, 0.5, 0, 0, 0). R0 therefore contains the transformations 00 ↔ ε, 11 ↔ ε, and

010 ↔ ε. In this case R0 is non-confluent and the congruence class that contains

the kernel 101 also contains the normal form 01. This is because both strings are

normal forms of the string 00101. In the case of anbn the language is, in fact, a

99

congruence class. But, as we have also seen, this is not always the case. The point

here is that using attractors allows us to specify languages that are not necessarily

congruential4. These examples demonstrate that, in general, STS languages are not

necessarily congruential.

3.1.5 The Role of the Distance Function

We have seen that the set of transformations R and the set of attractors A play

different but complementary roles in the specification of STS languages. We now

investigate the role of the distance function. We must emphasize before proceeding

any further that the distance function is not just useful for the purpose of class

description if the language (i.e the class) is noisy. Even in the case of crisp (i.e.

‘noiseless’) there is much to be gained by using a TS description. We shall see also in

Part II of this thesis that distance plays an important role during the learning process

independently of whether the language we are trying to learn is crisp or noisy. At

the moment, however, we shall discuss only the role of distance in class description.

In might appear, at first glance, that in the case of crisp (or noiseless) languages,

the distance function is much less important since the TS description of the language

then functions as a propositional description — i.e. a method for determining whether

or not a string belongs to the language in question. One may argue that this is

precisely what we need — but we beg to differ. In ETS theory, unknown objects are

classified on the basis of their distance to one of the attractors of a class. In the case

of strings, we determine whether a string belongs to a language or not depending on

its distance to one of the attractors of the language. If the language is noiseless, the

delta-neighbourhood values of the attractors of the language are set to zero. This

4Recall from Chapter 2 that a language is congruential if it is the union of a finite number of

congruence classes of a Thue system.

100

means that a string belongs to a language only if the distance to one of the attractors

is zero. In such cases, it is true that the TS description of the language acts like

a propositional description such as a formal grammar. A TS description has one

important advantage over formal grammars and other similar forms of description.

TS descriptions allow for a more compact and informative description. Consider the

following example:

Example 3.7.

L3.7 = the language consisting of all strings over Σ = {a, b, c} that contain the sub-

string abc. See [115] for a formal grammar for this language.

A regular expression for L3.7 is {a + b + c}∗abc{a + b + c}∗.

A string TS class description for this language is (M = (R,F, n, φ), A, ω) where:

n = 2,

R =

a ↔ ε

b ↔ ε

c ↔ ε

abc ↔ abc

, ω =

0.33 0.0

0.33 0.0

0.33 0.0

0.0 1.0

, A = {(abc, 1.0)} , φ(νπ) = D
S+ε

,

where;

D =

∑
r∈π ω(ord(r),1)

max(|s1|, |s2|)
, and (3.3)

S =
∑
r∈π

ω(ord(r),2). (3.4)

ε is a small positive real constant to prevent a divide-by-zero error when S is zero,

and π is a minimum deletion cost chain (edit sequence). �

In Example 3.7, D is weighted Generalized Levensthein distance (GLD) that is nor-

malized by dividing by the length of the longer of the two strings. S is simply the

101

sum of all the similarity values of the transformations in the GLD chain. The trans-

formation abc ↔ abc requires some clarification. In normal circumstances replacing

a substring by itself seems futile but these so-called match operations are used in all

Levensthein string-edit distance algorithms and their derivatives [57, 114]. In fact,

the Levensthein distance algorithm and its derivatives all use the basic (primitive)

single-character match operations. These are assigned a zero weight and allow the

algorithm to progress when the ith character of the first string matches the jth char-

acter of the second string. In our case we are using the match operation to detect if

both strings contain the substring abc. Given any string s ∈ Σ∗, then;

(a) If s contains abc as a substring, the distance to the kernel abc will be always

less than 1. More precisely, it will be in the interval [0, 1[.

(b) If s does not contain the string abc then the distance to the kernel abc will be

greater than 1.

Example 3.7 is very interesting in that it shows the flexibility of using distance for

class description. We use only one transformation to describe the language. Every-

thing else is considered as ’noise’. The reader is urged to compare the above TS

description with the rather cumbersome grammar for the same language found in

[115]. As Goldfarb explained in [47], grammars must be able to build any string in

the language while a TS description captures only the similarity between the strings

in the language.

When the language is noisy, as is the case with the majority of real-world applica-

tions, traditional propositional descriptions such as grammars and automata become

unsuitable. It is for this reason that stochastic grammars and stochastic automata

were developed [33, 26, 108]. TS descriptions allow for a more compact and versatile

description of a noisy formal language than do stochastic automata and grammars

since we can tailor the distance function to suit the domain. In particular, we can

102

control the amount and the type of noise. Let us go back to Example 3.3. In this

example we showed how we can vary the values of the δ-neighbourhoods of the at-

tractors in order to vary the amount of noise in the language. This is because we used

a distance function that normalized the noise by dividing the cost of the deletions by

the similarity value of the chain. In other words, the distance function does not just

measure the difference between two strings but also the similarity. This allows us

to measure the ‘relative’ noise. It is not clear how this can be done with stochastic

grammars. Moreover, one can also vary the weights of the primitive operations to

control the type of noise. For instance, decreasing the deletion cost of the character

b will results in strings with more b’s being accepted as being in the language.

In all the examples we presented, the distance function we chose was always a

pre-metric. In general, metrics are not suitable since a metric function does not allow

two distinct objects to have a pair-wise distance of zero. The choice therefore lies

between a pseudo-metric and a pre-metric. The only difference between the two is

that a pseudo-metric does not have to observe the triangle inequality. This, in fact,

turns out to be a problem when the language is noisy. When a language is noisy, one

cannot correctly specify a class using a pseudo-metric. This problem is discussed in

detail in the next chapter when we examine the GLD distance function as used by

Nigam in the GSN algorithm.

3.1.6 Comparison with Other Forms of Description

In syntactic and structural pattern recognition structural representation is used to

encode the objects in a domain of discourse. In this type of representation complex

objects are recursively built from primitive objects. It is therefore not surprising that

formal grammars have historically been used for pattern class description. This is

probably because formal language theory is well known and understood and because

103

grammars describe how complex patterns can be built from simpler, more primitive,

constituents. The recognition procedures are based on the well-known concept of

language parsing for which many algorithms exist. Many researchers have questioned

the use of formal grammars in syntactic pattern recognition. In a well known textbook

on pattern recognition, Watanabe wrote [137, page 438]:

Phrase-structure grammar has become so prestigious within a short period

of time that to many people grammar nowadays means exclusively phrase-

structure grammar. Correspondingly, many of those who try to make a gram-

matical theory of pictures take it for granted that they have to emulate the

the phrase-structure grammar to make a really modern theory of pictures. To

understand the strong points and shortcomings of such an attempt, it will

be necessary to consider the reason why the phrase-structure grammar has

become so popular so quickly. The intellectual attractiveness of this gram-

matical theory derives from its kinship with the proof theory developed by

the logicians and automata theory. Certainly, the founders of this type of

grammar were strongly influenced by the then popular new stream of logical

development associated with such fascinating names as Frege, Russel, Gödel,

Post, and Turing, among others. The influence of this proof theory on this

language theory is so evident that even now there are still people who feel

that this theory tries to force a framework which is natural in another entirely

different field on the field of language. (Chomsky himself argued that phrase-

structure grammars are inadequate to account for the class of grammatical

sentences in a natural language.) But the analogy between grammaticalness

and provability (computability) is so beautiful and so enticing that we are

tempted to believe that there is something deeper than mere coincidence.

But, people tend to forget that this key point of phrase-structure grammar

has no role to play in is adaptation to the picture theory. The phrase-structure

grammar is supposed to produce grammatically correct sentences and only

grammatically correct sentences. But the grammatical, generative rules as-

sumed in a picture theory often produce pictures that can never occur in prac-

tice. Furthermore, there are many pictures that occur in practice that cannot

be produced by those generative rules. Even limiting ourselves to a certain

well-defined family of pictures, we find there is no such thing as ”pictureness”

corresponding to ”grammaticalness” or ”provability” or ”computability”. A

grammatical theory is a descriptive theory, but it derives its utility partly from

104

its normative aspect. In picture applications, however, there are not useful

normative concepts. If a single picture appears that violates our grammatical

rules, we cannot reject the picture because it is ungrammatical, but we have

to modify the rules. The result will probably produce many pictures which

we do not want to include in our family of pictures.

Watanabe is not alone in his belief that phrase-structure grammars are not always

suitable for syntactic pattern recognition. Tanaka [116] and Goldfarb [47] both ad-

dressed the issue in their papers. The main problems of phrase-structure grammars

and, for that matter, other forms of description such as automata, are:

Noisy Classes Grammars and automata do not handle noise properly. Stochastic

grammars and stochastic automata were developed to handle the problem. In

stochastic grammars, probabilities are assigned to each production. Special

productions are also added to handle the noise. In essence one has to ‘learn’

the noise too and find special productions to handle the noise. The resulting

class descriptions are often cryptic and difficult to understand. Moreover, few

techniques have been developed for the inference of stochastic grammars. The

probabilities assigned to the productions depend very much on the training

sets. This makes the approach very sensitive to changes in the sets of training

examples. TS descriptions use distance to handle noisy classes. The primitive

transformations are then used to handle the noise in the strings. One can then

design a distance function for the domain in question. As we have already seen

in this section, the distance function can be tailored for the various types, and

amounts, of noise.

Class Description Grammars, and automata in particular, are not very good class

descriptions. Grammar descriptions of formal languages can be cumbersome.

This is because, as Goldfarb explains in [47], grammars must be able to build

all the strings in the languages while in TS descriptions, the zero-weighted

105

transformations always capture only the similarity between the strings of the

language. This was demonstrated in Example 3.7, the language the of all strings

that contain the substring abc. The grammar for the language is cumbersome

and uninformative. The TS description contains just one single transformation

abc ↔ abc. This transformation captures the regularity in the language. Ev-

erything else is treated as noise and is handled by the primitive single-character

transformations. The distance function was chosen to allow for a very compact

and information class description.

3.1.7 Summary

Roughly speaking, string transformations systems (STSs) are a generalization of Thue

systems — we add a weight to each rewrite rule and define an appropriate string

distance function. We have seen how string transformations systems can be used to

specify and define formal languages by mean of a TS description. In particular we

have shown how, in many cases, TS descriptions give us a much more compact and

informative class descriptions than formal grammars. In the case of noisy languages,

we can tailor the distance function to control the amount and type of noise. We

have also argued that TS descriptions have distinct advantages over other forms of

description such as stochastic grammars and automata.

One important topic that is not discussed is the expressive power of string trans-

formations systems. McNaughton dealt with the expressive power of Thue systems in

[80]. He restricted his attention to Church-Rosser Thue systems, i.e. those were the

reduction relation induced by the rewrite rules is confluent. In this thesis we consider

only rewrite-rules that do not allow variables (non-terminal symbols). This allows us

to describe classes of regular and context-free languages. McNaughton showed that

the introduction of variables allows for the description of more complex languages.

106

3.2 Kernel Languages

In this section we introduce and discuss the subclass of regular languages we call

Kernel Languages. A kernel language over a finite alphabet Σ is specified by the pair

〈K,F 〉 where K ⊂ Σ∗ is a finite, non-empty, set of strings called the set of kernels

and F ⊂ Σ+ is a finite, non-empty, and substring-free set of strings called the set

of features. Informally, the strings in the kernel language specified by 〈K,F 〉 are

precisely those strings that can be obtained (generated) by inserting features from F

anywhere, in any order, and any number of times, into the kernel strings of K. We

only require that;

(a) features are not inserted inside other features,

(b) no feature is a substring of any other feature, i.e. F is substring-free, and

(c) no kernel contains a feature as a substring.

We illustrate with an example. Consider the set of features F = {ba, ab} and the set of

kernels K = {bb, bc}. The following strings in L〈K,F 〉, the language generated from

K and F , are obtained by successive insertions of features in the kernels: (kernels

are shown in red)

bb bc
babb bcab
babbab abbcab
bababbab abbbacab
bababbabab abbbabacab
abbababbabab baabbbabacab
abbababbababab baabbbabacabba

Notice that features can be inserted anywhere in a kernel but not inside another

feature. We must point out, however, that this does not necessarily mean that a

string in L〈K,F 〉 cannot contain substrings such as aabb which can be formed by the

insertion of the feature ab inside another occurrence of the same feature. The reason

107

for this is because this feature can also be formed from the features ab and ba as fol-

lows: bb →ab abbb →ba baabbb to obtain the string baabbb which, of course, contains

aabb as a substring. Testing for membership in a kernel language is achieved either

by checking if a given unknown string x can be generated from one of the kernels by

a sequence of feature insertions or, alternatively, by (nondeterministically) deleting

features from x to obtain a kernel. Note that the latter procedure is equivalent to

computing the normal forms of x modulo the special semi-Thue system, RF , that

consists exactly of |F | rules of the form (f, ε), f ∈ F . The set of rewrite rules of RF

is therefore indexed by F . To determine if x belongs to L〈K,F 〉 we then need only

check whether one of the normal forms belongs to K.

We continue this section by first presenting some important preliminary defini-

tions and then proceeding to the main definitions of kernel languages. We then

look at various types of kernel languages such as confluent and non-confluent kernel

languages, trivial kernel languages, non-congruential kernel languages, and kernel lan-

guages with single or multiple kernels. We also present some interesting results about,

and properties of, kernel languages. Kernel languages were introduced by Goldfarb

as a non-trivial class of languages for benchmarking learning algorithms. It turns

out, however, that kernel languages have a number of real-world applications which

we present in this section. In this section we also present a new string-edit distance

function, Evolutionary Distance (EvD), which we developed in response to the prob-

lems we identified with GLD distance. EvD can handle all types of noise, including

classification noise, and was successfully used in Valletta for learning multiple-kernel

languages.

108

3.2.1 Preliminary Definitions

Definition 3.5 (s-Deletion). Let s ∈ Σ be a symbol in Σ and let x ∈ Σ+ be a

non-empty string over Σ. We denote by x|s the string obtained from x by deleting all

occurrences of s. �

When we (informally) defined kernel languages in the introduction to this section

we insisted that the features can be inserted anywhere in the kernels but not inside

other features. We therefore need to ensure that when the strings of the language

are generated, features are not inserted inside other features and, equivalently, when

testing for membership in a given kernel language, strings that contain features inside

other features are not accepted unless they can be reduced to some kernel in K.

Our formal definition of kernel languages must accommodate this requirement. To

achieve this we introduce a new symbol, θ, that is not in alphabet Σ. We call θ

the placeholder symbol and its role is to prevent features being inserted inside other

features. To this end we also define two types of string-rewriting rules; θ-substitutions

and θ-reductions.

For the remaining part of this section we fix the following notation:

(a) Σ denotes a finite alphabet,

(b) θ, the placeholder symbol, is a symbol not in Σ, and

(c) Γ denotes the extended alphabet Σ ∪ {θ}.

Definition 3.6 (θ-Substitutions). Let F be a non-empty finite subset of Σ+and let

f ∈ F . We define the binary relation
θ→f ⊂ Γ∗×Γ∗ to be the set of all ordered pairs of

strings (x, y) ∈ Γ∗×Γ∗ such that y can be obtained from x by replacing (substituting)

a θ in x by θfθ. Formally, for any x, y ∈ Γ∗, x
θ→f y if and only if for some u, v ∈ Γ∗,

x = uθv and y = uθfθv. We call
θ→f the θ-substitution relation induced by (the

feature) f. Also, let

109

• θ→
∗
f denote the reflexive transitive closure of

θ→f and,

• θ→
+

f denote the transitive closure of
θ→f .

We now abstract further by hiding the string f used in the θ-substitution, insisting

only that the string belongs to the given set F. We accomplish this by letting x
θ→F y

denote the set of all pairs of strings, (x, y), x, y ∈ Γ∗ such that y is obtained from x by

replacing a θ in x by θfθ for some f ∈ F . We call
θ→F the θ-substitution relation

induced by F. Formally;

θ→F
def
=

⋃
f∈F

θ→f .

Furthermore, let

• θ→
∗
F denote the reflexive transitive closure of

θ→F and,

• θ→
+

F denote the transitive closure of
θ→F .

Finally, we denote by GF the string-rewriting system consisting of all the rules of the

form (θ, θfθ) where f is a feature. Formally,

GF
def
= {(θ, θfθ) | f ∈ F}.

We call GF the θ-substitution system induced by F. �

The following are some obvious but useful results. The proofs are omitted.

Proposition 3.1. Let x and y be any two strings in Γ∗. Then

(a) if x
θ→

+

F y then |x| < |y|,

(b) if x
θ→

∗
F y then |x| ≤ |y|, and

(c) if x
θ→

∗
F y and |x| = |y|, then x = y.

110

Notice that
θ→

∗
F is the reduction relation induced by GF . Note also that

θ→
∗
F is

most certainly not noetherian. This is because every rewrite rule in GF is length-

increasing and ∀x, y ∈ Γ∗ such that x
θ→

∗
f y, f ∈ F , y always contains the left-hand

side of the rule, i.e. θ. This means that any of the rules in GF can be applied

in an endless sequence. It does turn out, however, that
θ→

∗
F is always confluent —

irrespective of our choice of F . We now state this result as a theorem.

Theorem 3.2. Let F ⊂ Σ∗ be any finite set of strings over Σ. Then
θ→

∗
F is confluent.

Informally, this result is true because if, for any x, y ∈ Γ∗, x
θ→

∗
F y, then we can

apply the rewrite rules (θ-substitutions) used to transform x into y in any order —

i.e. any permutation of the re-write rules will do. We illustrate with an example.

Let θcθcθ be a string in Γ∗ and let ab and ba be strings in F . Then: (the inserted

feature is shown in red)

θcθcθ
θ→ab θcθabθcθ

θ→ab θbaθcθabθcθ

θcθcθ
θ→ba θbaθcθcθ

θ→ba θbaθcθabθcθ

The order the rewrite rules are applied is not important. We now state this result as

a lemma and present a proof. We can then proceed directly to proving Theorem 3.2.

Lemma 3.3. Let x, y be two strings over Γ such that x
θ→

+

F y. Then there exists a

finite chain, s0
θ→f1 s1

θ→f2 s2 . . .
θ→fn sn, for some n > 0, such that s0 = x, sn = y,

and fi ∈ F for 1 ≤ i ≤ n. Let I be the indexing set 1, 2, . . . , n that indexes the

features used in the chain. Then for every bijection of I onto itself we get the chain,

s0
θ→fi1

s′1
θ→fi2

s′2 . . .
θ→fin

s′n, and s′n = sn = y.

To prove Lemma 3.3 we require the following result.

Lemma 3.4. Let x, y be two strings over Γ such that x
θ→

2

F y. Let x
θ→f1 w

θ→f2 y

be a 2-chain where f1 and f2 are two, not necessarily distinct, features in F used to

111

transform x into y. Then x
θ→f2 w′ θ→f1 y for some w′ ∈ Γ∗ (i.e. the order of the

θ-substitutions is changed).

Proof of Lemma 3.4 If f1 = f2 then the result is trivially true. Suppose then that

f1 �= f2. The two rewrite rules can be applied in two possible ways:

(a) The rules can be applied on two distinct θ characters in the source string. In

this case the result is obviously true since, irrespective of which rewrite rule is

applied first, the target string will always be the same.

(b) The rules can be applied in sequence with the second rule applied to a θ char-

acter created by the first rule. Again, in this case, the target string will be the

same irrespective of the order in which the rules are applied. This is shown

below.

θ → θaθ → θaθbθ

θ → θbθ → θaθbθ

Lemma 3.4 shows that any sequence of two θ-substitutions can be applied in any

order. As a result of this,
θ→

∗
F is always locally confluent. We now show, by induction,

that this result also applies to sequences of any finite length. This will be the proof

of Lemma 3.3

Proof of Lemma 3.3 Let F be a set of features, x, y ∈ Γ∗, and x
θ→

∗
F y Suppose

the result is true for any n-chain of θ-substitutions. We therefore have:

x
θ→f1 x1

θ→f2 x2
θ→f3 . . .

θ→fn y

Consider now the (n+1)-chain obtained by adding another rewrite fn+1. We therefore

get the following (n + 1)-chain

x
θ→f1 x1

θ→f2 x2
θ→f3 . . .

θ→fn y
θ→fn+1 y′

112

By Lemma 3.4 we can swap the last two rules to obtain

x
θ→f1 x1

θ→f2 x2
θ→f3 . . .

θ→fn+1 y′′ θ→fn y′

We can do this again by swapping the rules
θ→fn−1 and

θ→fn+1 to obtain

x
θ→f1 x1

θ→f2 x2
θ→f3 . . .

θ→fn+1 y′′ θ→fn y′

We can continue this process until
θ→fn+1 become the first rewrite rule applied in the

chain. The argument is sound since, as shown below, when
θ→fn+1 is moved to any

position in the chain, the remaining segments of the chain can be permuted — by

the induction hypothesis. All possible permutations of the (n+1)-chain are therefore

covered.

x
θ→

i

F x′ θ→fn+1 x′′ θ→
j

F y′, i + j = n

Proof of Theorem 3.2 Suppose that for x, y ∈ Γ∗, there is a z ∈ Γ∗ such that

z
θ→

∗
F x and z

θ→
∗
F y Let C1 denote the chain that transforms z into x and let C2

denote the chain that transforms z into y. Consider the chain C1 ◦C2 where ◦ denotes

the union of chains. This chain transforms z into x and then into some z′. The chain

C2 ◦ C1 transforms z into y and then into some z′′. By Lemma 3.3 z′ = z′′ and hence

θ→
∗
F is confluent.

113

Definition 3.7 (θ-Reductions). Let F be a finite non-empty subset of Σ+, and

f ∈ F . We define the binary relation
θ
⇁f ⊂ Σ∗ × Γ∗ to be the set of all ordered

pairs of strings over Γ such that y ∈ Γ∗ can be obtained from x ∈ Σ∗ by replacing

(substituting) any f in x by θ. Formally, for any x ∈ Σ∗, y ∈ Γ∗, x
θ
⇁f y if and only

if for some u, v ∈ Γ∗, x = urv and y = uθv. We call
θ
⇁f the θ-reduction relation

induced by (the feature) f. Also, let

• θ
⇁

∗
f denote the reflexive transitive closure of

θ
⇁f and,

• θ
⇁

+

f denote the transitive closure of
θ
⇁f .

As before, we now abstract further by hiding the string f used in the θ-reduction,

insisting only that the string belongs to the given set F. We accomplish this by letting

x
θ
⇁F y denote the set of all pairs of strings, (x, y) ∈ Γ∗ × Γ∗ such that y is obtained

from x by replacing some f ∈ F in x by θ. We call
θ
⇁F the θ-reduction relation

induced by F. Formally;

θ
⇁F

def
=

⋃
f∈F

θ
⇁f .

Furthermore, let

• θ
⇁

∗
F denote the reflexive transitive closure of

θ
⇁F and,

• θ
⇁

+

F denote the transitive closure of
θ
⇁F .

Finally, we denote by RF the string-rewriting system consisting of all the rules of the

form (f, θ) where f is a feature.

RF
def
= {(f, θ) | f ∈ F}

We call RF the θ-reduction system induced by F. �

114

We note that RF is not necessarily length-reducing, always length non-increasing,

and also always noetherian. Unlike GF , the string-rewriting system RF can be non-

confluent. Using a similar argument to that used in the proof of Lemma 3.3, we can

also show that the rewrite rules can be applied in any order.

3.2.2 Kernel Languages

Definition 3.8 (Kernel Language Description). A kernel language descrip-

tion, which we denote by K, is a 4-tuple 〈Σ, θ,K, F 〉 where;

(a) Σ is a finite alphabet, θ is a ‘placeholder’ symbol not in Σ, and Γ is the extended

alphabet Σ ∪ {θ},

(b) K is a non-empty finite subset of Σ∗we call the kernel set, and

(c) F, the set of features, is a non-empty finite subset of Σ+. �

Definition 3.9 (Kernel Language). [Generative Definition]

Let K = 〈Σ, θ,K, F 〉 be a kernel language description and let GF and
θ→F be the

θ-substitution system and the single-step reduction relation, respectively, induced by

F . Also, let Kθ be a finite set of strings over Γ that is indexed by K. Kθ ⊂ Γ∗ is

obtained from K by inserting a θ at the front, end, and between each letter of each

k ∈ K. Formally, for every ki ∈ K, 1 ≤ i ≤ |K|, the corresponding kθ
i ∈ Kθ is

obtained from ki as follows:

kθ
i = θki1θki2 . . . θkinθ.

The kernel language, LG(K), generated by K is then defined as follows;

LG(K)
def
=

⋃
kθ∈Kθ

∆∗
GF

(kθ)|θ.

�

115

Notes to Definition 3.9. Kθ is the set of strings consisting exactly of the strings

in K but with a θ added to the front, end, and between each letter. Kθ, therefore,

is indexed by K. Also, for each kθ
i = θs1θs2 . . . θsnθ, kθ

i ∈ Kθ, ∆∗
GF

(kθ) is the set

of descendants of kθ
i modulo the string rewriting system GF . ∆∗

GF
(kθ), therefore,

consists exactly of those strings that can be obtained from kθ
i by replacing a θ with

a θfθ for some f ∈ F .

We illustrate with an example. Let K = 〈Σ, θ,K, F 〉 be a kernel language description

where Σ = {a, b, c}, K = {cc}, and F = {ab, ba}. We then obtain Kθ from K by

adding θ’s as described above to obtain Kθ = {θcθcθ}. We build the strings in the

language by applying, non-deterministically, the rules in RF = {θ → θabθ, θ → θbaθ}.

θcθcθ →ab θcθabθcθ →ba θbaθcθabθcθ

The inserted features are shown in red. We then remove the θ symbols to obtain a

string in the language.

θbaθcθabθcθ|θ = bacabc

The definition of a kernel language we have just presented is generative in nature

in the sense that it can be used to generate a kernel language from its description.

We now proceed to a propositional description of a kernel language. A propositional

description allows us, for any string x ∈ Σ∗, to check whether or not it belongs

to some given kernel language. The two definitions, therefore, serve different but

complementary purposes. We also show that, indeed, they are equivalent.

Definition 3.10 (Kernel Language). [Propositional Definition]

Let K = 〈Σ, θ,K, F 〉 be a kernel language description and let RF and
θ
⇁F be the

θ-reduction system and the single-step reduction relation, respectively, induced by F .

The kernel language, LR(K), recognized by K is then defined as follows;

LR(K)
def
= {x ∈ Σ∗ | ⇓RF

(x)|θ ∩K �= ∅}

116

where ⇓RF
(x)|θ is the set of all normal forms of the string x with all occurrences of

θ removed and K is the kernel set in K. �

Notes to Definition 3.10. The strings in LR(K) are the strings in Σ∗ whose

normal forms modulo RF (and with the θ’s removed) include a string in K. Testing

for membership in LR(K) therefore involves first reducing the strings to their normal

forms modulo RF . The normal forms are strings over Γ∗. We then delete the θ’s and

check if one of the normal forms is in the set of kernels. If yes, the string belongs to

the language.

We now show that although the two definitions play different roles, the languages

they describe are the same.

Theorem 3.5. Let K = 〈Σ, θ,K, F 〉 be a kernel language description. Then LG(K) =

LR(K).

Proof of Theorem 3.5 In essence, what we have to show is that any number of

rewrite rules in GF can be ‘undone‘ with any number of rewrite rules in RF and vice

versa. This is trivially true since for every rule θ → θfθ in GF there is a corresponding

rule f → θ in RF . The two rules can be combined to produce θ → θfθ → θθθ. The

θ’s can then be removed to obtain the original string. Since the rewrite rules in both

GF and RF can be applied in any order, it follows that any sequence of rewrite rules

in GF

θ→f1 ,
θ→f2 , . . . ,

θ→fn ,

can be ‘undone’ by the corresponding sequence of rewrite rules from RF

θ
⇁f1 ,

θ
⇁f2 , . . . ,

θ
⇁fn ,

and vice-versa.

117

We first show that LG(K) ⊆ LR(K). Let s ∈ LG(K). Then there exists a string

s′ ∈ Γ∗ such that s = s′|θ and for some k ∈ K, k
θ→

∗
F s′. By our argument above,

s
θ
⇁

∗
F k′, where k′ ∈ Γ∗ and k′|θ = k. Then s ∈ LR(K). A analogous argument can

be used to show that LR(K) ⊆ LG(K) and hence LG(K) = LR(K).

From this point henceforth, we shall always consider a set of features and a set of

kernels minimal in the sense that a proper subset of either of them does not generate

the same language. We now formalize this idea and then proceed to show that if the

set of kernels is minimal then it uniquely specifies the kernel language.

Definition 3.11 (Minimal Kernel Language Description).

Let K = 〈Σ, θ,K, F 〉 be a kernel language description. K is called minimal if there

does not exist K′ = 〈Σ, θ,K ′, F ′〉 with F ′ ⊂ F or K ′ ⊂ K and such that LG(K′) =

LG(K). �

In other words, a kernel language description is minimal if the removal of a kernel or

feature changes the kernel language that is specified by the description.

Lemma 3.6. Let K = 〈Σ, θ,K, F 〉 and K′ = 〈Σ, θ,K ′, F 〉 be two minimal kernel

language descriptions. If LG(K) = LG(K′), then K = K ′.

Definition 3.12. For any two sets A and B, SymDiff(A, B) denotes the symmetric

difference of A and B.

SymDiff (A,B)
def
= (A−B) ∪ (B − A)

�

118

Proof of Lemma 3.6 Suppose K �= K ′. Then there exists some k ∈ SymDiff (K,K ′).

Without loss of generality, suppose the k ∈ K (and therefore k /∈ K ′). This implies

that k /∈ LG(K′). This is because k is, by definition, irreducible modulo F and since

k is not a kernel in K ′ it cannot belong to LG(K′). Therefore LG(K′) �= LG(K). This

is a contradiction and therefore K = K ′.

The above result leads to the question: Does a (minimal) set of features uniquely

specify a kernel language? Despite quite significant effort on the author’s part we

still do not have a definite answer to this question. Our intuition and conventional

wisdom during the time this thesis was being written points to a ‘yes ’ answer but

a formal proof has, so far, eluded us. This is because one could, conceivably, build

strings from the kernels using one set of features and then reduce the resulting strings

back to the kernels modulo another set of features. It can easily be shown however,

that if the kernel is the null string, then the set of features has to be unique.

Before proceeding to introduce and discuss TS descriptions of kernel languages

we must first have a string edit distance function that can used for this purpose.

119

3.3 Evolutionary Distance (EvD)

In order to define TS descriptions for kernel languages we need a string-edit distance

function that avoids the problems with Generalized Levensthein Distance (GLD).

The problems with GLD are discussed in Chapter 4. In brief, GLD is not suitable for

the description of kernel languages because it cannot detect features inserted inside

other features. Moreover, GLD violates the triangle inequality and, as well shall see

in Chapter 4, this presents a problem when dealing with noisy languages. With GLD

it is difficult to incorporate mechanisms to handle noise. A feature that is corrupted

by the insertion of a single character is considered as noise. This can affect the

convergence of the learning algorithm. The main objective behind the development

of EvD was to devise a distance function that could be used for TS description of

kernel languages. In particular, the new distance function had to:

(a) Be able to detect features inserted inside other features (this is important since

strings that contain features inserted into other feature must not be classified

as belonging to the language),

(b) be able to handle both confluent and non-confluent kernel languages with or

without noise,

(c) be able to handle kernel languages with multiple kernels, and

(d) provide an efficient method for testing for membership.

EvD satisfies all the above requirements. In addition, it can be computed in linear

time for confluent languages, is a pre-metric and satisfies the triangle inequality, and

can handle relatively high levels of noise.

Various other string edit distance functions were considered. All were rejected

because they did not satisfy the above requirements. Amongst the string edit distance

120

that were considered was True Edit Distance (TED). TED is defined to be the least

cost, over all possible sequences of weighted transformations, that transforms one

string into another. The reader will be forgiven for thinking that this definition is

the same as that for GLD. GLD, however does not really return the least cost. This

is because it is sometimes the case that one may have to add some characters before

computing distance. GLD does not do this. Consider the string cccabbacccc and the

feature abcba. The path of least cost to the string cccccccc is to first insert a c to

obtain ccccabcbacccc and then to delete the feature abcba. GLD cannot do this and

therefore does not really find a sequence of transformations of least cost. TED is,

in general undecidable. This is because, with zero-weighted transformations, there

is no bound on the number of transformations that need to be inserted in a string

before the string is transformed into the other. This means that TED is equivalent

to the word problem.

We also considered Closest Ancestor Distance (CAD) before finally settling for

EvD. CAD is computationally tractable since only deletions are allowed. There is

therefore a bound on the number of deletions even if the transformations are zero-

weighted. The distance between two strings is defined to be the distance to the

closest ancestor using only deletions. In other words, CAD is the the least cost, over

all possible sequences of weighted deletions, that transform both strings to a third

string — (the ancestor).

We illustrate with an example. Figure 3.2, overleaf, shows how the strings abbab and

acbca are transformed into the common ancestor aba. The idea of using CAD seemed

intuitive but it turned out that CAD cannot properly describe kernel languages.

Consider the strings 010 and 01110 drawn from the kernel language that has ε as

the sole kernel and the (zero-weighted) features 11 and 010. The CAD distance is zero

121

a bab b

abab a bac

aba

a b ac c

delete b

delete b

delete c

delete c

Figure 3.2: Closest Ancestor Distance between the strings abbab and acbca.

since one need only delete the feature 11 from the second string to obtain 010. This

is not the correct distance. The string 01110 does not belong to the language. CAD,

therefore, cannot be used to describe kernel languages. We then decided to consider

defining the distance between two strings to be the weighted Levensthein distance

between the normal forms. Given two strings and a set of features F we first reduce

the two strings to their normal forms modulo F and then compute the distance

between the normal forms. The problem with this method is that the resulting

distance function is pseudo-metric and violates the triangle inequality. Consider the

strings a = ‘110 ’, b = ‘0010010 ’ and c = ‘0 ’. Figure 3.3, overleaf, shows the pair-wise

distances between the normal forms of the three strings.

122

Operations

00
11

010

110

a = “110”

2.0

0

0.0

0.0

b = “0010010”

c = “0”

110

0

Figure 3.3: Distances between the normal forms of 0, 110, and0010010.

Note that:

d(a, c) = 2, d(a, b) = 0, and d(b, c) = 0

and therefore:

d(a, c) = 2 > d(a, b) + d(b, c).

This violates the triangle inequality. EvD avoids this problem by passing the set of

kernels as parameters to the distance function. The parameters passed to EVD are:

(a) A set of features F . These induce a set of zero-weighted rewrite rules and the

θ-reduction relation RF .

(b) A set of primitive single-character rewrite rules P . These are assigned non-zero

weights.

(c) A set of kernels K.

123

Given two strings s1 and s2, EvD(s1, s2) is then computed as follows:

• Reduce s1 and s2 to their normal forms modulo F using the θ-reduction relation

RF . We denote the two sets of normal forms (with the θ’s removed) by ⇓F (s1)

and ⇓F (s1) respectively.

• Find the WLD5 distance from ⇓F (s1) to K, call it d1. Find the WLD distance

from ⇓F (s2) to K, call it d2.

• EvD(s1, s2) = d1 + d2

Notice that d1 =WLD(⇓F (s1), K) and d2 =WLD(⇓F (s2), K). Both ⇓F (s1) and K

are sets. To find the minimum distance one has to compute the WLD distance over

all pairs and take the minimum. EvD satisfies the triangle inequality since, given

x

Kernels

Normal
Forms
for a

Normal
Forms
for b

Normal
Forms
for c

y

z

Figure 3.4: Why EvD satisfies the triangle inequality.

three strings a, b, and c with WLD(⇓F (a), K) = x, WLD(⇓F (b), K) = y, and

WLD(⇓F (c), K) = z, then, as can be seen in Figure 3.4 above,

EvD(a, b) = x + y, EvD(b, c) = y + z, and EvD(a, c) = x + z.

The triangle inequality EvD(a, c) ≤EvD(a, b) + EvD(b, c) holds since:

x + z ≤ x + 2y + z.

5Weighted Levensthein Distance.

124

The θ-reduction relation induced by F , RF , is used in order to detect features

inserted inside other features. In Chapter 5 we describe an efficient procedure for

reducing the strings to their normal forms modulo RF . The computational complexity

of EvD might seem, at first glance, to be much worse than that for GLD. One

must bear in mind, however, that GLD computation is quadratic to the length of

the unreduced strings. For EvD we compute the WLD, with only single-character

operations, between the normal forms and the kernels. These are usually much

shorter than the original strings.

3.3.1 TS Descriptions for Kernel Languages

The TS description of a kernel language associated with a kernel language description

K = 〈Σ, θ,K, F 〉 is string TS description where:

(a) The set of kernels K is the set of attractors,

(b) the set of rewrite rules are of the form f ↔ ε where f ∈ F , and

(c) the distance function is EvD.

Other than the above, a TS description of a kernel language is, in all other respects,

a standard TS description as discussed earlier in this chapter. Each kernel is assigned

its own delta-neighbourhood value. In kernel language TS descriptions, the rewrite

rules induced by the features are always zero-weighted. The primitive single-character

deletion rewrite rule are non-zero weighted and are used by the EvD function to

compute the distance between the normal forms. EvD uses θ-reductions in order to

detect features inserted inside other features. Example 3.3 on page 91 is a typical

example of a kernel language description.

125

3.3.2 Some Properties and Applications of Kernel Languages

The set of features of a kernel language can induce a confluent or non-confluent

reduction relation. Confluent kernel languages are much easier to work with since

each string has got only one normal form and, thus, the normal form can be computed

in linear time. EvD computation in the case of a confluent set of features is much

faster than GLD. Non-confluent kernel languages are more difficult to handle because

of the many normal forms that each string can have. This depends on the number of

overlapping features. In order to get some idea of the degree of ‘non-confluence’ of a

kernel language we devised the following measure:

τ =
ν

nP2

where ν is the number of overlapping features. This gives us a measure of how ‘non-

confluent’ a kernel language is. If τ is between 0.6 and 1 we say the language is

strongly non-confluent. We noticed, when running tests on the Valletta algorithm,

that a high τ number almost always resulted in an increase in the time taken for

EvD computation. This is not surprising given that the number of normal forms of

a string increases substantially if the string is reduced modulo a set of features with

a high τ number.

The set of kernel languages is, in general, not closed under union. Consider

the languages described by K1 = 〈Σ, θ,K, F 〉 and K2 = 〈Σ, θ,K ′, F ′〉. Note that

both languages are defined over the same alphabet. The union of K1 and K2 is not

necessarily a kernel language.

If two kernel languages share the same set of kernels but have a different set of

features, their union is not a kernel language. Rather, it is a subset of the kernel

language 〈Σ, θ,K, F ∪F ′〉. This is because the union will contain strings that contain

only one set of features but not both.

126

On the other hand, if two kernel languages share the same set of features but have

a different set of kernels, their union is the kernel language 〈Σ, θ,K ∪K ′, F 〉.

Some kernel languages have only single-character features. These are called trivial

kernel languages. This is because the string rewriting system induced by the features

is trivial (see Chapter 2). Trivial kernel languages are quite useful. We found out

that they can represent binary functions defined over a domain where objects are

described by discrete-valued attributes. We call this type of kernel languages OAV

(Object Attribute Value) Languages. If fact, we successfully re-encoded the Monk’s

Problems datasets [122] (See Chapter 7) as strings in a OAV languages and used Val-

letta to successfully learn the classes. As we shall see in Chapter 7, with trivial kernel

languages we can even describe classes defined on these domains which are difficult

or cumbersome to describe in either CNF or DNF. Kernel languages, it appears, are

not ‘trivial’ after all.

We also found other real-world applications of kernel languages. The class of n-bit

parity binary strings is a kernel language. So is the human ECG language described

earlier on page 96. We have no doubt that there are more. Kernel languages can

also be used to describe ‘features‘ in chain-code picture languages [2]. In fact, they

are rather suited for this application since they can used to remove ‘noise’ from the

features.

127

Chapter 4

The GSN Learning Algorithm

4.1 Background

The very first application of ETS theory was in grammatical inference. In his Mas-

ters thesis, Nigam [92], together with Led Goldfarb who was his Masters supervisor,

developed an ETS inductive learning algorithm that learned kernel languages with

a single kernel. This work was a continuation of earlier work done by Santoso [107],

again in a Masters thesis under Goldfarb’s supervision. Goldfarb choose such a class

of languages for implementing his ETS theory because the class of kernel languages

is an example of a structurally unbounded environment (SUE). A SUE is, in essence,

a set of classes that cannot be enumerated by varying some finite number of numeric,

but discrete, parameters. In other words, a learning algorithm for a structurally

unbounded environment cannot ‘cheat’ by hard-coding the environment in the algo-

rithm itself. Goldfarb first proposed the term structurally unbounded environment

in [45]. In Goldfarb’s own words:

Having assumed (the) pattern learning as a basic attribute of an intelligent

process, one can then proceed to define a minimum requirement for the

environment learning process. What is the importance of the ‘minimum re-

128

quirement’ for environment? The history of AI and pattern recognition sug-

gests that learning in some environments is “easy” and thus little insight into

the most interesting parts of the learning process is gained, while learning

in some other environments is simply impossible on computational grounds.

The requirement that I propose can be called structural unboundedness of the

environment. Informally, an environment is called structurally unbounded

if no finite sets of “features”, or parameters, is sufficient for specifying all

classes of events in the environment. I do not have a formal definition of

the structural unboundedness that would apply to all environments, but one

should stress that the family of event classes in such environments cannot be

enumerated by varying some finite number of parameters — i.e. no “closed

form” description of the environment exists. Thus, for example, an infinite

family, {x, y, z |x+y = 5m, y+3z = n}n,m∈N is not a structurally unbounded

environment.

The class of kernel languages is an example of a structurally unbounded environ-

ment. The set of all possible features and the set of all possible kernels cannot be

encoded into the learning algorithm. In algorithms such as the Candidate Elimination

and ID3 [88] the set of features (in this case the attributes) is known beforehand.

During learning, these algorithms do not construct new features but describe the

class in terms of the initial set of features. The output of the Candidate Elimina-

tion algorithm is a Version Space [88] and that of the ID3 algorithm is a decision

tree. On the other hand, learning in a structurally unbounded environment, such as

kernel languages, requires the learning algorithm (or agent) to discover (or rather

construct) the features during the learning process. The learning algorithm cannot

be given all the possible features to start with. Kernel languages, therefore, were

an ideal environment for which to develop and test the ideas developed by Gold-

farb throughout the years. The algorithm described and analysed in this chapter is

that developed by Goldfarb, Santoso, and Nigam. This algorithm will henceforth be

referred as the GSN algorithm. The GSN algorithm is an ETS inductive learning al-

gorithm that learns a kernel language from a relatively small number of positive and

129

negative examples. The output of the algorithm is a simple form of a TS description.

The results obtained by the GSN algorithm seemed nothing less than spectacular to

the author when he discussed the algorithm with Sandeep Nigam in 1992. The algo-

rithm appeared to solve what seemed to be a rather difficult combinatorial problem

with uncanny ease. Given five or six strings from a kernel language and a similar

number of strings not in the language the GSN algorithm, even in the presence of

noise, discovers the features of the kernel language in a very short time. The GSN

algorithm worked by constructing a set of weighted features such that, under the

distance function induced the features, the interdistance between the strings in C+ is

zero or close to zero while the distance between the strings in C+ and those in C− is

appropriately large. This is called class separation. When the author had finished his

Masters thesis, he decided that the GSN algorithm was fascinating and was worth a

closer look. The starting point of this thesis was therefore the GSN algorithm. The

reader is referred to the Masters theses of Nigam [92] and Santoso [107] for a detailed

description. The purpose of this Chapter is to give a brief synoptic description of the

GSN algorithm and to identify and discuss its limitations and problems.

4.2 Overview of the GSN Algorithm

The actual GSN algorithm is described in detail in Sandeep Nigam’s Masters thesis

[92]. The reader is referred to Nigam’s thesis for a more detailed description and a

discussion of the various implementation issues. The main purpose of this section

is to outline the salient features of algorithm. The algorithm is relatively simple in

concept although its actual implementation was somewhat complex. This was mainly

because it was optimized for speed and heuristics were added in order to improve the

running time.

130

Typical input to the GSN algorithm is the following:

(a) A set C+ of positive training examples,

(b) a set C− of negative training examples, and

(c) the learning threshold value T .

Informally, given the above input, the algorithm tries to minimize the interdis-

tance in C+ and to maximize the distance between C+ and C−. As explained in Chap-

ter 1 this will result in class separation and generalization. Suppose, for instance,

that the language to be learned by some ETS learning algorithm is the context-free

language anbn and that the input to the algorithm consists of the following training

strings:

C+ C−

ab ba
aabb aba

aaabbb aaaaa
aaaabbbb bbaba

aaaaabbbbb aaabb
ababab
abaabbb

Table 4.1: A training set for the language anbn.

If the ETS learning algorithm has the proper inductive preference bias it will discover

the following set of weighted transformations:

Transformation Weight
a↔ ε 0.5
b↔ ε 0.5

aabb↔ ab 0.0

Table 4.2: The transformations discovered by the ETS learning algorithm.

131

Notice that if string distance is defined to be the minimum cost of transforming any

string in Σ∗, where Σ = {a, b}, into any other string then class separation has been

achieved. This is because, given the above set of weighted transformations, any string

in the language anbn can be transformed, with zero cost, into any other string in the

same language using only the (zero-weighted) transformation aabb ↔ ab while the

distance between strings in anbn and other strings not in anbn would depend on the

number of the non-zero weighted transformations required to transform one string

into another. This is depicted in Figure 4.1 below.

Instance Space �*

aaabb abaabbb

bababb

aaba

aba

a b
n n

baab baabab

abbb

aabbb
0.5

1.0

Figure 4.1: The pre-metric space embedding of the language anbn.

Figure 4.1 shows the pre-metric space embedding of Σ∗ where the distance used

is that induced by the transformations in Table 4.2. All strings in the language

anbn have a (pair-wise) interdistance of zero and the language anbn therefore appears

as a single point in Figure 4.1. The other strings in Σ∗ appear proportionately far

away from the point that represents anbn. The string aabbb, for example, can be

transformed into the string aabb (which belongs to anbn) by the single deletion of a

character b, i.e. by means of the transformation b → ε which has a weight of 0.5.

This is the path of minimum cost that transforms aabbb into aabb. The string aabbb

is therefore shown in Figure 4.1 at a distance of 0.5 from the language anbn. The

132

GSN algorithm learns by discovering, or rather constructing, a set of transformations

(i.e. string insertions, deletions, and substitutions) such that, under the distance

function induced by this set of transformations, all strings in C+ have (pairwise) zero

distance and the distance between strings in C+ and those in C− is appropriately

large. We now proceed to examine the GSN algorithm in more detail and discuss

some implementation issues.

The string distance function used by the GSN algorithm is Generalized Levens-

thein Distance (GLD). The main idea behind GLD was to extend Levensthein dis-

tance to cater for multi-character transformations and therefore allow for the com-

putation of the minimum-cost edit-path between two strings using multi-character

transformations. Conventional Levensthein distance (see Section 2.8) allows only for

insertions, deletions, and substitutions of single characters and is therefore unsuit-

able for the description and learning of kernel languages. GLD uses a very similar

dynamic programming technique that runs in O(nm) time, where m and n are the

lengths of the two strings, to find the minimum weighted cost of transforming one

string into another. GLD is discussed in some detail in Section 4.4 where its main

problems and limitations are identified and discussed. In spite of its problems, GLD

worked well in the GSN algorithm and did not affect the learning of the examples of

kernel languages considered by Nigam in his thesis.

The principal objective of the GSN algorithm is the maximization of the function;

f =
f1

c + f2

, (4.1)

where f1 is the minimum distance (over all pairs) between C+ and C−, f2 is the

average pair-wise intra-set distance in C+ and c is a small positive real constant to

avoid divide-by-zero errors. Formally, if O is a set of transformations, ω the weight

133

vector associated with O, and dω the distance function induced by O and ω, then

f2 =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

dω(si, sj), where si, sj ∈ C+. (4.2)

The value of f2 is therefore the average distance taken over all possible pairs in C+.

The value of f1 is computed as follows:

f1 = min{dω(s1, s2) | s1 ∈ C+, s2 ∈ C−}. (4.3)

The value of f1 is therefore the minimum distance taken over all pairs of strings

(s1, s2) where s1 ∈ C+ and s2 ∈ C−.

+

-

+

-

+

-+

-

+ -
+

-

+

-

+

-

Average interdistance
in C+

Minimum distance
between C+ and C-

f 1

f 2

- C-

C+

Figure 4.2: The f1 and f2 functions.

Figure 4.2 is a depiction of the computation of the f1 and f2 functions. During learn-

ing, the average intra-set distance in C+, i.e. f2, gets progressively smaller until the

value of f2 is zero or very close to zero and class separation is achieved. It must be

pointed out that both f1 and f2 each require a polynomial number of distance com-

putations. More precisely, the number of distance computations required to compute

f1 is O(|C+| |C−|) while the number of distance computations required to find the

134

value of f2 is O(|C+|2). Bearing in mind that the distance computation itself is also

quadratic in the length of the two strings, it is easy to see that for longer strings, i.e.

longer than 100 characters, and for large training sets, the computation of f1 and f2

is, although still polynomial, rather compute-intensive.

The GSN algorithm optimizes the f function by iteratively constructing new

transformations from its current set of transformations until finally, under the dis-

tance function induced by the final set of transformations, f exceeds the threshold

T . This threshold is a positive real constant which is input by the user. The value of

T depends of the amount of noise in the training set — the more noise, the lower a

value of T is required. The initial set of transformations is usually the set of single-

letter insertion/deletion transformations — the so-called primitive transformations.

The algorithm then builds new transformations from this basic set of transforma-

tions and continues this construction process until f exceeds the threshold T . The

GSN algorithm itself consists of two main loops; the learning loop and the feature

construction loop — as depicted in Figure 4.3 overleaf. The feature construction

loop runs inside the learning loop. The learning loop is a conditional loop — it

keeps iterating until learning is achieved. At each pass through the learning loop

new features are constructed (by the feature construction loop) out of the current

set of features by concatenation on the left and right. Suppose, for example that the

alphabet is {a, b, c} and that the current set of features is ab and ca. The feature

construction loop constructs new operations by concatenating, on both sides of the

current features, the characters of the alphabet to obtain the following set of new

features; {ab, ca, aab, bab, cab, aba, abb, abc, aca, bca, cca, caa, cab, cac}.

135

StopIs >= Threshold ?f

Start with single-letter
featuresindel

Yes

No

Start

Feature
Construction

Loop

Optimize over unit
simplex

f

Figure 4.3: Basic architecture of the GSN algorithm.

The algorithm then adds each new feature, one by one, to the current set of

features and optimize the weights over the unit simplex. Any of the new features

that register a decrease in f2 are retained and added to the current feature set.

The architecture of the GSN is therefore conceptually quite simple. The outer loop

controls learning while the inner loop controls feature construction. The unit simplex

is the subset of R
n where the sum of the components of each vector is always 1.

Notice that the unit simplex is always of dimension n− 1 for R
n. Every time a new

feature is added the dimension of the simplex is increased by 1. This is depicted in

Figure 4.4 below. It must be pointed out that the GSN algorithm does not perform

an exhaustive search of the unit simplex but computes the function f at the vertices,

136

mid-points of the edges and other specific points of the simplex. It finds the set of

weights that maximizes f . The sum of the weights of the transformations is always

1. This makes the weights ‘compete’ against each other. The reader is referred to

Nigam’s Master thesis [92] for the exact procedure for selecting the weights.

w3

w2

w1

0,0,1 1,0,0

0,1,0

0,0,1 1,0,0

0,1,0

w3

w2

w1

w4

(a)

(b)

Figure 4.4: Adding a new dimension to the simplex.

137

GSN — Main Steps

(1) Compute the values of f2 for each of the m vertices of the
basic simplex.

(2) Promote (to the next) stage all the 1-letter features for
which f2 is maximal.

(3) From the promoted 1-letter features form all possible 2-
letter features using left and right concatenation of the let-
ters of the alphabet.

Matching
Test

(4) For each of the constructed 2-letter features check if the
feature is present in all the strings of C+.

(5) IF none of the features passes the matching test THEN, the
feature construction stage is completed and the promoted
1-letter feature is added to the current set of features ELSE
promote (to the next stage) all 2-letter features which passed
the matching test.

(6) Add each of the promoted n+1 -letter features one-at-a-time
to the current set of features and compute the value of f2

for the weight vector (1/m, 1/m, . . . , 1/m, 0).
(7) Promote all 2-letter features for which f2 is minimal.
(8) Form from the promoted 2-letter features all possible 3-

letter features (by left and right concatenation). Promote
3-letter features on the basis of the matching test in step
(4).

(9) Continue the formation of new features until the value of f2

cannot be reduced further.

Table 4.3: The main steps of the GSN ETS learning algorithm.

Table 4.3, reproduced from Nigam’s thesis, lists the main steps of the GSN algo-

rithm. Notice that the GSN algorithm constructs the features as opposed to search-

ing for them. At each stage, the number of new features considered by the feature

construction loop is 2.|Σ|.|O| where Σ is the alphabet and O is the current set of

features. The matching test is performed in each iteration of the learning loop. This

is somewhat compute-intensive. A completely different approach was adopted for the

Valletta algorithm.

138

4.3 Results Obtained by the GSN Algorithm

The GSN algorithm was implemented in Modula-2 on a Sun Sparcstation 2 UNIX

workstation. Nigam tested the algorithm on numerous examples but only three are

documented in his thesis. The training data sets are listed in Table 4.4 below.

GSN — Training Examples

Problem |C+| |C−| Description
nigam01 5 4 Kernel: cccc

Features: ee, ded Average Length: 2.5 chars
No noise, 17.3 seconds runtime.
Average length of strings: 28 characters.

nigam01n 5 4 Kernel: cccc
Features: ee, ded Average Length: 2.5 chars
≈ 5% noise, 17.0 seconds runtime.
Average length of strings: 28 characters.

nigam02 6 5 Kernel: ccdbeebdccdbeebd
Features: dd, ede, cdbebdc Average Length: 4 chars
No noise, 90.2 seconds runtime.
Average length of strings: 59 characters.

nigam02n 6 5 Kernel: ccdbeebdccdbeebd
Features: dd, ede, cdbebdc Average Length: 4 chars
≈ 10% noise, 95.2 seconds runtime.
Average length of strings: 59 characters.

nigam03 8 5 Kernel: bddaccaa
Features: bddabcdadd, bddaaceeabcdd, eadededeabcd
Average length of features: 11.7 chars.
No noise, 10 minutes 57.5 seconds runtime.
Average length of strings: 103 characters.

nigam03n 8 5 Kernel: bddaccaa
Features: bddabcdadd, bddaaceeabcdd, eadededeabcd
Average length of features: 11.7 chars.
≈ 10% noise, 10 minutes 59.0 seconds runtime.
Average length of strings: 103 characters.

Table 4.4: The training examples used to test the GSN learning algorithm.

The results in Table 4.4 suggest that the running time of the GSN algorithm

139

suffers somewhat as the size of the training set, the feature length, and the length of

the training strings increases. We shall discuss this issue and give possible reasons

for it in the next section. As the line graph in Figure 4.5 shows, there seems to be

some correlation between the average string length of the training examples and the

running time. Also, the nigam03 data set had large features (10-13) and given GSN’s

rather laborious feature construction method, it is no surprise that this data set took

well over 10 minutes to train. On the other hand, the presence of noise did not seem

to affect the algorithm and training times increased only slightly.

0

100

200

300

400

500

600

700

1 2 3 4 5 6

No. of Strings

String Length

GSN Leanring Time

Average Feature Length

Datasets

R
u

n
n

in
g

T
im

e
in

S
e

c
o

n
d

s

Figure 4.5: Line graphs of the GSN results.

The GSN algorithm did, in the author’s opinion, perform rather well given that

it was the very first grammatical inference algorithm that implemented the ETS

inductive learning model. The GSN algorithm also manifested a healthy robustness

140

to noise and, in each case, managed to find the correct class description for each

problem. This is not to say that there was no room for improvement to the GSN

algorithm. In fact, the remainder of this chapter is dedicated to the problems that

were identified with the algorithm and also a discussion of the number of ways in

which it could be improved. This critique served as a basis for the Valletta ETS

inductive learning algorithm which is introduced and discussed in Part II of this

thesis.

4.4 Problems with the GSN Algorithm

An analysis of the GSN algorithm identified the following problems and/or concerns:

Restricted Learning Domain The GSN algorithm can only learn kernel languages

that have exactly one kernel in their description. Multiple-kernel languages cannot

be learned by the GSN algorithm and there does not seem to be an obvious way to

modify the algorithm so it can also learn multiple-kernel languages. All examples

of ‘practical’ kernel languages that the author came across were all multiple-kernel

languages.

Structural Completeness The GSN algorithm assumes that a positive training

set C+ is structurally complete if and only if each feature of the unknown language

is present, i.e. occurs as a substring, in every string of C+. This is perhaps too

restrictive. Of course, such a restriction can be exploited in order to accelerate the

learning process. In fact, the GSN algorithm cannot learn a kernel language unless

each feature occurs in every string of C+. The matching test of the GSN algorithm’s

learning loop ensures that only features that occur in every training string of C+

are considered. This gives the algorithm a very effective stopping criterion. Each

141

primitive feature is built (by left and right concatenation) until it no longer passes

the matching test. Valletta uses a much more relaxed definition of what constitutes

structural completeness.

Running time Although it is true that the GSN algorithm did manage to learn

all the languages in its training regimen it manifested a sensitivity to large features

and to long training strings (i.e. over 100 characters). This is evident from the

chart in Figure 4.5. The author only had access to the test results documented in

Nigam’s thesis and did not have access to a running version of the GSN algorithm.

Attempts to re-compile the algorithm on a machine running the Linux operating sys-

tem proved unsuccessful. However, the author used a popular statistical package to

find the strongest correlation between the running time and string length, size of C+,

and the average feature length and it resulted that the strongest correlation was be-

tween the running time and the average feature length. It must be emphasized that,

since only three test datasets were available, the author is not claiming that the tests

are conclusive. The purpose of this exercise was to try to discover which of the three

most influenced GSN’s running time. The results suggest that the GSN algorithm’s

depends mainly on the length of the features. This is probably because the feature

construction loop considers all candidate features that can be constructed by left and

right concatenation of the characters of the alphabet. At each pass of the learning

loop, 2.|Σ|.|O| candidate features are considered where Σ is the alphabet and O is

the current set of features. The algorithm then checks to see if each candidate feature

exists in every string in C+ (the matching test) and then computes f for each of the

candidate features that pass the matching test. Those that pass are then added to

O. Feature construction is, therefore, rather involved. Also, computing f involves

a quadratic (in the size of the training set) number of distance computation with

142

each distance computation itself quadratic in the length of the two strings. Although

always polynomial, computation of f can quickly become intractable when the size

of the training set becomes larger and when the length of the strings in C+ increases.

These problems were addressed in Valletta by using a completely new method to

compute f and by avoiding simplex optimization completely.

Noise The GSN algorithm did learn kernel languages with noisy training sets but the

amount of noise was restricted to a maximum of around 10%. In the GSN data sets

the amount of noise was usually very small and Nigam did not distinguish between

feature noise and kernel noise. This topic will be discussed in Chapter 5. In addition,

GSN requires that each feature occurs, in uncorrupted form, in every string of C+.

Inductive Preference Bias The inductive bias of the GSN algorithm was not

specified by its creators. An analysis of the algorithm revealed that it has a strong

preference for shorter features. This is because the algorithm builds the features from

the primitive single-letter transformations. It is not clear whether the GSN algorithm

actually enumerates the search space (of feature sets) and whether it will always find

a TS description for any given training set.

Generalized Levensthein Distance (GLD) GLD has a number of problems.

These problems are listed below. Each problem is then discussed in detail.

(a) In some cases it does not return the minimum distance.

(b) As a consequence of the above, GLD violates the triangle inequality.

This has important implications.

(c) It is not suitable for kernel languages since it cannot determine if

a feature has been inserted inside another feature.

143

Problem 1 — GLD does not always find the minimum distance.

The main idea behind Levensthein string-edit distance and, for that matter, most

string edit distance functions is to find the minimum number of edit operations

(transformations) that transform one string into the other or, in the case of weighted

edit operations, the edit sequence of minimum cost. It turns out however that, in

some cases, GLD does not return the minimum cost. Consider the kernel language

over the alphabet Σ = {a, b} with the empty string ε as the kernel and the string

abbabba as the sole feature. The set of transformations in the TS description of the

language are:

{a↔ ε, b↔ ε, abbabba↔ ε}

and the corresponding weight vector is (0.5, 0.5, 0). Let x, y, z ∈ Σ∗ be three strings

where:

x = ————abbabba————

y = ————abbababa————

z = ————ε————

In other words, x is a string that contains the feature abbabba, y is the same string

but with this feature corrupted by the insertion of an extra character a (shown in

red), and z is the string with the feature deleted. Now suppose that x and z belong

to our kernel language. The GLD distance from y to z cannot be zero since GLD will

delete the corrupted feature character by character. This requires 8 single-character

deletions and, hence, GLD(y, z) = 4. On the other hand the distance from y to x is

only 0.5 since y can be transformed to x through the deletion of the extra character

a. This means that the distance from y to z is not returned correctly. This problem

has important implications as we shall now see.

144

Problem 2 — GLD violates the triangle inequality.

An obvious implication of the above example is that GLD violates the triangle in-

equality. In the above example, GLD(y, x) = 0.5, GLD(x, z) = 0, and GLD(y, z) =

4. Therefore,

GLD(y, x) + GLD(x, z) < GLD(y, z).

At this point one may well ask, Do we really need the triangle inequality property any-

way? The answer is yes since without the triangle inequality we cannot guarantee

correct classification and, perhaps more critically, correct specification of the kernel

language. Let us consider again the above example. Suppose y was an unknown

string and suppose we wanted to test it for membership in our kernel language. If

we computed the GLD distance from y to z we would have probably rejected the

string. If, on the other hand, we computed the distance from y to x we probably

would have accepted the string. This shows that it is not possible to specify a noisy

kernel language using only a finite set of strings (i.e the kernels) since a noisy string

may have a GLD distance of d1 to one of the kernels but a distance of d2 to an-

other string in the same language where d2 < d1 and where d1 is larger than the

δ-neighbourhood value and d2 smaller. To summarize, if the triangle inequality prop-

erty is not satisfied, the set of kernels is not enough to specify a noisy kernel language.

Problem 3 — GLD is not suitable for Class Description.

Another problem with GLD is that it is not suitable for class description of kernel

languages. By definition, in kernel languages, features cannot be inserted inside other

features. In certain cases, GLD cannot detect if a feature is inserted inside another

feature. An example of when this problem occurs can be found in Appendix I. This

appendix also contains a trace of the GLD computation between two given strings.

Because of this problem with GLD, it is possible to classify strings that do not belong

145

to a particular kernel language as belonging to the language.

Final Class Description When the GSN algorithm terminates it returns a set of

features (there can be more than one such set) that allowed f to meet or exceed the

threshold T set by the user. The GSN algorithm does not return the kernel of the

unknown language. This turns out to be problem since, without the kernel, the TS

class description will be incomplete. Nigam assumed that once the set of features,

and hence the distance function, is found, classification of unknown strings could be

achieved by computing the distance from an unknown string to one of the strings in

C+. In other words, C+ acts as the set of attractors in the TS description. This,

however, only works if the language is noiseless. If C+ contains noisy strings then

the unknown string might not be classified correctly. This is because the distance

between the unknown string and a noisy string in C+ might be less than the δ-

neighbourhood value but the distance between the unknown string and a noiseless

string in C+ might be larger than the same δ-neighbourhood value. This problem

is illustrated with a simple example. Suppose that, for some unknown language L

that has a kernel k and string distance function d, the GSN algorithm discovers a

set of features F from a set of training examples C+. Suppose we are told that the

language is noisy and, with this in mind, we set the delta-neighbourhood value to 1.0

— i.e. any string that has a distance of less than or equal to 1.0 to a string in C+

will be classified as belonging to the L. Now suppose that x is a noisy string in C+

with d(k, x) = 1, y some other string in Σ∗ but not in L, and the distance from x

to y is 0.5. This results in y being classified as belonging to the language when this

should clearly not be the case since;

0 < d(x, k) ≤ 1, d(x, y) = 1, and d(y, k) > 1.

146

Instance Space �*

x

y

k

1.02.0
d(k, y)

d(k, x) d(x
, y

)

Figure 4.6: Why we need to find the kernel k.

This problem is depicted in Figure 4.6 above. It is therefore clear that if s is any

string in C+, it is not possible to classify an unknown string k based on its distance

to s unless one can be absolutely sure that s is noiseless. The implication of the above

is that C+ cannot be used for the classification of unknown strings when learning is

completed unless C+ contains no noise or unless we can identify the noiseless strings

in C+. The latter can be done by computing the interdistance in C+ after learning

is completed and identifying the set of noiseless strings, i.e the set of string with a

pair-wise interdistance of zero. A number of experiments conducted by the author

proved that this procedure works in practice but only if the number of noisy strings

is very small and only if the language has only one kernel. The lesson learnt here is

that an ETS learning algorithm for kernel languages must find the kernels and not

just the features of the target language.

Although the GSN algorithm did have its problems, it still performed, in the

author’s opinion, remarkably well. The principle aim of the GSN algorithm was to

demonstrate that an ETS learning algorithm was feasible, i.e Goldfarb, Nigam, and

Santoso wanted to present a proof of concept. This critique of the algorithm and the

GLD distance function must be viewed in this context. The Valletta ETS algorithm

described in Part II of this thesis addresses these problems.

147

Part II

Valletta: A Variable-Bias ETS Learning Algorithm

Science is a discipline in which even

a fool of this generation should be

able to go beyond the point reached

by a genius of the last.

Scientific folklore, 20th century AD.

148

Chapter 5

The Valletta ETS Algorithm

The aim of this chapter is to introduce and discuss the Valletta ETS inductive learning

algorithm. Section 1 contains an overview of the algorithm, a listing of the main

differences between Valletta and the GSN algorithm, as well as a complete trace of

how the algorithm learns a very simple kernel language. The remaining sections

of this chapter describe in detail the various parts of the algorithm including the

preprocessing stage, string reduction, computing the f function, EvD computation,

the search engine, and the kernel selection procedure. These sections also contain a

description of the data structures that were purposely developed for Valletta. The

reader who is only interested in getting an overall idea of Valletta’s architecture and

operation may, at first reading, choose to read only Section 1 and skip the remaining

sections. The algorithms are described using the excellent pseudocode LATEX style

from the University of Waterloo (see Appendix F). The actual code is significantly

more elaborate. The main aim is to help the reader understand how each algorithm

works. Only the main data structures and main programming constructs are shown.

To this end extensive use of diagrams and tables is made. The time and space

complexities of each of the algorithms are discussed in Chapter 6.

149

5.1 Overview

The main objective behind the development of the Valletta algorithm was to investi-

gate the feasibility or otherwise of applying the ETS model to a grammatical inference

problem. In particular, to see if and how distance can be used to direct the learning

process and also how such an algorithm performs in the presence of noise. The devel-

opment of Valletta also helped to identify and study the issues that arise in the design

and implementation of such ETS algorithms. A secondary objective was to design

an algorithm that addressed the problems identified with the GSN algorithm and

that can learn a much broader class of kernel languages, with more noise, and more

efficiently. The end result is an algorithm that is different from the GSN algorithm

although it is still based on the ETS model. Valletta’s learning strategy is based on

the observation that the set of features that partially specifies1 an unknown kernel

language K must necessarily be a subset of the set of all repeated2 non-overlapping

substrings in the positive training set C+ — assuming that the strings in C+ were

drawn at random (according to a uniform distribution) from K and that every fea-

ture occurs at least twice in C+. In contrast, the GSN algorithm required that each

feature occurred, in uncorrupted form, in every string of C+. Valletta, therefore, has

a much more relaxed definition of what constitutes the structural completeness of a

set of training examples. Valletta was designed from the beginning to learn multiple

kernel languages and not just single kernel languages. This is because all examples of

naturally occurring kernel languages that were encountered were all multiple-kernel.

It turns out that learning multiple-kernel languages is much more difficult than learn-

ing single kernel languages. With single-kernel languages we need only find a set of

features. On the other hand, with multiple-kernel languages we also have to find the

1A kernel language is specified by a set of features, a set of kernels, and a distance function.
2I.e. substrings that occur at least twice in C+.

150

kernels and, of course, we do not know the number of kernels. Besides the obvious

computational complexity this problem also poses an interesting question. Should

we find a TS description that minimizes the number of features or the number of

kernels? Valletta can be instructed to find TS descriptions that minimize either the

number of features or the number of kernels. Valletta has what is called a variable

inductive preference bias. This means that Valletta allows the user to choose which

hypotheses (i.e. TS descriptions) are preferred over others. This is, arguably, an

advantage over other learning algorithms that do not allow the user to change the

algorithm’s preference bias.

Valletta has two main stages. The pre-processing stage searches for all repeated

substrings in C+ and stores them in a repeated substring list RC+ . The learning

stage then finds a set of features (from RC+) and a set of kernels that gives class

separation, i.e. a set of features that optimizes the function

f =
f1

c + f2

,

where f1 is the minimum EvD (over all pairs) between C+ and C−, f2 is the average

pair-wise intra-set EvD in C+, and c is a small positive real constant to avoid divide-

by-zero errors. Valletta’s learning stage builds a structure, the search tree, where each

node represents a feature set. Valletta expands this tree only on the basis of f2 (the

reason for this is explained later on in Section 5.3). This means that Valletta’s search

for the set of features that describes the unknown kernel language K is completely

directed by f2. No other criteria were used to direct the learning process. It would

have been relatively simple to add some heuristics to accelerate the search but this

was resisted since one of the aims behind Valletta’s development was to see if, indeed,

distance on its own can direct the search for the TS description of K. Valletta’s search

strategy is more efficient than that used by the GSN algorithm. At each stage of the

learning loop, the GSN algorithm builds new features by left and right concatenation

151

of the current set of features. This is computationally expensive. On the other hand,

Valletta assumes that the TS description of K is a subset of RC+ and considers only

subsets from this set. The search space is still, of course, very large. Indeed, the

search space is P(RC+), the power set of RC+ . However, not all elements of P(RC+)

are considered by Valletta. The target set of features must be substring-free. In

other words, no feature can be a substring of any other feature. Valletta, therefore,

selects only the valid (i.e. substring-free) feature sets from P(RC+). Valletta does

this efficiently using a data structure called the search lattice.

Valletta uses a new string-edit distance function called Evolutionary Distance

(EvD). EvD is suitable for describing kernel languages since it can detect features

inserted inside other features. As we saw in Chapter 3, the idea behind EvD is that,

given two strings and a set of features F , the distance between two strings can be

taken to be the weighted Levensthein distance (WLD) between the normal forms

(modulo RF) of the two strings and a given set of kernels. One important advantage

of this technique is that the normal forms are usually much shorter than the actual

strings and this results in significantly shorter computation times. The main problem

is, of course, how to efficiently reduce the strings to their normal form modulo F .

In Valletta this is done using a special data structure called the parse graph. EvD

works by first building the parse graphs for the two strings and then extracting the

normal forms from the parse graphs. The EvD procedure then computes the weighted

Levensthein distance between the normal forms and the set of kernels that is passed

as a parameter.

5.1.1 How Valletta differs from the GSN Algorithm

Valletta differs from the GSN algorithm in a number of key areas. The inherent

complexity of learning multiple-kernel languages necessitated a completely different

152

approach to ETS learning. With multiple-kernel languages, we must search for a set

of features and a set of kernels not knowing beforehand the number of features or

kernels. The main differences between the two algorithms are listed below:

Learning Domain Valletta’s learning domain, i.e. the class of kernel languages that

can be learned by the algorithm, is much broader than that of GSN. Valletta

can learn multiple-kernel languages as well as single-kernel languages with both

misclassification and random noise.

Structural Completeness The GSN algorithm requires that each feature must oc-

cur in uncorrupted form at least once in each of the strings in C+. Valletta

uses a much more relaxed definition of structural completeness. Valletta re-

quires only that each feature occurs in uncorrupted form at least n times in the

entire training set where n ≥ 2 is a positive integer input by the user.

Inductive Bias Valletta also has a much broader inductive bias than the GSN al-

gorithm. Valletta is a variable preference bias algorithm. In other words, the

user can, to a certain extent, instruct Valletta to choose certain hypotheses (i.e.

TS class descriptions) over others. With Valletta, the user can also choose to

minimize the number of features or the number of kernels. The user can also

specify the maximum length of the kernels, the minimum length of the features,

and various other parameters.

Evolutionary Distance Valletta uses a new string-edit distance function called

Evolutionary Distance (EvD). EvD was inspired both by the theory of string-

rewriting systems and by the structure of kernel languages. EvD is a pre-metric

and addresses the problems associated with GLD.

Feature-Repair One problem with GSN is that if a feature is corrupted with just

one extra character, the whole feature is then considered as noise. The EvD

153

algorithm has the ability to perform feature-repair. All features that are cor-

rupted with a number of extra characters that is not more than 25% of their

length are automatically ‘repaired’ by the EvD algorithm. The gives much

quicker convergence for noisy languages. The problem is that searching for

corrupted features can be, in general, computationally expensive.

Pre-processing Stage Valletta incorporates a pre-processing stage. The pre-processing

stage finds all non-overlapping repeated substrings in C+ and builds a num-

ber of data structures which are then used to guide the learning process. The

preprocessing stage defines the search space of the learning stage.

Search Strategy The GSN algorithm searches for a TS description that is consis-

tent with the training set by constructing a set of features from an initial set

of primitive, i.e. single-character, features by concatenating the current set of

features on the left and on the right to obtain new features. Each new feature

constructed in this manner is then added to the current set of features and

the f function is computed for different points in the unit simplex. Valletta

does not ‘build’ the features since all ‘candidate’ features are found by the pre-

processing stage. Valletta finds the optimal set of features by building a search

tree in which each node represents a valid feature set. Valletta chooses only

valid feature sets by consulting a data structure called the search lattice. This

is built from the list of repeated substrings created in the pre-processing stage.

Nodes in the search tree are expanded (i.e. by adding child nodes) only on

the basis of the value of f2 (average C+ inter-distance). The search process is,

therefore, entirely distance-driven. The new search strategy allows for a much

more efficient search and also allows the user to easily modify the inductive pref-

erence bias of the algorithm and thereby give preference to certain hypotheses

over others.

154

5.1.2 How Valletta Works — An Example

In this section a very simple kernel language, together with a very small set of training

examples from the same language, is used to demonstrate how Valletta’s works. The

kernel language example is used to demonstrate and illustrate the different procedures

used at each stage of the algorithm.

General Description and Architecture

Valletta is an ETS inductive learning algorithm that learns kernel languages with or

without noise. Valletta consists of two stages – the preprocessing stage and the learn-

ing stage. In the preprocessing stage Valletta finds all non-overlapping repeated sub-

strings in the C+ training set. Each string in C+ is scanned and all non-overlapping

substrings, of any length, that occur at least twice in C+ are identified. The pre-

processing stage is required since, unlike the GSN algorithm, Valletta does not build

the features incrementally through left and right concatenation of the basic primitive

features (see Chapter 4). Valletta’s design is based on the premise that the TS de-

scription of the language it is trying to learn must necessarily be a subset of the set

of all non-overlapping repeated substrings in C+. All learning algorithms make some

assumptions as to the structural completeness [33] of the training sets. For example,

most grammatical inference algorithms that output a grammar as a class description

assume that each production in the grammar of the unknown language L was used

at least once in the generation of the positive training set C+. Analogously, many GI

algorithms that learn DFAs assume that each transition in the DFA of the unknown

language L was used at least once in generation of C+ [28]. Valletta only assumes

that each feature was used n times in the generation of the strings in C+ where n ≥ 2.

The value of n is set by the user. Recall that, in the GSN algorithm, Nigam consid-

ered the positive training set C+ to be structurally complete, and therefore valid as a

155

training set, only if each feature occurred, in uncorrupted form (i.e. without noise), in

every string of C+. Valletta’s requirements for structural completeness are therefore

somewhat more relaxed. This, as can be expected, makes learning harder since the

search space of possible TS descriptions is much larger. Assuming that the training

set contains at least two occurrences of each feature, it immediately follows that the

set of features must therefore be a subset of the set of all non-overlapping repeated

substrings in C+. Valletta’s preprocessing stage finds all non-overlapping repeated

substrings in C+ using a structure called the Global Augmented Suffix Trie (GAST).

This structure, described in detail later on, allows us to find all the non-overlapping

repeated substrings in C+ in time quadratic to the size of C+ in the worst case. Once

the GAST is built, Valletta stores all the repeated substrings in a structure called

the search lattice. The search lattice is used by the learning stage to efficiently find

valid (substring-free) sets of features. The preprocessing stage, i.e. the construction

of the GAST and the search lattice, is performed only once by Valletta. When the

preprocessing stage is completed, Valletta proceeds to the learning stage. The learn-

ing stage uses the search lattice to identify only valid feature sets and constructs a

search tree, TR, whose nodes correspond to valid feature sets. Valletta then uses a

distance-driven hybrid A*/Beam tree-search technique to find a set of features that

maximizes the function;

f =
f1

f2 + c
,

where f2 is the average pair-wise distance of strings in C+ and f1 is the minimum

distance between C+ and C−. Valletta’s search for the set of features that maximizes

f is completely directed by f2. No other criterion is used. No heuristics were added

in order to accelerate the search. This was purposely done in order to investigate

whether or not f2 can be used to direct the search (see the thesis objectives in Chapter

1).

156

No

Start

Expand Search Tree

1 - Reduce C+
2 - Reduce C-

3 - Compute f

Is >= Threshold ?f

For each leaf in TR

Main Learning Loop

Pre-processing Stage
1 - Build Suffix Trie
2 - Find all repeated factors in C+
3 - Build Search Lattice

Initialize Search Tree TR
with all the single-feature TS descriptions

Yes

Stop

Figure 5.1: High-level flowchart of Valletta showing the main loops.

At each stage of the learning process Valletta decides on the best way to expand

TR, i.e. which feature sets to consider, by expanding those nodes (feature sets) for

which f2 is minimal. It must be pointed out that, given the set RC+ of all the re-

peated substrings in C+, the search space of the algorithm, i.e. the set of all valid

feature sets, is a proper subset of P(RC+) and is usually very large. Figure 5.1 shows

a high-level flowchart of the Valletta algorithm showing only the main loops. Let us

now consider a set of training examples from a very simple kernel language, K1. The

training examples are used to present a ‘trace’ of Valletta as it tries to find a TS class

157

description. K1 is defined on the alphabet {a, b, c} as follows:

R =

a ↔ ε

b ↔ ε

c ↔ ε

ab ↔ ε

, ω =

0.33

0.33

0.33

0

, A = {(cc, 0)} , φ(νπ) =
∑
r∈π

wr.

where φ is defined to be the cost of the evolutionary path of least cost, i.e. EvD,

between two strings. Evolutionary string distance (EvD) was defined and discussed

in Chapter 33. An algorithm for computing EvD is presented later on in this chapter.

Note that the primitive single-characters are assigned a non-zero weight and are used

to handle noise. The transformation ab↔ ε associated with the feature ab is assigned

a zero-weight and is used to transform any string in the language into any other string

in the language with zero cost. The language K1 consists of all strings that can be

C+ C−

abccab ccbcba
cabc caabcc
cababc bcbcba

Table 5.1: The training set for the language K1

obtained from the kernel cc by inserting, anywhere, and any number of times, the

sole feature ab. Table 5.1 shows a very small training set for K1. C+ consists of three

strings drawn from K1 while C− consists of three random strings. The sizes of the

training sets and the lengths of the strings were chosen to be as small as is reasonably

possible. In the interest of simplicity, it is assumed that a positive training set for

K1 is structurally complete if every string contains the feature ab at least once.

3See Chapter 3 for definitions of φ, ν, and π.

158

The Pre-processing Stage

Valletta’s pre-processing stage accepts as input C+ and builds three data structures;

(a) The Global Augmented Suffix Trie (GAST),

(b) the Repeated-Substrings List, RC+ , and

(c) the Search Lattice LC+ .

As explained in the beginning of this chapter, Valletta’s learning stage uses these data

structures to efficiently search for the set of features that maximizes the function f .

Global Augmented Suffix Trie (GAST)
for the Strings:
abccab
cabc
cababc

a

b

c

c

a

b

$

a

b

c

$

b

b $

c

$

a
$

c

$

c

c

a

b

$

a

c

$

c

c

a

b

$

$b

b5

5

6

1

1

1

3

1 1

1

13

1

1

1

3

1

1

1

5

1

1

1

1

1

1

�

$
3

a $

$

Figure 5.2: The GAST built from the strings: abccab, cabc, and cababc.

The pre-processing stage starts by reading in C+. It then builds the Global

Augmented Suffix Trie or GAST. A GAST is a tree data structure that stores all the

159

possible suffixes of a given set of strings. It is based on the concept of a suffix trie [57].

The GAST data structure, as well as the algorithm for its construction, are defined

and discussed in the next section. In essence, a GAST for a set of strings S consists

of a tree with labelled edges where every path from the root to a node (including the

leaves) forms a string (obtained by concatenating the edge labels of the path) that is

a suffix of some string in S. The GAST built from C+ is shown in Figure 5.2 above.

The GAST also stores, at each node, the number of times the substring (obtained

by concatenating the edge labels of the path from the root to that node) occurs in

S. The $ symbol that appears at each leaf of the GAST in Figure 5.2 plays a special

role and can be ignored by the reader for now.

After Valletta’s preprocessing stage builds the GAST, it extracts, using a simple

recursive tree-traversal algorithm, all the non-overlapping repeated substrings that

occur n times (for some fixed positive integer n input by the user). The substrings

are stored in the Repeated Substrings List RC+ . In our case RC+ contains all the

non-overlapping repeated substrings that occur at least three times in C+.

Substring Repetitions Occurrences

a 5 3
b 5 3
c 6 3
ab 5 3
bc 3 3
ca 3 3
abc 3 3
cab 3 3

Table 5.2: The Repeated Substrings array for the strings: abccab, cabc, and cababc.

In Table 5.2, the column with the heading Repetitions holds the total number

of times the corresponding substring was found in C+ while the column with the

heading Occurrences stores the total number of distinct strings in C+ that substring

160

occurred in.

Notice that it is assumed that C+ is structurally complete. In other words we are

assuming that each feature in the TS class description of K1, which is unknown to

Valletta, occurs at least once in every string of C+. We can therefore can be sure that

the set of features in the target TS class description is a subset of the strings shown in

Table 5.2. No other information about the class is provided to Valletta. Valletta does

not ‘know’ what the set of features or the set of kernels are. Valletta also does not

‘know’ that the TS class description of K1 has only one kernel and only one feature.

Valletta must discover the class description of K1 on its own. In our example K1 is

a very simple language and the reader should have no difficulty inferring the class

description directly from the given training sets. The main purpose of K1, however,

is to demonstrate how Valletta works.

The last task performed by the pre-processing stage is the construction of the search

lattice from RC+ . The search lattice, which we shall denote by LC+ is the lattice

(RC+ , �) where � is the covering length-lexicographical relation on Σ∗. The reader

is spared from the formal details for now. The search lattice is discussed in detail

in Section 5.2.1. Figure 5.3, overleaf, shows the search lattice constructed from the

strings in Table 5.2. One interesting property of the search lattice is that, for any

given node x, all the descendants of x always include x as a substring. If x belongs to

a feature set, then none of the descendants of x can be in the same feature set. This

property allows Valletta to efficiently choose valid feature sets, i.e. sets of strings

from RC+ such that no feature is a substring of another in the same set. In essence,

every valid feature set in RC+ is an anti-chain[23] in the search lattice.

161

Search Lattice for the strings:
, , , , , , , and .a b c ab bc ca abc cab

�

ca

ab bc ca

abc cab

b

Figure 5.3: The search lattice for the strings: abccab, cabc, and cababc.

The Learning Stage

The input to the learning stage is the set of repeated substrings RC+ and the search

lattice LC+ . Recall that, as previously explained, RC+ completely specifies the search

space of the learning stage. This is because we know that the set of features in the

TS description of K1 must be a subset of RC+ — not just any subset but, rather, a

substring-free subset of RC+ . The learning stage must therefore enumerate, in some

way, the substring-free subsets of RC+ and find the subset that gives class separa-

tion. One must point out that the set of all substring-free subsets of RC+ is usually

very large and a brute-force search is therefore out of the question. Valletta’s search

strategy is that of finding a TS description consistent with the training examples

by searching through the set of all valid feature sets in RC+ using a distance-driven

hybrid A*/Beam [93] search technique. Valletta enumerates the search space by con-

structing a search tree, denoted by TR, and shown below in Figure 5.4. The search

tree shown in Figure 5.4 is the actual search tree built by procedure ETSSearch from

the strings in Table 5.2. Each node in the search tree is labelled with a string from

RC+ . The feature set associated with any node in the tree is the set of strings from

162

�

ca ab bc ca abc cabb

abca

Figure 5.4: The search tree built by ETSSearch.

RC+ that are node labels in the path from that node to the root. For example,

the node shown circled with a broken blue circle in Figure 5.4 is associated with

the feature set {bc, ab}, which is precisely the set of strings from RC+ that are node

labels in the path from that node to the root. Each node in the search tree, there-

fore, represents a feature set and the aim is to build a search tree such that, in the

shortest time possible, a node is found that represents the set of features in the TS

description of the unknown target language. Search tree construction proceeds as

follows. ETSSearch initially creates a search tree that has exactly one level with a

node for every string in RC+ . ETSSearch then computes that value of f for each leaf.

If, for all of the leaves, the value of f does not exceed the threshold, ETSSearch then

expands the tree by adding new leaves for those nodes for which f2 is minimal. In our

example, the value of f exceeded the threshold for the node labelled ab shown circled

in red. This is because ab is the sole feature for the language K1 and so, almost

immediately, ETSSearch discovered the correct TS description of K1. In practice,

however, it is usual that the search tree grows to be many levels deep before a node

that represents the correct feature set is found.

The above is a basic overview of how Valletta learns. We have seen how Valletta

finds the features of the target language but not how the kernels are found. The

actual learning process is discussed in detail in Section 5.3. A number of points,

163

however, require some clarification:

Firstly, the search process is completely distance-driven. The decision on which

leaves are expanded is taken solely on the basis of f2, i.e the average pair-wise EvD

in C+. During each iteration of the learning loop, ETSSearch expands those nodes

for which f2 is minimal. It then computes the value of f for each of the new leaves.

Secondly, when a node is chosen for expansion (i.e. by adding new leaves), the

labels of the new leaves are chosen from RC+ after consulting the search lattice LC+ .

This is to ensure that every node represents a valid, i.e. substring-free, feature set.

Consider again the tree in Figure 5.4. When the node labelled bc is expanded, we

want to ensure that the leaves are not labelled with strings in RC+ that are substrings

of bc or vice versa. The search lattice is used to prevent this from happening.

Thirdly, Valletta employs a search strategy that is based on finding the set of

features of the unknown target language rather than the set of kernels. We have

seen that each node in the search tree represents a set of features and that Valletta

computes the value of f for each node and then decides which nodes to expand

based on the value of f . Computing the value of f involves the computation of

pair-wise EvD both within C+ as well as between C+ and C−. Unlike the GSN

algorithm, Valletta does not use GLD but, rather, EvD which was introduced in

Chapter 3. Recall that GLD has only one parameter, the set of features (i.e the

transformations), but EvD has two parameters — the set of features F and the set of

kernels K. Computing the EvD between two strings involves reducing both strings

to their normal forms modulo →∗
F (i.e. the reduction relation induced by F), and

then computing the weighted Levensthein distance between the normal forms and

the set of kernels. The problem here is, of course, where do we get the set of kernels

from? The answer to this question is that, given a feature set F , the set of kernels

must be a subset of the normal forms of C+ modulo F . Informally, this is because,

164

given a finite set of strings from a kernel language K, if we delete all occurrences of

all features from these strings, we should end up with the kernels of K. This sounds

simple enough except that in practice we do not know how many kernels K has in its

description. The presence of noise in the strings serves to complicate matters since

the normal forms of C+ will also include noise and it will not be apparent which is

a ‘clean’ kernel and which it not. Moreover, if F is not confluent things get even

worse since every string in C+ can have many normal forms and it is, in general, not

clear which of these are the kernels. The problem of identifying the kernels from the

normal forms of C+ is called the kernel selection problem and is discussed in detail

in Section 5.4 where an algorithm that performs this task is also discussed. This

problem did not arise with the GSN algorithm since Goldfarb and Nigam did not

consider kernel languages with multiple kernels. Valletta computes the value of f for

a set of features F as follows:

(a) All strings in C+ and C− are reduced to their normal forms modulo the θ-

reduction relation RF . This process is called reduction. If RF is non-confluent

each string may have many distinct normal forms.

(b) All pair-wise WLDs between all the normal forms are computed and stored in

the distance matrix. The value of f3 is then computed from the distance matrix.

The function f3 is defined to be the average NFD (normal form distance) in C+.

The normal forms used in f3 computation are promoted as ‘candidate kernels ’

(c) From amongst the candidate kernels, Valletta finds a set of kernels for C+ that

minimizes f2. This process is called kernel selection.

(d) Finally, the set of kernels obtained in (b) is used to compute f1 and hence f .

It must pointed out that reduction, f3 computation, and kernel selection are relatively

complex procedures. These procedures are discussed separately, and in some detail, in

165

Section 5.5 and Section 5.4 respectively. This section concludes with a brief synoptic

overview of these procedures.

Reducing C+ and C− to their Normal Forms

Reducing all strings in C+ and C− to their normal forms modulo a set of features

F involves deleting all occurrences of all the features in F from each of the strings.

When the normal forms are computed we can then proceed to the process of kernel

selection. The problem of reduction sounds simple enough but turns out to be a

rather difficult combinatorial problem. We must be able to detect features inserted

inside other features and, if F is non-confluent and therefore contains features that

overlap with each other, there may be many different ways in which we can delete

the features from a given string. To make things even more interesting we also have

to accommodate noisy strings.

Valletta uses a specially developed data structure called a parse graph. The parse

graph of a string is an acyclic directed graph in which nodes represent positions in

the string and the edges are labelled with occurrences of features within the strings.

Figure 5.5, overleaf, shows the parse graphs built from the C+ training set of the

kernel language K1. A parse graph contains two special nodes labelled S and $

corresponding to the beginning and the end of the string respectively. All the other

nodes are labelled with a positive integer corresponding to a position in the string

(counting from the left). The edges are labelled with substrings that contain features.

All edges, except those incident to S or $, start or end at nodes that represent a

position in the string where a feature has been found or where a feature ends. To

obtain all the normal forms of the string we enumerate all the paths in the parse

graph. In the worst case, the number of paths can be exponential in the size of the

graph. The parse graph gives us all the normal forms of the string and also allows us

166

Parse Graphs
for the Strings:
abccab$
cabc$
cababc$

Features

ab
bc

A
B

Normal Forms for abccab

cc
ca

1

a b c c a b $

Acc

2 3 4 5 6 7

Bc

Normal Forms for cabc

ca
cc

1

c a b c $

B

2 3 4 5

Ac

Normal Forms for abccab

ac
ca

1

c a b a b c $

A

2 3 4 5 6 7

Ac

aB

S

a

�

S

c

A

ca

S

c

Figure 5.5: The parse graphs for the strings: abccab, cabc, and cababc.

to avoid reducing strings that have features inserted inside other features. A formal

discussion of parse graphs, their properties, their construction, and the associated

algorithms is found in Section 5.5. Section 5.5 also contains a discussion of how

parse graphs can be used to handle noisy strings. A technique called feature repair is

used to ‘repair’ features that are corrupted by noise. This technique greatly increases

167

Valletta’s tolerance to noisy training sets.

5.1.3 Kernel Selection

When the strings in C+ and C− are reduced to their normal forms, the next step is

to find a set of kernels that can be used as a parameter to the EvD function. Once a

set of kernels is found, we can use EvD to compute f2, the average pair-wise distance

in C+, and f1, the minimum distance between C+ and C−. Having computed f2 and

f1 we can then compute f . The kernel selection procedure is based on the premise

that, given the set of features in the TS description of an unknown kernel language,

the set of kernels must be a subset of the set of normal forms of C+ modulo the set

of features. The problem is that, when the language is not confluent, each string in

C+ can have many normal forms and if noise is present the normal forms will be cor-

rupted. It will therefore not be clear which of the normal forms of C+ are the kernels

of the language that we are trying to learn and which are not. When we reduce C+

we obtain a collection of sets of normal forms, N = {⇓F (s1),⇓F (s2), . . . ,⇓F (sn)}

where s1, s2, . . . , sn are the strings in C+ and for any si ∈ C+, ⇓F (si) denotes the

normal forms of si modulo the set of features F . Given this collection of sets of

normal forms we have to find a set of kernels that minimizes f2. We know that each

⇓F (si) must contain at least one kernel, except when the language is noisy in which

case ⇓F (si) might not contain an uncorrupted kernel. In general, each of the normal

forms can be a kernel. It is obvious that, when choosing our set of kernels, it makes

sense, in general, to choose strings that are normal forms of as many strings in C+ as

possible. This is because we assume that the number of strings in C+ is always much

greater than the number of kernels in the TS description of the unknown language.

The sets of normal forms in N will therefore have strings in common. One would

therefore expect that one could perform some sort of statistical analysis of the normal

168

forms of C+ and thereby be able to choose the most likely kernels. Although this

is true in concept, the kernel selection problem actually turns out to be NP-Hard

(see Appendix H). The kernel selection problem, as posed, is a subproblem of the

Minimum Hitting Set problem [35, page 222]. In the minimum hitting set problem

we are given a collection C of subsets of a set S and then asked to find the smallest

subset S ′ ⊆ S such that S ′ contains at least one element from each subset in C.

The minimum hitting set problem is provably NP-Hard (transformation from Vertex

Cover). As with many NP-Hard problems it is often the case that one can find a

good approximation algorithm.

Figure 5.6 shows the collection of normal forms obtained after reduction of C+

of the kernel language K1. The set of features used for reduction is {ab, bc}. In

Strings in C+

Features

ab
bc

abccab
cabc

cababc

ac

cc

[abccab]

0.0

ca

cc

cacc

0.0

0.0

[cabc]

[cababc]

WLD distance between normal forms.

Normal forms

Figure 5.6: Valletta’s kernel selection procedure.

Figure 5.6, for example, the string cc is a normal form of all the strings in C+ while

the string ac (shown in black) is a normal form of only one string. It is therefore

prudent to assume that cc is much more likely to be a kernel than ac. In fact, as can

169

be seen in Figure 5.6, if cc is chosen as the kernel, the average EvD pair-wise distance

in C+, and hence f2 would be 0. Valletta’s kernel selection algorithm, described in

Section 5.4, is an approximation algorithm that makes use of the function f3 — the

average normal form distance (NFD) between the strings in C+. The NFD distance

between two strings is defined to be the minimum distance (over all pairs) between

the normal forms of the two strings. This is depicted in Figure 5.7.

ac
cc

[abccab]

ca
cc

0.0

[cabc]

Normal Form (NF) distance.

Figure 5.7: Normal Form Distance (NLD).

As we shall see in Section 5.4, f3 gives us measure of the ‘entropy ’ within C+ and is

effectively used to select the ’candidate kernels’ from amongst the normal forms in

N .

170

5.1.4 How Valletta Works — In Pictures

How Valletta Works The Preprocessing Stage

C Strings
+

abccab
cabc
cababc

C Strings
-

ccbcba
caabcc
bcbcba

a

b

c

c

a

b

$

a

b

c

$

b

b $

c

$

a
$

c

$

c

c

a

b

$

a

c

$

c

c

a

b

$

$b

b5

5

6

1

1

1

3

1 1

1

13

1

1

1

3

1

1

1

5

1

1

1

1

1

1

�

$
3

a

Repeated Substrings

a
b
c
ab
bc
ca
abc
cab

�

ca

ab bc ca

abc cab

b

(1) Input C+ & C- (2) Construct GAST

(3) Extract Repeated Substrings
from GAST

(4) Build Search Lattice

Figure 5.8: How Valletta Works — The Pre-Processing Stage

The preprocessing stage is performed just once — before the actual learning starts.

The preprocessing stage produces a list, RC+ , containing all the non-overlapping

repeated substrings in C+. The Search Lattice is built from this list.

171

How Valletta Works The Learning Stage

Repeated Substrings

a
b
c
ab
bc
ca
abc
cab

�

ca

ab bc ca

abc cab

b

�

ca ab bc ca abc cabb

abca

Search Lattice

Search Tree

RC+

Figure 5.9: How Valletta Works — The Learning Stage

The learning process builds a search tree in which each node represents a set of

features. Each node is labelled with a string from RC+ . The set of features associated

with a node is defined to be the strings that are node labels in the path from that

node to the root. In Figure 5.9, the node inside the red circle represents the set

of features {abc, ba, ca}. When new nodes are added to the search tree, the search

lattice is consulted to ensure that the new nodes represent only valid feature sets. The

values of f1, f2, f3, and f are computed for each node added to the tree. Learning

stops when a value of f for a node exceeds the threshold t.

172

How Valletta Works Computing andf f2 3

Features

ab
bc

ac

cc

[abccab]

0.0

ca

cc

ca
cc

0.0

0.0

[cabc]

[cababc]

Strings in C
+

abccab, cabc,
cababc

Normal Forms

cc, ca, acand

ac

cc

ca

1

2

1 2 3

a
c

c
c

c
a

3

(1) Reduce all strings in C
to their normal forms modulo
the set of features.

+

abccab cabccababc

cc cc cc

(2) Compute Levensthein distances
between all normal forms,
store in and
compute

Distance Matrix
f .3

(3) Select normal forms used
in computation as

candidate kernels.

f3

(4) Using kernels selected in (3),
compute using EVD

distance.

f2

Figure 5.10: How Valletta Works — Computing f2 and f3.

Computing f2 and f3 involves first reducing all the strings in C+ to their normal

forms modulo the given set of features. The Levensthein distance between all pairs

of normal forms is then computed and the results stored in the distance matrix. The

value of f3 is computed directly from the distance matrix. The normal forms that

are used in the computation of f3 are then selected as candidate kernels. The kernel

selection procedure then finds a set of kernels that minimizes f2.

173

How Valletta Works Computing f1

Set
of

Kernels

C- (1) Using the set of kernels
that minimized ,

compute EvD distance
between all pairs in

C and C .

f2

+ -

(2) Return to be the average distance

between C and the

closest 10% of the strings in C .

f1
+

-

C+

+

+

-

+

-+

-

+ -
+

-

+

-

+

-

Average EvD interdistance
in C+

EvD Distance between C+

and closest 10% of C-

f1

f2

- C-

C+

Figure 5.11: How Valletta Works — Computing f1.

Once a set of kernels that minimizes f2 is found the value of f1 is computed. For

Valletta, f1 is defined to be the EvD (using the set of kernels as a parameter) between

C+ and the closest 10% of the strings in C−. To achieve this, the EvD between all

pairs in C+ and C− must be computed first. The new method of computing f1 was

required in order to correctly handle misclassification noise.

174

How Valletta Works String Reduction

Parse Graphs
for the Strings:
abccab$
cabc$
cababc$

Features

ab
bc

A
B

Normal Forms for abccab

ac
cc

1

a b c c a b $

Acc

2 3 4 5 6 7

Bc

Normal Forms for cabc

ca
cc

1

c a b c $

B

2 3 4 5

Ac

Normal Forms for abccab

ac
ca

1

c a b a b c $

A

2 3 4 5 6 7

Ac

aB

S

a

�

S

c

A

ca

S

c

Figure 5.12: How Valletta Works — String Reduction

In general, there can be many different ways in which to reduce a string modulo a

given set of features F . If F is confluent, each string has only one normal form but

if F is non-confluent each string may have many normal forms. String reduction is

achieved using a special data structure called a parse graph. The paths in the parse

graph represent the normal forms of the string.

175

5.2 Valletta in Detail

5.2.1 The Pre-processing Stage

Recall from the previous section that Valletta’s preprocessing stage performs two

tasks:

(a) It finds the set of candidate features, and

(b) it builds the search lattice.

The set of candidate features is built by extracting from C+ all the non-overlapping

repeated substrings. This is achieved by constructing a data structure called the

Global Augmented Suffix Trie or GAST for short. The search lattice, which we shall

define and discuss later in Section 5.2.3, is then built from the GAST. The prepro-

cessing stage has time and space complexity that is, in the worst case, quadratic in

the size of the training set and is performed only once. When the preprocessing stage

is complete the actual learning process commences.

Finding Candidate Features

The GAST data structure is based on a simple but very versatile and extensively used

data structure called the suffix tree. The suffix tree of a string was first proposed by

McCreight [82] in 1976 and is, in essence, a compact index of the string’s vocabulary,

i.e. the set of all its distinct, non-empty substrings. Suffix trees have been widely

studied and have many varied uses [57, 82, 114]. One classic application is the

substring problem. Given a string s of length m the problem is that of determining

whether or not s contains some string x of length n where n is assumed to be less than

m. It turns out that once a suffix tree for s is built then this problem can be solved

in O(n) time. This means that even if s is very long, the search for x is performed

176

in time that is proportional only to the length of x. A review of texts and literature

in computational biology revealed that suffix trees are widely used. This is because

a suffix tree exposes the internal structure of a string and building a suffix tree in a

preprocessing stage very often allows for faster and more efficient string processing

algorithms. In the substring problem, for example, building the suffix tree for a

string allows subsequent searches for any substring to be computed very efficiently.

Suffix trees are also used for string matching, keyword construction, recognizing DNA

contamination, finding common substrings, and many other applications [57, 114].

The reader is referred to [57] for an exposition and references. The versatility of suffix

trees and the fact that the algorithms for suffix tree construction use, on average, sub-

quadratic time motivated the author to consider suffix trees as a basis for searching

for the candidate features in C+.

Definition 5.1 (Suffix Tree). Modified from [57, page 90]

Let s be a string of length m over some finite alphabet Σ and let $ be special symbol

not in Σ. The suffix tree of s, which we denote by Ts is a rooted, directed tree such

that:

(a) Ts has exactly m leaves numbered 1 to m.

(b) Each internal node, other than the root, has at least two children.

(c) Edges incident to internal nodes (incoming edges) are labelled with a non-empty

substring of s.

(d) Edges incident to the leaves are labelled with either a non-empty substring of s

with the special symbol $ or with just $.

(e) No two edges out of the same node can have edge-labels beginning with the same

character.

177

(f) For any leaf i, the concatenation of the edge-labels on the path from the root to

the leaf i yields the suffix of s that starts at position i, i.e. s[i..m].

Definition 5.2.

Let s be a string over a finite alphabet Σ and let Ts be the suffix tree for s. Then:

• The label of a path from the root to a node i, is the concatenation, in order, of

the substrings labelling the edges of the path.

• The path-label for a node is the label of the path from the root to the node.

• For any substring x of s, the locus of x is the node in Ts whose path-label is x.

Figure 5.13 shows the suffix tree for the string 010101. Note that the concatena-

tion of the edge-labels on the path from the root to the leaf numbered 1 yields the

full string 010101 while the path from the root to the leaf numbered 5 gives us the

suffix of 010101 that starts at position 5, i.e. 01.

1

2

6

3

0
1

$

Suffix Tree
for the String
010101

5

$0
1

0
1

$ 4

$ 0

0

1

1

1
$

$

Figure 5.13: The suffix tree for the string 010101.

There is a slight problem with the definition of suffix tree that we presented above.

The problem is that if one suffix of s matches a prefix of s then no suffix tree that

obeys our definition is possible. This is because the path for the first suffix would

178

not end at a leaf. Consider, for example, the string 010101. Note that the suffix 01

is a prefix of the suffix 0101 and, therefore, the path that spells out 01 cannot end

in a leaf. This problem is overcome by adding the special character (not in Σ) to the

end of s. We denote this special character by $. The string therefore becomes s$.

This ensures that no suffix is a prefix of any other suffix and therefore the suffix tree4

for the string exists. It is precisely for this reason that a $ symbol appears added at

the end of every suffix of the string 010101 in Figure 5.13. From now on we shall

assume that the special character $ is always added to a string before the suffix tree

is constructed.

A myriad of linear time and space suffix-tree construction algorithms have been

developed in the last three decades [57, 128, 129, 138]. The technique used by Valletta

for searching for the non-overlapping repeated substrings in C+ employs a special type

of suffix tree known as the Suffix Trie5. The reason for our choice of such a data

structure will become apparent later.

Definition 5.3 (Suffix Trie).

Let s be a string of length m over some finite alphabet Σ. The suffix trie of s, which

we denote by Is, is a suffix tree such that each edge is labelled with a single character

from Σ and sibling edges have distinct characters.

Figure 5.14 shows the suffix tree for the string 010101. Note that each node can

have a maximum of |Σ| children.

The number 3 (in purple) next to the locus of the string 01 denotes the number of

non-overlapping occurrences of 01 in 010101. This point will be elaborated upon later

on. The total number of nodes, and therefore also edges, of a suffix trie can, in the

worst case, be quadratic in the length of the string. The time and space complexity

4The suffix tree for a string s is unique (up to isomorphism of graphs) [114].
5The word trie was coined by Fredkin [114] from ‘information retrieval’.

179

Figure 5.14: The suffix trie for the string 010101.

of building a suffix trie is therefore also, in the worst case, quadratic in the length

of the string. In spite of this, we opted for suffix tries instead of suffix trees. This

was because suffix tries allow for a simple and reasonably efficient solution to the

following problem: Suppose we are given a string s and we have to find, and count

the number of occurrences of, all the distinct, non-overlapping, repeated substrings

in the given string s. It turns out that this can easily be achieved by adding an

integer counter to each node i of the trie. This counter records the number of non-

overlapping occurrences of the substring whose locus is the node i. When the trie is

being built, the counter is incremented every time the node is visited. In the suffix

trie in Figure 5.14, for example, there are three suffixes that start with the prefix 01,

the locus of 01 is therefore visited three times during the construction of the trie.

This is the reason for the number 3 shown next to the locus of the substring 01 in

Figure 5.14. The numbers for the other nodes are not shown. The substrings, and

180

the number of occurrences of each substring, can therefore be computed during the

actual construction of the trie. When the trie is completed, a traversal (in any order)

of the trie yields a list of substrings and, for each substring, the number of occurrences

that substring. This is accomplished by writing down the path-label and the counter

of each node i during the traversal of the trie. We shall see soon that a suffix trie for

a string s of length m can be built in at most (m2−m)/2 steps. However, we need to

find not just the non-overlapping repeated substrings of one string but rather those

in all of C+. To accomplish this we used a new data structure, based on the suffix

trie, that allows us to achieve this goal.

Definition 5.4. Let S be a finite set of strings over a finite alphabet Σ and let the

longest string in S be of length m. A Global Augmented Suffix Trie for S, which

we denote by GS is rooted, directed tree such that:

(a) Each internal node, other than the root, has a minimum of two and a maximum

of |Σ| children.

(b) Each edge is labelled with a symbol from Σ ∪ $.

(c) Edges incident to the leaves are labelled with $.

(d) GS has depth m + 1.

(e) Sibling edges have different edge labels.

(f) For any s ∈ S and for any 1 ≤ i ≤ |s|, there exists a unique leaf l such that the

concatenation of the edge-labels on the path from the root to the leaf l yields the

suffix of s that starts at position i, i.e. s[i..m].

Figure 5.15 shows the GAST for the strings 010101, 00101, and 11101. The num-

ber to the left of each node represents the number of non-overlapping occurrences

181

of the substring whose locus is the node in question. The number on the right of

each node represents the number of strings in C+ in which the substring occurred.

For instance, the node whose path-label is 10 (indicated in Figure 5.15 by a purple

arrow), has the number 4 on the left and the number 3 on the right. This means

that the substring 10 occurred four times in three different strings. The reader may

recall that, in suffix tries, the leaves are labelled with a number corresponding to the

starting position of the suffix (i.e. the path-label of the leaf) in the string. With

GAST we are dealing with not just one string but with a set of strings and therefore

this numbering of the leaves is not relevant.

Figure 5.15: The GAST for the strings: 010101, 00101, and 11101.

182

5.2.2 An Algorithm for Global Augmented Suffix Trie Con-

struction

Algorithm 5.2.1: BuildGAST(File)

procedure InsertString(s)
comment: Process string and update trie

n← len(s)
for i← 1 to n

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

currnode← root
x← s(i..n)
for j ← i to n

do

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z ← Ordinal(x(i))
if n(currnode).p(s) = NULL

then CreateNewNode

else

⎧⎨
⎩

currnode← n(currnode).p(s)
if overlapcondition = false

then incr n(currnode).reps

main
comment: open C+ file, read strings, and insert in trie

while not EndOfFile

do

{
s← NextStringInFile
InsertString(s)

Notes to Algorithm 5.2.1, BuildGAST.

• The GAST constructed by BuildGAST is stored in an array of records. Each

record corresponds to a node in the GAST. The records have the following

structure:

n(i).elabel, character: this is the label of the incoming edge.

n(i).reps, integer: this stores the number of non-overlapping repetitions of the

string whose locus is node i.

n(i).p(1..n), array of pointers: this is an array of pointers to the children of

node i.

183

• The main procedure simply reads in the C+ training set and passes each string

to the InsertString procedure which processes the string and updates the trie.

EndOfFile is a Boolean variable that is true when the end of the file being read

is reached. NextStringInFile returns the next string in the C+ file.

• The procedure InsertString has two main loops. The outer loop iterates through

the suffixes of s, the input string. The inner loop iterates through the characters

in each suffix, x, starting from the front to the back. The inner loop updates

the trie as follows. It first sets the value of currnode, a pointer variable, to

point to the root of the trie. For each character in the suffix, x(j), the value of

n(i).p(z) is checked (z is the ordinal value of the character x(j)). If the value

of the pointer is null then this means that the algorithm has never encountered

a suffix that has a prefix equal to the path-label of that node. In this case a

new node is created. If the pointer is not null, then the currnode pointer is set

to the current node and the n(i).reps counter is incremented.

Figure 5.16: The record structure of each GAST node.

The operation of the BuildGAST algorithm is illustrated with a simple example.

Figure 5.17 shows the partially completed GAST for the string aab. (a) shows the

184

a

a

(b)1

$

1
b

1

1

a

a

1

$

1

b

1

2

2

b

$

1

(a)

(i)

(ii)

(iii)

Figure 5.17: The partially completed GAST for the string aab.

trie after the suffix aab, i.e the whole string has been added. The number 1, in

purple, next to each node represents the number of repetitions of the path-label of

that node. When the suffix ab is processed the algorithm discovers the root’s first

subtree (corresponding to the character ‘a’) is not empty. It therefore goes to the

node labelled (i) and increments the counter n(i).reps. This will record the fact that

the substring a has been found twice in the string. It then discovers that node (i)

does not have a left subtree (corresponding to the character b). A new node (ii) is

created and the counter n(ii).reps is set to 1, recording the fact that the substring

ab was found twice so far. The node (iii), labelled with the $ symbol, is then added

since every suffix must terminate with this symbol.

Once the GAST is constructed all that remains is to extract the repeated sub-

strings. Since each node stores the number of times the suffix associated with that

node has been found in C+, this process is performed by a simple recursive depth-first

tree-traversal algorithm. The repeated substrings that are extracted from the GAST

are stored in the list RC+ .

185

5.2.3 The Search Lattice

The last procedure carried out by the preprocessing stage is the construction of the

search lattice LC+ from the set of repeated substrings RC+ . The search lattice is a

directed acyclic graph. It contains a distinguished node called the root and labelled

with the null string ε. Each node is labelled with a distinct string from RC+ . Given

any two nodes, a and b, the edge (a, b) exists in LC+ if a � b.

Substring SPos Reps

0 7 3
1 9 3
00 1 1
01 6 3
10 4 3
11 1 1
001 1 1
010 2 2
101 3 3
110 1 1
111 1 1
0010 1 1
0101 2 2
1110 1 1
00101 1 1
11101 1 1
01010 1 1
10101 1 1
010101 1 1

Table 5.3: The set RC+ created from the strings: 010101, 00101, and 11101.

The covering relation � is defined as follows:

Definition 5.5. Let a, b ∈ Σ∗ be any two strings. We say that a � b if b can be

obtained from a by the left or right concatenation of a non-empty string x, i.e. b = xa

(left concatenation) or b = ax (right concatenation).

LC+ is therefore the lattice (RC+ , �). One interesting property of the search lattice

186

is that, for any given node n, the labels of all nodes that are descendants of n are

substrings of its label. The search lattice is used by Valletta to efficiently build

substring-free subsets of RC+ . Given a set of features F (a subset of RC+), Valletta

expands F by considering only nodes in RC+ that are not descendants of the strings

in F . Table 5.3, on the previous page, lists the repeated substrings found by Valletta

for the strings 010101, 00101, and 11101.

�

10

00 01 10 11

001 010 101 110

0010 0101 1010 1101

111

1110

00101 01010 10101

010101

11101

Search Lattice for all substrings in the strings:
and010101, 00101, 11101.

Figure 5.18: The search lattice built from the strings in RC+ .

Figure 5.18 shows the search lattice constructed from these strings. Black edges

denote concatenation on the right and red edges denote concatenation on the left.

The algorithm used for the construction of the search lattice is relatively simple and

has been omitted.

187

5.3 How Valletta Learns

When the preprocessing stage is completed, Valletta invokes the search engine and

learning starts. The input to the learning stage is the set of repeated substrings RC+

and the search lattice LC+ . As previously explained, RC+ completely specifies the

search space of the learning stage. This is because the set of features in the target TS

description must be a subset of RC+ . Not just any subset, in fact, but a substring-free

subset of RC+ . As also explained in the previous section, the search lattice LC+ allows

us to efficiently choose only substring-free subsets of RC+ . Valletta employs a search

technique that searches through the space of all the valid (i.e. substring-free) subsets

of RC+ . It must be emphasized that, although Valletta considers all of the search

space, it does not necessarily have to search all of the space. It stops when it finds

a TS description consistent with the set of training examples. If, however, Valletta

does not find a valid TS description, it will continue searching until it enumerates

the whole search space. This is an important point since it means that Valletta will

always find a TS description consistent with the training sets if one exists.

Overview

Valletta’s search engine enumerates all the substring-free subsets of RC+ by build-

ing a search tree, which we denote by TR. Before learning begins, the value of f is

computed for each of the strings in RC+ . In other words, each of the strings in RC+ is

considered as a feature set with just one feature. The strings in RC+ are then sorted

(in ascending order) according to the value of f2. All the strings in RC+ are then

added to TR as children of the root node. Before learning starts, therefore, TR is of

depth 1 and has a root node and |RC+| children.

In TR, each node is labelled with a string from RC+ . The feature set associated

with a node in TR is the set of strings from RC+ that are node labels in the path

188

from that node to the root. Figure 5.19 shows the completed search tree for the set

of repeated substrings RC+ = {a, b, c, d}. For example, the node shown circled in

red is associated with the feature set {c, a, d} which is precisely the set of strings

from RC+ that are node labels in the path from that node to the root. Each node

in the TR, therefore, represents a valid feature set and the aim is to build a search

tree such that, in the shortest time possible, a node is found that represents the set

of features in the target TS description. When adding children to a node in TR,

�

b c a d

c a d a d

da d

d

d

Repeated Substrings

b
c
a
d

0.08
0.14
0.56
1.29

Figure 5.19: The completed search tree for the set RC+ = {a, b, c, d}.

the search engine considers only strings in RC+ that have a value of f2 that is larger

than the node being expanded. This prevents TR being expanded with nodes that

represent the same feature set as a node already in the tree and also ensures that

strings with a low value of f2 are added first. A child node is also not given a label

that would result in a feature set that is not substring-free. The search lattice is used

to ensure that this does not happen. When a node n in TR is being expanded, the

search engine consults the search lattice LC+ and excludes all strings in RC+ that

are descendants of the feature set associated with n. This makes the whole process

simple and efficient. As can be seen in Figure 5.19, if the search process continues,

189

the TR will eventually be completed. The completed search tree TR will contain a

unique node for every valid feature set in RC+ .

Search tree construction is performed by the ETSSearch procedure. ETSSearch

initially creates a search tree that has exactly one level with a node for every string

in RC+ . ETSSearch then computes that value of f for each leaf. If, for all of the

leaves, the value of f does not exceed the threshold, ETSSearch then expands the

tree by adding new leaves to those nodes for which f2 is minimal. The tree search

technique used by the Valletta search engine is loosely based on a generic graph

search technique described by Nilsson in [93]. This simple but effective technique is

shown in Algorithm 5.3.1 below.

Algorithm 5.3.1: GraphSearch(void)

comment: Generic Graph Search algorithm [93, page 142]

* OPEN and CLOSED are two lists
* TR is the search tree built by the algorithm

TR← n0

comment: Initially, TR consists solely of the start node n0

OPEN← n0

CLOSED← ∅
while OPEN �= ∅

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a) Get first node from OPEN
b) Remove it from OPEN
c) Put it on CLOSED
d) Call it n
if n is a goal

then Exit with SUCCESS

else

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1. Expand node n by generating a setM of
successors. Install each successor as a child
of n in TR
2. Reorder the list OPEN, either according
to some arbitrary scheme or according to
heuristic merit.

Exit with FAILURE

190

One of the main advantages of this technique is that it can be used to perform

best-first, depth-first, and breadth-first searches. In breadth-first search the nodes

are simply put at the end of the OPEN list (FIFO) and are not reordered. For a

depth-first search the nodes are added at the beginning of the OPEN list (LIFO). For

best-first search the list OPEN is reordered according to some heuristic merit of the

nodes [93]. The simplicity and elegance of this graph search technique and was the

inspiration for Valletta’s search engine. The actual algorithm differs from Nilsson’s

algorithm in the number of ways.

(a) Three lists are used and not two — ACTIVE, PENDING, and CLOSED.

(b) Expanding the tree is done in two separate stages.

(c) The tree construction procedure continues as long as the lists ACTIVE and

PENDING are non-empty.

When the algorithm is run it first creates a tree with ε in the root and with all

the strings in RC+ as children. These nodes are added to ACTIVE. The other lists,

PENDING and CLOSED, are initially set to null. The list ACTIVE stores nodes

that have just been added to the tree. The value of f of each of these new nodes must

therefore be computed. In each iteration of the main loop the algorithm performs

the following procedures:

(a) The value of f for each node in ACTIVE is computed and the status of the node

is changed to PENDING (i.e. the node is deleted from ACTIVE and added to

PENDING).

(b) The list PENDING is then reordered, in ascending order, according to the value

of f2. PENDING will then have the nodes with the smallest values of f2 at the

top.

191

(c) The top I nodes in PENDING are expanded by adding two strings from RC+ .

The search lattice is used to ensure that the new child nodes represent valid

feature sets. The new nodes are added to ACTIVE. If, for any node in PEND-

ING, no new child nodes can be added, the node is deleted from PENDING

and added to CLOSED.

(d) The algorithm then expands a further J nodes based on the value of f2 and

also the value of n.pass. For each node n, the value of n.pass records the last

time (iteration number) the node was expanded. The algorithm subtracts the

value of n.pass of each node from the variable pass, which stores the number

of current iteration. The greater the difference the more likely that the node is

expanded. This ensures that every node in the tree will eventually be expanded

and prevents Valletta from making TR deeper and deeper as it searches of the

target TS description.

The pseudocode of Valletta’s search engine, Algorithm 5.3.2, is shown overleaf. For

any node n in the search tree, path(n) denotes the set of node labels in the path from

n to the root. The function path(n), therefore, returns the feature set associated with

the node n.

Notes and Observations

The values of I and J are set by the user. The variable I specifies how many of

the top nodes, i.e. those with the smallest values of f2, in PENDING are expanded

and J specifies the number of other nodes that are expanded in each pass. Typically,

I is given a value in the range 2 to 4 and J a value in the range 4 to 12. Every time

a node is expanded, a maximum of two children are added. When a node n in TR

is expanded, only features in RC+ with a larger value of f2 than the node label of n

can be added. This ensures that each node in TR uniquely represents a feature set.

192

Algorithm 5.3.2: ETSSearch(L)

comment: Valletta’s Search Engine

comment: The parameter L is the Search Lattice

TR← λ
comment: Initially, TR consists solely of the root node λ

Create a child to λ for every node (string) in L
Add every string in L to ACTIVE
Set PENDING← ∅ and CLOSED← ∅
pass← 0
while ACTIVEandPENDING �= ∅

do

⎧⎪⎪⎨
⎪⎪⎩

pass← pass + 1
For all n in ACTIVE

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

K ← path(n)
Compute f for K
n.score← f2 + f3

n.pass← pass
if F ≥ THRESHOLD

then Exit with SUCCESS
Remove n from ACTIVE and add it to PENDING

Sort ACTIVE in descending order according to score

For n = the top I nodes in PENDING

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Add two children n1 and n2 to TR from L
checking that path(n1) and path(n2)
are valid feature sets.
if No such children can be found

then

{
Remove n from ACTIVE
Add n to CLOSED

else Add n1 and n2 to ACTIVE.

For n = the top J nodes in PENDING
with n.pass ≤ pass− 2

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Add two children n1 and n2 to TR from L
checking that path(n1) and path(n2)
are valid feature sets.
if No such children can be found

then

{
Remove n from ACTIVE
Add n to CLOSED

else Add n1 and n2 to ACTIVE.
Exit with FAILURE

193

If there are no more strings in TR that have a larger value of f2 than the label of

the node, the node is deleted from PENDING and added to the CLOSED list. The

value of J is important because any value greater than zero ensures that Valletta will

enumerate the whole search space and is thus guaranteed to find a TS description

that is consistent with the training examples (if one exists). Valletta does not stop

until the lists ACTIVE and PENDING are empty and all the nodes are in the list

CLOSED. This happens only if the search tree is complete and, thus, all possible

valid feature sets have been considered.

The search for the target TS description is completely distance-driven. After each

iteration of the main loop, the value of f is computed for all the new nodes in the

ACTIVE list. These nodes are then removed from ACTIVE and added to PEND-

ING. The nodes in PENDING are then sorted, in ascending order, according to the

value of f2. Various other criteria for sorting PENDING were tried but f2 worked

best and returned the fastest convergence. Valletta was run on some datasets using

the value of f1 for sorting PENDING but this made the algorithm very sensitive to

the choice of C−.

Valletta searches for the features and not for the kernels. Once it has found a set

of features it searches for a set of kernels amongst the normal forms that minimizes

the value of f2. An obvious alternative strategy is to try to find the kernels directly

from C+. This is theoretically possible since the kernels are subsequences of the

strings. The approach was considered but the number of subsequences in a string

is super-polynomial. This makes such an approach impractical. Valletta’s search

engine is essentially a variation of the A∗ and the Beam search techniques that are

popular in AI applications [93]. The value of the parameter I determines the size

194

of the ‘beam’. Figure 5.20 is a depiction of how Valletta expands the search tree.

�

cbbab ab bac cca abc cabba

cabcca ccabac

cca abc

baccb

cababc

cababccb bacab

�

cbbab ab bac cca abc cabba

cca ccabacbaccb cb bacab

�

cbbab ab bac cca abc cabba

(i)

(ii)

(iii)

Figure 5.20: How Valletta expands the search.

In this case both I and J were set to 2. The search tree is expanded in two stages.

Valletta first expands the two nodes with the smallest values of f2 and then expands

two other nodes based on the value of n.pass which, for each node, stores the number

of the pass (iteration of the main learning loop) that node was last expanded. The

edges of the nodes expanded in the second stage are shown in red.

195

Two of the author’s main concerns when developing Valletta were whether it was

possible to find an effective and efficient method for reducing the strings in C+ and

C− modulo a given set of features and, also, an efficient procedure for finding the

target set of kernels within the set of normal forms. These two issues are discussed

in the next two sections.

5.4 Computing the f function

At every iteration of the learning loop, Valletta computes the value of f for each fea-

ture set that is being considered by the algorithm. In the GSN algorithm, computing

the value of f involved first computing f2 by finding the average pair-wise distance in

C+ and then computing f1 by finding the minimum distance between all pairs (a, b)

where a ∈ C+ and b ∈ C−. This procedure is relatively straight-forward since all

the languages that can be learned by the GSN algorithm are single-kernel. The case

for multiple-kernel languages is much more complex. This is because, given a feature

set F , Valletta must find a set of kernels that optimizes f . This is, in general, not

a trivial task. If C+ is reduced to its normal forms modulo F , then the required set

of kernels is a subset of this set of normal forms. This is because if we remove the

features from the strings in C+, all that is left, in theory, should be the kernels. All

the normal forms of C+, therefore, are candidate kernels. The problem is that, if F

is not confluent, then the number of normal forms may be very large and trying all

possible subsets is, for obvious reasons, out of the question. The presence of noise

further complicates the task since some of the kernels will be corrupted. Moreover,

it was initially not clear how to compute the value of f2 in the case of multiple ker-

nels. Although these problems seemed insurmountable at first, simple and elegant

solutions were eventually found. Valletta computes the value of f as follows:

(a) Reduce both C+ and C− to their normal forms modulo the θ-reduction relation

196

RF . A θ-reduction relation is used in order to detect features inserted inside

other features. After reduction, each string s ∈ C+ has a set of normal forms.

We denote by ⇓ (s) the set of all normal forms of the string s (modulo RF)

with all occurrences of θ removed.

(b) Compute the Weighted Levensthein Distance (WLD) between all pairs of the

normal forms. The results are stored in the Distance Matrix.

(c) Compute the value of f3. The function f3 is defined to be the average pair-wise

distance in C+ computed between the sets of normal forms. In other words, for

all pairs of strings s1, s2 ∈ C+, we find the minimum WLD between the normal

forms in ⇓ (s1) and ⇓ (s2). The average is taken over all such pairs in C+.

(d) Identify the normal forms that were used to find the value of f3. Given any two

string s1, s2 ∈ C+, we identify the normal form in ⇓ (s1) and the normal form

in ⇓ (s2) that return the minimum WLD. We promote all such normal forms

as candidate kernels.

(e) From the promoted set of candidate kernels find the set of kernels K that

minimizes f2. In our case f2 is defined to be the average EvD in C+ with K

being one of the parameters (F is the other parameter). This process, it turns

out, is NP-Hard. We use an approximation algorithm.

(f) Compute the value of f1, i.e the minimum EvD between C+ and C−. We use

a modified definition of f1 in order to handle misclassification noise. This is

discussed in Chapter 7.

(g) The value of f is then computed in the usual way, i.e.

f =
f1

c + f2

.

197

We now discuss each of the above steps in detail. Reduction of C+ and C− to their

normal forms modulo RF is discussed in the next section.

Distance Matrix Computation

Distance matrix computation involves computing the weighted Levensthein dis-

tance (WLD) between all pairs of normal forms of the strings in C+. This process

is important since the pair-wise distances are then used in the computation of both

f2 and f3. Of course, there is no need to compute the WLD between all pairs of

normal forms. Valletta first constructs a list of the all the unique normal forms and

then computes the distance between all the pairs in this list. This is depicted in

Figure 5.21 below. The actual number of distance computations performed is n(n−1)
2

�a b c d e f g h

a

b

c

d

e

f

g

h

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

8

� � � � � � �

� � � � � �

� � � � �

� � � �

� � �

� �

�

� � � � � � �0

0

0

0

0

0

0

0

Figure 5.21: Computing the distance between the normal forms.

where n is the number of unique normal forms of C+. In practice, a normal form

can occur in many strings and in the actual implementation, special pointers, that

record to which string in C+ each normal form belongs, are maintained. It must be

pointed out that the WLD is computed on the normal forms and not on the actual

strings in C+. Normal forms are usually much shorter than the strings in C+ since

all the features in F have been deleted. Using the distance matrix allows us to have

an efficient method for computing f2 and f3 since the WLD between any two normal

198

forms is computed only once and stored in the matrix. Also, the WLD algorithm

uses only single-character operations and can therefore be optimized for speed.

Computing f3.

When the distance matrix is complete, the value of f3 can be computed. This

is the average Normal Form Distance (NFD) between the strings in C+. For each

pair of strings s1, s2 ∈ C+, we find the minimum WLD over all pairs of normal forms

in ⇓ (s1) × ⇓ (s2). Notice that, in this case, we are finding the minimum distance

between two sets — not two strings. Also, we do not need to perform the actual

distance computations since the distance matrix contains the pre-computed WLDs

between all normal forms. For each pair of strings s1, s2 ∈ C+ we identify the pair of

normal forms that return the minimum distance between ⇓ (s1) and ⇓ (s2). This is

depicted in Figure 5.22 below.

Normal Forms

String :
String :
String :

x
y
z

a,b
a, c, h
e, d, f, g

String :x
a

e d

a a

h

c

f
g

b

Promoted Kernels

a, e, d, h

String x String y

String z

Figure 5.22: Promoting the kernels used in f3 computation.

The function f3 gives us a measure of the ‘entropy ’, as-it-were, of the set C+. We

also use f3 to identify which of the normal forms are potential kernels and which can

be safely discarded. In Figure 5.22, C+ contains the strings x, y, and z. The normal

forms are:

199

String Normal Forms

x ⇓ (x) = {a, b}

y ⇓ (y) = {a, c, h}

z ⇓ (z) = {e, d, f, g}

The minimum distance between ⇓ (x) and ⇓ (z), for example, is returned by (a, e).

These normal forms (shown in red) are therefore retained as candidate kernels. Dur-

ing the computation of f3 we record which normal forms return the minimum distance

and how many times. Returning to Figure 5.22, note that the normal form a is used

twice and {e, d, h} are used once. The normal forms {b, c, f, g} are not used and

are discarded. The function f3, therefore, plays two important roles; (i) it returns a

measure of the entropy of C+ and (ii) it identifies those strings that are most likely

to be kernels. The normal forms used in the computation of f3, shown in red in

Figure 5.22, are then promoted as candidate kernels. The rest are discarded. The set

of promoted kernels is denoted by PR. In our example PR = {a, e, d, h}.

String Promoted

x {a}

y {a, h}

z {e, d}

200

Kernel Selection

The next step in the computation of f is finding a subset of the candidate kernels

in PR that optimizes f . This was probably the biggest problem faced by the author

in developing Valletta. The set PR is the union of the sets of promoted normal

forms of each string in C+. The task at hand is to find a set of kernels that will

minimize f2. The function f2 is defined to be the average, over all pairs, EvD in C+.

Recall from Chapter 3 that EvD between two strings s1 and s2 involves reducing

both strings to their normal forms modulo the set of feature F and then computing

weighted Levensthein distance from each set of normal forms to the set of kernels K.

It therefore follows that if each of the sets of normal forms of the two strings contain

at least one kernel in K, the EvD will then be zero. Given the sets of candidate

features (these are subsets of PR), we therefore have to find a subset of PR that

contains at least one candidate feature in each set. If we could find such a set the

value of f2 would be zero. This problem can, in general, be easily solved by taking

one string from each set but this is not possible in our case, since we cannot allow

the number of kernels to be equal to the number of strings in C+. We know that

each kernel occurs more than once in C+ and the number of kernels is the target TS

description is assumed to be much less than the number of strings in C+. The user

is also allowed to enter a bound on the number of kernels that are allowed in the

final TS description. We therefore have to consider subsets of PR of various sizes,

subject to this bound, until we find the one that minimizes f2. In the example of

Figure 5.22, for instance, the set of candidate kernels that returns a value of zero for

f2 is {a, d, e, h}. This is called the kernel selection problem. The difficulty of the

problem is further compounded by the fact that, if the training sets contain noisy

strings, the normal forms will contain noise.

201

The kernel selection problem, as posed, is a subproblem of the Minimum Hitting

Set NP-Hard problem [35, page 222], and is also itself NP-Hard (see also Appendix H.

It is evident that we cannot possibly consider all the subsets of PR. In Valletta, the

inductive bias is not fixed. The user can choose to give preference to TS descriptions

with many kernels and few features and vice versa. The user does this by setting

the value of the parameter MaxKer. MaxKer stores the maximum number of kernels

allowed in the final TS description. The problem of kernel selection highlighted

the fundamental difficulty of learning multiple-kernel languages. All practical kernel

languages encountered all had multiple-kernels. It was therefore important to find

an efficient way of performing kernel selection that still allows Valletta to find the

target TS description.

The approximation algorithm that was developed for Valletta is based on the follow-

ing assumptions:

(a) The training set is assumed to be structurally complete.

(b) The number of kernels in the target language can be anything from 1 up to the

value of MaxKer, which is set by the user. It is assumed that the number of

strings in C+ is much larger than MaxKer since otherwise there would, statis-

tically, not be enough evidence for choosing one kernel over another. Kernels

must occur at least MKO6 times in the training set. These assumptions are not

unreasonable. Every learning algorithm makes assumptions about the ‘unifor-

mity’ of the training set. For instance, a training set of 100 strings drawn from

a two-kernel language should not contain 99 occurrences of one kernel and just

one of the other.

(c) When the algorithm discovers the target set of features the set normal forms of

C+ will contain the target set of kernels. Also, after f3 computation the target

6A value entered by the user. MKO stands for Minimum Kernel Occurrences.

202

kernels would be used to find the minimum distances between the set of normal

forms of the strings in C+.

Given the above assumptions, it is possible to design an approximation algorithm

that considers various sets of kernels and computes the value of f2 for each set. It

then returns the set of kernels that returned the smallest value of f2. It must be

stressed that the algorithm does not, and could not possibly, consider all possible

sets of kernels. The number of all possible subsets of PR is, of course, 2|PR|. The

approximation algorithm considers only a relatively small number of set of kernels

based on a set of carefully chosen heuristics. The main idea behind the approxi-

mation algorithm used for kernel selection is that number of kernels in the target

TS description is always much smaller than the number of strings in C+. It is not

claimed that this idea is always valid. In fact, it is quite possible that the algorithm

will fail on certain datasets in spite of the fact that it worked very well with all of

the datasets used to develop and test Valletta.

203

Kernel Selection Approximation Algorithm

(a) Reduce PR to 2 × MaxKer. This is done by assigning, to each normal form in

PR, a score based on the number of times that normal form is used to return

the minimum distance in the computations of f3. The justification here is that

if a normal form is used many times to return the minimum EvD between pairs

of strings in C+, it is more likely to be a kernel. The normal forms in PR are

sorted in ascending order according to this score and the top 2.MaxKer are

promoted as candidate kernels.

(b) Take the reduced PR and consider only set of kernels of various sizes returned

by the Sα and Sβ functions. The values of α and β are entered by the user.

(c) Compute the value of f2 for each of the above kernel sets and return the kernel

set that has the smallest value of f2.

The Sα and Sβ functions are defined as follows:

Sα(|PR|) = |PR|. α

(logµ.|PR|)π
(5.1)

Sβ(|PR|) = |PR|. β

(logµ.|PR|)π
(5.2)

The values of α, β, µ, and π are entered by the user and form part of the inductive

bias of the algorithm. |PR| denotes the cardinality of the set PR (after reduction).

These values allow the user to change the inductive bias to suit the domain. The user

can opt to give preference to TS descriptions with more kernels and less features, etc.

The role of the Sα and Sβ functions is to select a manageable number of sets of

candidate kernels from PR. Suppose, for example, that |PR| = 50. Suppose also that

Sα and Sβ return the values of 5 and 4 respectively. We then consider all possible

204

subset of sizes 1, 2, 3, 4, 5 and also 47, 48, 49, and 50. The motivation was our ob-

servation of the function nCR, i.e. the function that returns the binomial coefficients.

This function is very large when r approaches n
2
. On the other hand, the values

returned by the function are relatively small when r is close to 1 or close to n, i.e the

‘fringes’. We therefore wanted to design a function that considers only all possible

subsets of sizes close to 1 and close to n. This behaviour is depicted in Figure 5.23

below.

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.23: A depiction of how the Sα and Sβ functions work.

The values of α and β control the number of subsets of PR of sizes close to 1 and close

to |PR| respectively that are considered as kernel sets. If |PR| = 32, for example,

205

then Sα(|PR|) returns 3 and Sβ(|PR|) return 2. We therefore consider all possible

subsets of PR of sizes 1, 2, 3, 31, and 32. The parameters in the case are α = 0.12,

β = 0.10, π = 7, and µ = 24. If the user decides to give preference to TS descriptions

with a small number of kernels then the value of β can be set to zero or very close

to zero. The values of µ and pi can be any positive integers although we found out,

through experimentation, that the optimal values of µ are in the range from 12 to 32

and those of π from 2 to 12.

Figure 5.24 shows the values, with |PR| ranging from 1 to 64, of Sα(|PR|) with

µ = 24, π = 7, and α = 0.10. The reader should note how the function has high gain

0

1

2

3

4

5

6

7

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

S function

Figure 5.24: A depiction of the kernel selection process.

around |PR| = 12. In this case, if Sα = Sβ, all possible subsets of PR are considered.

The shape of the function can be changed by modifying the values of µ and π. It

was not possible to conduct an in-depth analysis of the Sα and Sβ functions. These

functions were devised after much experimentation on the MathCAD� mathematical

206

analysis software package. The results obtained have to be corroborated with further

research. The kernel selection approximation algorithm based on these two functions

worked extremely well in Valletta. In every case, this kernel selection technique found

the correct set of kernels without having to consider all the possible subsets of PR.

The values of α and β depend only on the cardinality of the training sets.

The kernel selection returns the subset of PR that returned the smallest value of

f2. The next step is then to compute f1. This involves computing the EvD between

the set of normal forms of C+ and those of C− using the set of kernels returned by

the kernel selection procedure. For Valletta we used a different definition of f1 to

the one used by GSN. In GSN, f1 was defined to be the minimum pair-wise distance

between C+ and C−. If the training set contain misclassification noise, i.e. if, for

example, C− contains a string belonging to the target class C, then f1 would, clearly,

be zero. In order to avoid this problem and allow Valletta to handle misclassification

noise, f1 is defined to be the distance between C+ and the closest 10% of string in

C−. This is depicted in Figure 5.25. The computation of f1 is discussed in Chapter

7. When f1 and f2 have been computed, the value of f is computed in the usual way:

+

+

-

+

-+

-

+ -
+

-

+

-

+

-

Average interdistance
in C+

Distance between C+

and closest 10% of C-

f1

f2

- C-

C+

Figure 5.25: Computing the new f1 function.

f =
f1

c + f2

.

207

5.5 Reducing C+ and C− to their Normal Forms

Reducing a string modulo a given set of features F appears, prima facie, to be a very

simple procedure. All one needs to do is to delete all occurrences of the features from

the string and thus obtain the kernel. If the set of feature is confluent, the process

can be performed in O(n) time where n is the length of the string. If, however, the

set of features is non-confluent, then there may be many different ways in which the

features can be deleted. The presence of noise further complicates matters since the

features themselves or even the kernel may be corrupted. Figure 5.26 shows the edit-

Edit Graph for

and
1110100

00010101
Kernel/s

Operations

00
11
010

A
B
C1 011 01 0

1BC0 B1C0 1B01A B101A

B10100 1B0100 111C0 11101A

0A1C1 A01C1 AC101

0001C1 00C101 0A1 1010 A 101010

0 100 0101

101

Figure 5.26: The Edit-Graphs for the strings 1110100 and 00010101.

graphs of the string 1110100 and 00010101 modulo the set of features {00, 11, 010}.

An edit graph is a structure that shows all possible ways that the features can be

deleted from the strings to obtain the normal forms. In the edit graph a feature

208

is not actually deleted from the string but replaced by a symbol (in our case an

upper case character) called the alias. The is necessary since it provides a means

for detecting features inserted inside other features. The alias places the role of the

θ symbol in θ-reduction relations. In our case, the strings were drawn from the

kernel language with the string 101 as the kernel and set of features as above. Since

the features overlap between themselves there is more than one way of deleting the

features from the strings. Removing the features in every possible way there will

result in more than one normal form for each string. This is depicted in Figure 5.26.

It turns out, not surprisingly, that edit graphs grow super-polynomially in the size of

the strings. It is therefore not practical to pursue such an approach as a means for

string reduction. From very early in Valletta’s development it was evident that an

efficient method for dealing with what looked like a difficult combinatorial problem

was required. In some pathological cases the number of normal forms can be very

large. The number of normal forms a string can have is, of course, bound from

above by the total number of possible subsequences in the same string. A number

of experiments showed that feature sets with high τ numbers, long strings, and low-

cardinality alphabets, sometimes conspired to make such pathological cases occur.

Valletta, however, depended on having an efficient procedure for reducing strings

to their normal forms. The string reduction algorithm used by Valletta uses a data

structure called a parse graph. A parse graph (of a string) is a structure that stores all

the possible ways a string can be reduced modulo a set of confluent or non-confluent

features. A parse graph is a directed acyclic graph with two distinguished nodes

labelled START and FINISH. Each node is assigned a non-negative integer. The

number of nodes is n + 2 where n is the length of the string. The START node is

assigned the integer 0 and the FINISH node is assigned the number n + 1. All other

nodes are associated with a position (starting from the left) in the string and are

209

assigned the appropriate integer. All the edges in the parse graph are labelled with

a substring from {A ∪ Σ}∗ where Σ is the string alphabet and A is the set of alias

symbols that are assigned to the features. Figure 5.27 shows the parse graph of the

string 000101110100 modulo the non-confluent set of features {00, 11, 010}. Every

Parse of the String
00010 11 00$1 01

Kernel/s

Operations

00
11
010

A
B
C

101

0 0 0 1 0 1 1 1 0 1 0 0 $
(1) 2 (3) 4 5 (6) 7 8 (9) 10 11 12 (13)

A C 1B 01A

0A10 B1 C0

Figure 5.27: A parse of the string 000101110100 using non-confluent features.

node that is incident to an edge is either the position in the string where a feature is

found or the position where a feature ends. Such nodes are called target nodes. Note

that only one feature can start in any given position in the string. In other words,

we can only find one feature in F that starts at position i in the string. If this were

not the case then there would be features that are prefixes of other features. Parse

graphs are useful structures because they store all the possible ways a string can be

parsed. They also can be built in linear time and use linear space. From the parse

graph in Figure 5.27 it should be evident that one can obtain all the normal forms

of the strings by considering all the paths from the START to the FINISH nodes.

This can be done using a simple recursive depth-first search algorithm. The normal

form associated with a path is obtained by concatenating all the edge labels in the

path and then removing the alias symbols. Another important type of node is the

210

cross-over node. Cross-over nodes are so called because they represent target nodes

that are not crossed by edges. Formally, a cross-over is a target node ni (i denotes

the node number) such that there is no edge (nj, nk) where j < i < k. Nodes 0 and

n + 1 are, by definition, cross-over nodes. Cross-over nodes are important because

they define the independent segments of the string. The independent segments are

the substrings where the first character is a cross-over node and the last character

is the character before the next cross-over node. Consider again Figure 5.27. The

cross-over nodes are 1, 6, 9, and 13. The independent segments of the string s =

000101110100 are therefore s[1, 5], s[6, 8] and s[9, 12]. An interesting property of the

independent segments of a string is that each can be parsed separately. It is possible

to extract the normal forms for the first segment and then of the second segment,

and so on. Let I1, I2, . . . , In be the normal forms of the n independent segments of

a string. The normal forms of the whole string can then be obtained by taking, in

order, all concatenations in the ‘Cartesian product’ I1× I2× . . .× In. In Figure 5.27,

for example, the normal forms of the independent segments are:

Independent segment+ Normal forms−

s[1, 5] ε, 010
s[6, 8] 1
s[9, 12] 0, 01

Table 5.4: The normals forms of each independent segment.

We then concatenate all pairs of normal forms of the first and second independent

segments to obtain a new set of normal forms which we denote by I1 × I2 and then

concatenate all pairs in (I1×I2)×I3. The normal forms obtained from this method are

the normal forms of the whole string. The normal forms of the string 000101110100

are 10, 101, 01010, and 010001. The idea here is that one can find the normal forms

of each independent segment separately (perhaps in parallel) and then perform all

211

the possible concatenations in order to obtains the set of normal forms of the whole

string. This is depicted in Figure 5.28.

Parse Graph Structure

$

$

Cross-over Nodes

Figure 5.28: The parse graph structure showing the cross-over nodes.

Notice also that the number of normal forms obtained by this method is equal

to the number of paths in the complete n-partite graph where n is the number of

independent segments and where partition i has |Ii| nodes. This number can, in

general, be very large.

A number of experiments carried out with both random strings and strings from

actual kernel languages revealed that although, in general, the number of paths in

the parse graph was usually relatively large, the number of unique normal forms

was usually much smaller. A number of important optimizations were therefore

incorporated into the string reduction algorithm. The idea was to find a way of

extracting all the unique normal forms in the parse graph without considering all

possible paths. Notice, for example, that in Figure 5.27 both paths between nodes 6

and 9 yield the same normal form. One of the edges is therefore redundant. It turns

out that it is possible to reduce the size of the parse graph by merging certain nodes

212

and by removing redundant edges. It also turns out that, for Valletta, we do not

really need all the normal forms but only those that are less than a certain length

(depending on the length of the longest kernel). Before extracting the normal forms,

a special preprocessing stage removes the redundant nodes and edges in the parse

graph. Consider the simple example in Figure 5.30.

(i)

(ii)

A10

B

String

Operations

00
11
010

A
B
C

110010

0C

BA10

B0C

Figure 5.29: Removal of redundant nodes in parse graph reduction.

Figure 5.29 shows how the string 110010 can be reduced using the set of features

{00, 11, 010}. Each feature found in the string is replaced by an upper case letter

(called the alias) in the parse graph. As can be seen the middle node is redundant

and can be removed. The edges are then labelled with the normal forms of the paths

that passed through the redundant node.

(i)

(ii)

A

B1

1B

1BA

String

Operations

00
11
010

A
B
C

00111

Figure 5.30: Removal of redundant edges in parse graph reduction.

It is sometimes also the case that the parse graph contains redundant edges. An

213

example of this is shown in Figure 5.30 which shows how the string 00111 can be

reduced. In this case, an edge can be removed since the normal forms of both paths

are identical. We shall not discuss the rather involved algorithm for parse graph

reduction. Our aim here is to outline the general technique. Parse graph reduction

is only necessary when the set of features is non-confluent. When the features are

confluent the strings have only one normal form and this can be found in linear time.

When parse graph reduction is completed Valletta extracts the normal forms

using a simple, recursive, depth-first search of the reduced parse graph. The number

of unique normal forms is usually quite manageable. It was observed that for small

cardinality alphabets (≤ 3) and strongly non-confluent features with a high τ number

(i.e. many features share suffixes and prefixes), the number of unique normal forms

can be quite large, sometimes many hundreds. This happens because with small

cardinality alphabets the probability of occurrence of each feature is higher. This is

a well-known result from the theory of word combinatorics [79]. The normal form

extraction algorithm used for Valletta therefore includes yet another optimization.

The algorithm does not consider normal forms that are of length 2n + 1 or more

where n is the length of the longest kernel in the set of kernels that is passed as

a parameter to the EvD function. This is because, once the algorithm has found

at least one normal form of length 2n + 1 or less, it is useless to consider normal

forms that are longer than 2n + 1 since it can be shown that these cannot possibly

have a shorter weighted Levensthein distance to the kernel. This is true only if all

insertions/deletion have the same cost. Consider any two strings. The weighted

Levensthein distance between the two strings is bound from above by m + n where

m and n are the lengths of the two strings7. This is because, in the worst case, one

has to first delete all of one string and then build the second string using character

7We are assuming that the cost of insertion and deletion is 1.

214

insertions. In EvD we have to find the normal form that is the shortest distance to

the set of kernels. What we did for Valletta is that, during normal form extraction

(from the parse graph), we keep track of the smallest distance between the set of

kernels and the normal forms found so far. If this value is x, we then ignore all

normal forms that are of length n + x.

Valletta’s string reduction algorithm is able to extract the normal forms of the

strings in C+ and C− in reasonable time. Even for strings that are approximately

400 characters long and with non-confluent features, reduction never takes more than

a few seconds at most. In summary, the string reduction procedure used is as follows:

(a) Build parse graph of the string,

(b) reduce the parse graph by removing redundant edges and nodes, and

(c) traverse the reduced parse graph considering only normal forms of a given

length.

In the implementation of Valletta the actual algorithm for string reduction was rather

involved and took many weeks to develop and debug. The string reduction algorithm

worked quite well although the topic is my no means closed. Further investigation

into the theory and techniques of string reduction is required and the author remains

convinced that more efficient methods can be found.

215

5.5.1 Feature Repair

One of the problems of GLD was that if a feature has an extra character inserted

somewhere along its length, the whole feature would be considered as noise. This

problem limited the number of noisy features allowed in a string. We solved this

problem in Valletta by modifying the string reduction algorithm to handle what we

called feature noise. Feature noise consists of spurious characters inserted inside the

features. When the string reduction algorithm is building the parse graph it tried to

find the features that occur inside the input string. When feature repair is enabled,

the algorithm also searches for features that have been corrupted by the insertion of

extra characters. The number of extra characters that are allowed inside the features

is determined by the MFN parameter entered by the user. MFN is a real number in

the interval [0, 1]. A value of 0.25, for instance, means that up to 25% of the feature

(by length) can be corrupted. In Figure 5.31, the feature ab is corrupted by the

insertion of an extra ‘c’. When building the parsee graph the algorithm identifies the

Kernel/s

Features

ab A

cc
1

a b c c a c b $

Acc

2 3 4 5 7 8S

�

A

6

0.330.0

Figure 5.31: How feature repair works.

substring acb as being a corrupted version of the feature ab and assigns a weight of

0.33 (the cost of deleting the ‘c’) to the edge. When the normal forms are extracted

from the parse graph, the weights of the edges are added together and assigned to

each normal form. This value is called the feature repair cost of the normal form.

The EvD between two strings is then the WLD between the normal forms and the

set of kernels plus the feature repair costs. The feature repair facility worked well

and allowed significantly higher levels of noise in C+. The only problem is that the

216

computational complexity of parse graph construction is increased since the algorithm

has to search for corrupted versions of the features.

5.6 Summary and Discussion

The complexity of learning multiple-kernel languages necessitated a new approach

to ETS learning of kernel languages. Valletta is a more complex algorithm than

the GSN algorithm precisely because the environment is more complex. Multiple

kernels, non-confluence, and noise increase the number of normal forms, distance

computation, the search space, and hence learning. Valletta has to search not only

in the space of all possible features (i.e the repeated substrings) but also in the space

of all possible kernels (i.e. all the normal forms of C+). In addition, Valletta uses

a much more relaxed definition of structural completeness. This makes the search

space much larger. The addition of noisy strings complicated matters further. The

two main concerns that arose during Valletta’s development was whether it was pos-

sible to find efficient algorithms for string reduction and also for kernel selection.

The string reduction algorithm, which uses parse graphs, works quite well. Kernel

selection is, in general, NP-Hard. The approximation algorithm used is based on the

premise that some kernels are more likely to be in the target TS descriptions than

others and also the assumption that the training set is uniform in the sense that the

kernels are uniformly distributed in the training data.

Most learning algorithms exploit some partial order on the search space to direct

the search. Valletta uses only distance, or rather, an ordering based on distance.

Valletta borrows some ideas from both the A* and Beam search techniques. It

expands the search solely on the basis of the value of f2. No other heuristics are

used. As the results in Chapter 7 show, this approach gives good results but this is

217

not to say that the search technique cannot be improved further (See Chapter 8).

Another of Valletta’s features is the pre-processing stage. The pre-processing

stage identifies the search space of the learning stage. Preprocessing can yield a lot

of information and drastically reduce the time and space complexity of the task at

hand. This is a lesson learned from Bioinformatics [57]. The preprocessing stage

produces the set of repeated substrings RC+ and the search lattice LC+ . Valletta’s

search space is the set of all anti-chains in LC+ .

Valletta, like the GSN algorithm does not really optimize the f function. It

stops searching when f exceeds a user-input threshold value. This, of course, is not

equivalent to optimizing f over the search space of all possible TS descriptions that

are consistent with C+.

218

Chapter 6

Valletta Analysis

The aim of this chapter is to analyse the Valletta algorithm. In particular, to discuss

the time and space complexities of the various stages of the algorithm and also its

ability to converge to a TS description consistent with a set of training examples that

is structurally complete.

6.1 Time Complexity of the Preprocessing Stage

The preprocessing stage performs the following independent procedures:

(a) The construction of the global augmented suffix trie (GAST).

(b) Traversal of the GAST in order to extract all non-overlapping repeated sub-

strings in C+.

(c) Construction of the search lattice.

1. Construction of the GAST

The construction of the GAST is performed, on average, in O(n log n |C+|) time

where n is the length of the longest string in C+. In the worst case this bound is

219

O(n2 |C+|). The GAST construction algorithm used by Valletta is loosely based on

the suffix trie construction algorithm discussed in [114]. The main difference is that

Valletta does not build the suffix trie of a single string but of all the strings in C+.

It also records additional information on the number of times a suffix has been found

and in how many strings. As discussed in [114, Page 201], it is possible to reduce

the worst case upper bound to O(n log2 n |C+|) by using the technique proposed by

Apostolico and Preparata (see references in [114]). The author did not bother with

further optimization of GAST algorithm since it worked very well and constructed

the GAST in a few seconds even for the largest datasets.

It is possible to use suffix trees instead of suffix tries to obtain the same results. Suffix

tree can be constructed in linear time and are therefore asymptotically faster but the

algorithms for their construction are substantially more complex.

2. Traversal of the GAST

After the GAST is constructed, Valletta’s preprocessing stage then traverses the

GAST in order to extract all non-overlapping repeated substrings. As with all tree

traversal algorithms, the time complexity of this step is linear in the size of tree. The

author conducted a number of experiments on sets of strings of various cardinalities,

of various lengths, and over different alphabets. It was observed that with larger

alphabets, the GAST may grow to contain a number of nodes that is quadratic in

the size of the set of strings. The size of a set of strings is here defined to be the sum

of the lengths of the strings in the set. However, the GAST is built from C+ and not

from random strings. For obvious reasons, the strings in C+ contain a lot of regular-

ity (repeated substrings) and this ensures that the GASTs remain relatively small.

The a702 dataset, which was the largest dataset used to test Valletta, contained 128

strings with lengths of up to 304 characters and generated a GAST with 1.5 million

220

nodes in just under 18 seconds1. The size of the training set was 18,253 characters.

3. Construction of the Search Lattice

The final task performed by the preprocessing stage is the construction of the search

lattice. The depth of the search lattice is, on average O(logm n) where n is the

number of nodes in the lattice and m is the cardinality of the alphabet. Search

lattice construction is performed, on average, in O(n logm n) time. In the worst case

this can be asymptotically worse, O(n2), although it is very unlikely that this bound

is ever encountered in practice.

6.2 Time Complexity of String Reduction

As we saw in the previous chapter, string reduction is a problem that has a very

simple description but that does not have a simple solution. The string reduction

algorithm used in Valletta was refined and improved over a number of months until

it performed the task quite well. It is difficult to give asymptotic bounds on the

time complexity of string reduction. If the set of features is confluent, reduction of

a string to the sole normal form can be performed in linear time. If the features are

non-confluent, then there are many factors that can influence the time complexity.

In the worst case, the number of normal forms can be super-polynomial to the length

of the string but this happens in extremely pathological cases (see Appendix G). If

the set of features has a high τ number (see Chapter 3) and is therefore strongly non-

confluent and the alphabet is of small (i.e. 2-4) cardinality then, if the strings are

relatively long (i.e. > 100 characters), the number of normal forms can, in some cases,

be large (many hundreds or even thousands). A number of experiments performed on

both randomly generated strings and also on strings from a kernel language confirmed

1On a Pentium II PC running at 800MHz.

221

that the cardinality of the alphabet has a strong influence. This is because, features

over a small alphabet have a high probability of occurring in random strings over

the same alphabet. The length of the strings in C+ was not really a factor. In the

bin02 dataset, for instance, when C+ was reduced using the target set of features

{00, 11, 010}, it yielded 2125 normal forms of which 482 were unique. The longest

string in C+ was 85 characters long and was reduced to 59 different normal forms.

The maximum number of normal forms for any string in C+ was 82. The negative

training set C−, which consisted of randomly generated strings, yielded 509 normal

forms. The number of normal forms always remained relatively low. Both C+ and

C− each had 64 strings. The algorithm used in Valletta to perform string reduction

of a string s of length n had three stages:

(a) Construction of the match matrix. This is performed in O(nm) time where m

is the number of features.

(b) Construction of the parse graph. This procedure is O(nm)

(c) Traversal of the parse graph in order to extract the normal forms. This is

performed by a simple depth-first recursive algorithm. The time complexity

depends on the number of normal forms and the τ number of the set of fea-

tures. In practice it turned out that string reduction was always performed

very quickly.

The string-reduction algorithm also included a number of optimizations, like parse

graph reduction and edge-merging (See Chapter 5), which reduced the overall com-

plexity. As far as the author is concerned this topic is still an open area. Although

the string reduction algorithm performed very well, the author remains convinced

that faster and more efficient methods can be developed.

222

6.3 Time Complexity of Computing f

Given a set of features F , the computation of the f function involves the following

steps:

(a) Reduction of both C+ and C− modulo the set of features F ,

(b) Computation of the distance matrix,

(c) Computation of f3,

(d) Kernel Selection and computation of f2, and

(e) Computation of f1.

Reduction of the strings in C+ and C− is discussed in the previous section. The

computation of distance matrix involves computing the weighted Levensthein dis-

tance (WLD) between all pairs of normal forms of each string in C+. The number of

WLD computations is therefore bound from above by

∑
s∈C+

| ⇓F (s)|2.

where ⇓F (s) is set of normal forms (modulo F) for the string s. The time complexity

of WLD is quadratic in the size of the two strings. It must be pointed out that in

the actual implementation it is not necessary to compute the WLD between all pairs

of normal forms but rather between all pairs of unique normal forms. This gives a

significant time saving since the set of normal forms of C+ usually contains many

repeated strings.

Computation of f3, the average WLD between the sets of normal forms of the

strings in C+ is quadratic in |C+| and N , the number of normal forms of C+. For f3

we do not need to compute the actual distances since the WLD between all pairs of

223

normal forms can be found in the distance matrix. The algorithm to compute f3 ac-

cesses the distance matrix in order to find the distance between any two normal forms.

Kernel selection, as is shown in Appendix H, is NP-Hard. An exhaustive search

for the set of kernels that minimizes f2 is therefore out of the question. The ap-

proximation algorithm that is used in Valletta considers a number of kernel sets that

depends on the value of the functions Sα and Sβ. The reader is referred to page 206

for a discussion of these functions. The number of different kernel sets considered by

the approximation algorithm depends on the values of the parameters of the Sα and

Sβ. These parameters are input by the user. The role of the Sα and Sβ is to reduce

the number of kernel sets considered by the algorithm to a manageable level. The

kernel selection procedure returns the set of kernels that give the minimum value of

f2. Valletta therefore has to compute the value of f2 for every kernel set considered

by the kernel selection procedure. It must be emphasized, however, that when com-

puting f2 it is not necessary to perform the actual distance computation since, as

was the case with f3, the WLDs between all pairs of normal forms are stored in the

distance matrix. The kernel selection procedure returns the kernel set that minimizes

f2. Finally, computation of f1 involves computing the minimum WLD between the

set of normal forms of C+ and the set of normal forms of C−. This step is performed

in O(|C+|.|C−|) time.

224

6.4 Convergence

Valletta’s search engine uses what can best be described as a hybrid distance-driven

Beam/A∗ search technique to find a TS description that is consistent with the training

set. One desirable attribute of this technique is that it is relatively easy to show that

Valletta always finds a TS description that is consistent with the training set if one

exists and if the training set is structurally complete. It should be evident to the

reader that if the training set is structurally complete then the target set of features

is a subset of the set of all the non-overlapping repeated substrings in C+, i.e. the

candidate features. The algorithm finds a feature set that is consistent with the

training set. Of course, as with every learning algorithm, it cannot be guaranteed

that the algorithm finds the target set of features since, in general, there may be

many set of features (TS descriptions) that are consistent with the training data.

Valletta always finds one such TS description if it exists. This is because Valletta’s

search technique enumerates the search space. It is therefore clear that if a consistent

TS description exists it is eventually found. To show that this is indeed true we have

to show that:

(a) The completed search tree TR contains a node for each of the valid (substring-

free) features sets in the set of repeated substrings RC+ . Each valid feature set

is an anti-chain [59] in the search lattice RC+ .

(b) Valletta continues expanding the search tree TR until either a valid TS descrip-

tion is found or until TR is complete.

Before the construction of the search tree begins, Valletta first computes the value

of f for each of the candidate features and then orders the list RC+ in ascending or-

der according to the value of f2. This ordering of RC+ is then fixed for the learning

process. The search tree TR is then initialized to a tree with a single level consist-

225

ing of the root node and |RC+| children with each leaf labelled with a unique string

from RC+ . In TR, every node is labelled with a string from RC+ . The feature set

associated with any given node is the set of strings that are labels of the nodes on

the path from that node to the root. When a node is expanded, i.e. by adding child

nodes, only strings in RC+ that have a larger value of f2 are added.

Repeated Substrings

ab
ca
b
bc
a
cab

0.08
0.14
0.56
1.29
1.74
1.93

ab bc ca

cab

Search Lattice for the strings:
, , , , , , and .a b c ab bc ca cab

�

a b

f2

�

ab ca b caba

bcca

bc

bc ab a cab

bc

Complete Search Tree.

Figure 6.1: The search tree created from the strings {a, b, ab, ca, bc, cab}.

This ensures that each node in TR represents a unique feature set. In addition,

the search lattice LC+ is consulted to ensure that the new node represents a valid

226

feature set. The nodes in TR represent feature sets that are anti-chains in the search

lattice LC+ . This follows from the fact that each feature set is substring free. The

complete search tree, therefore, contains all valid set of features.

As we saw in Chapter 5, a node remains in the ACTIVE and PENDING lists

until no more child nodes can be added. When this condition is reached the node is

deleted from the ACTIVE or PENDING lists and added to the CLOSED list. A node

is added to the CLOSED list only when either no more strings remain in RC+ that

have a larger value for f2 or when all the remaining strings in RC+ that have a larger

value f2 cannot be added since it would result in an invalid feature set. Once added

to the CLOSED list a node remain there until the algorithm terminates. Valletta

keeps on adding nodes to the search tree until all nodes are in the CLOSED list.

When all the nodes are in the CLOSED list, the tree is complete and contains all the

valid subsets of R. This means that Valletta always finds a valid TS description that

is compatible with the set of training examples if one exists. Figure 6.1 shows the

complete search build by Valletta on a very small test dataset. Valletta was modified

for this test so it does not stop when it finds a TS description consistent with the

training sets but continues expanding the tree until the tree was complete. Note how

each node is expanded by adding child nodes labelled with strings in RC+ that have a

larger value of f2 than the parent. Note also that each node in the completed search

tree represents an anti-chain in the search lattice LC+ . In practice, of course, Valletta

does not build the complete search tree since this is usually very large.

227

Chapter 7

Experimentation, Testing, and

Results

In this penultimate chapter we document, discuss, and analyse the results obtained

from the tests and experiments there were conducted with Valletta. Valletta was

tested with both artificial and ‘real-world‘ datasets, including datasets created by

other researchers to test their learning algorithms. Four groups of datasets were used

for testing Valletta and evaluating its performance:

• A suite of datasets that was purposely designed to test Valletta’s performance,

robustness, learning in the presence of noise, and also to aid the debugging

process.

• The GSN datasets used by Nigam in his Master thesis (see Section 7.3).

• The datasets for the Monk’s Problems (see Section 7.5).

• A dataset created for investigating a Backpropagation neural network’s perfor-

mance on the parity problem (see Section 7.7).

228

The datasets were carefully chosen so as to show how Valletta performs in the

presence of different types of noise, and whether it is robust, i.e. whether a change

of the training set affects its performance. In order to demonstrate that Valletta’s

distance-driven search technique was better than average, the author also designed

and implemented a Genetic Algorithm (GA) search engine. The GA was tested with

all the datasets in the first group and its performance was compared to that of Val-

letta. This is discussed in Section 7.2. The author also downloaded the code for the

EDSM DFA learning algorithm that won the Abbadingo DFA learning competition

(See Appendix E). The EDSM algorithm is compared to Valletta in Section 7.6. A

sample of the datasets used to test Valletta can be found in Appendix C. For obvious

reasons, not all the datasets are included in Appendix C.

7.1 Valletta’s Testing Regimen

In order to test Valletta, evaluate its performance, and also to aid in the debugging

process, a suite of 12 datasets was produced. The datasets were chosen to be as het-

erogenous as possible. The datasets were generated by a small program, tset, which

given a number of input parameters from the user, automatically generated positive

and negative training sets. The user must enter the number of strings in both C+

and C−, the minimum and maximum string length, the set of kernels and the set of

features, and a random number seed. Every effort was made in order to make the

training sets as varied as possible. Some are confluent and some non-confluent. The

number of characters in the alphabet varies from 2 to 11. The number of kernels

varies from 1 to 3 and the number of features varies from 2 to 7. The length of the

features varies from 2 to 13 characters. The length of the strings varies from 3 up

to approximately 400 characters and the number of strings in the training sets varies

from around 10 to several thousand. The training sets, listed below, also contain

229

all the types of noise that Valletta can handle, i.e. feature noise, kernel noise, and

misclassification noise.

Training datasets used to test Valletta

bin01 Binary alphabet, medium sized training set (≈ 35), single kernel, no noise.
Kernel: 101 .
Features: 11 , 00 , and 010 .
Non-confluent.

bin01n Binary alphabet, medium sized training set (≈ 35), single kernel, 2% mis-
classification noise.
Kernel: 101 .
Features: 11 , 00 , and 010 .
Non-confluent.

bin02 Binary alphabet, large sized training set (> 64), single kernel, no noise.
Kernel: 101 .
Features: 11 , 00 , and 010 .
Non-confluent.

a301 Three-letter alphabet {a, b, c}, medium sized training set (≈ 45), one kernel,
no noise.
Kernel: abbcb.
Features: bab, abba, cacba, and bbcab.
Non-confluent.

a302 Three-letter alphabet {a, b, c}, medium sized training set (≈ 45), two kernels,
no noise.
Kernels: abbcb,cccbbc.
Features: bab, abba, and cacc.
Non-confluent.

a302n Three-letter alphabet {a, b, c}, medium sized training set (≈ 45), two kernels,
12% noise.
Kernels: abbcb,cccbbc.
Features: bab, abba, and cacc.
Non-confluent.

230

a701 Seven-letter alphabet {a, b, c, d, e, f, g}, medium-sized training set (≈ 40), two
kernels, no noise.
Kernels: gadcffb,acbcffgcbbe.
Features: bfg , gacd , acefb, fbacd , ggfcbd , cdfba, and acdeeegb.
Non-confluent.

a702 Seven-letter alphabet {a, b, c, d, e, f, g}, large training set (≈ 128), two kernels,
no noise.
Kernels: gadcffb,acbcffgcbbe.
Features: bfg , gacd , acefb, fbacd , ggfcbd , cdfba, and acdeeegb.
Non-confluent.

a703 Seven-letter alphabet {a, b, c, d, e, f, g}, small training set (≈ 24), two kernels,
no noise.
Kernels: gadcffb,acbcffgcbbe.
Features: bfg , gacd , acefb, fbacd , ggfcbd , cdfba, and acdeeegb.
Non-confluent.

a703n Seven-letter alphabet {a, b, c, d, e, f, g}, small training set (≈ 24), two kernels,
10% noise.
Kernels: gadcffb,acbcffgcbbe.
Features: bfg , gacd , acefb, fbacd , ggfcbd , cdfba, and acdeeegb.
Non-confluent.

a1101 Eleven-letter alphabet {a, b, c, d, e, f, g, h, i, j, k}, small training set (≈ 15),
three kernels, no noise.
Kernels: hgaidcfkfb, fkighbdafkfb, jahbcfikgcbde.
Features: aih, degai , acefb, bfjbace, cjkcbd , cdfba, and facdiikhgeeb.
Non-confluent.

a1101n Eleven-letter alphabet {a, b, c, d, e, f, g, h, i, j, k}, small training set (≈ 15),
three kernels, no noise.
Kernels: hgaidcfkfb, fkighbdafkfb, jahbcfikgcbde.
Features: aih, degai , acefb, bfjbace, cjkcbd , cdfba, and facdiikhgeeb.
Non-confluent.

During the course of Valletta’s development and debugging numerous other datasets

were created and used for testing and debugging. The above are the ‘official’ testing

datasets.

231

Results

Valletta found the correct TS descriptions all the kernel languages of each the

training sets. In this section we document and discuss briefly the results obtained

but refrain from an analysis of the results. This is done later on in Section 7.8.

Table 7.1 shows a listing of the training sets and the results obtained. The column

Problem Σ |C+| Len |C−| Len Reps Nodes Pass Time

bin01 2 6 9.3 8 21.0 25 47 4 11.5

bin01n 2 6 10.7 8 21.0 27 55 6 15.2

bin02 2 63 44.2 63 29.6 47 162 10 2,080.4

a301 3 29 75.6 15 49.8 118 67 5 305.4

a301b 3 29 75.6 15 49.8 118 97 9 539.2

a302 3 14 31.1 15 49.8 40 61 4 38.2

a302n 3 14 32.1 15 49.8 34 67 5 44.9

a701 7 41 72.4 15 104.2 17 83 8 233.5

a702 7 128 142.6 32 105.3 15 179 11 5,831.3

a703 7 24 87.3 15 104.2 18 89 8 217.0

a703n 7 24 89.3 15 104.2 21 153 9 578.2

a1101 11 15 181.0 11 97.8 18 89 8 195.3

a1101n 11 15 183.4 11 97.8 21 113 9 273.6

Table 7.1: Results obtained from testing Valletta.

with the heading Σ shows the alphabet size. The next four columns show the cardi-

nality of C+, the average length of the strings in C+, the cardinality of C−, and the

average length of the strings in C− respectively. The column with the heading Reps

shows the total number of non-overlapping repeated substrings found by Valletta’s

preprocessing stage. This value is important since it gives an idea of the size of the

232

Figure 7.1: Screen dump of Valletta when learning of A1101 was completed.

search space. The reader is reminded that, given a set R of repeated substrings, the

search space is the power set P(R). The column with the heading Nodes shows the

number of nodes in Valletta’s search tree when learning was completed. This number

represents the total number of different feature sets (TS descriptions) considered by

Valletta. The last two columns contain the number of passes (iterations) performed

by Valletta’s learning stage before a TS description consistent with the training sets

233

was found and the total time in seconds that elapsed before the final TS description

was found. Figure 7.1 shows a screen dump of Valletta after it had completed learn-

ing on the A1101 dataset. The A1101 dataset is interesting because it has 3 kernels,

7 features (with the longest feature being 13 characters long), and very long training

strings (> 300 characters) and yet Valletta found the correct class description in just

over 6 minutes. The TS description found by Valletta, i.e. the features and kernels, is

displayed on the left of the screen. Valletta also displays the values of f , f1 and f2 and

a bar graph of these values as well as various other learning statistics and parameters.

Some Observations

• For each of the 12 datasets, Valletta discovered the correct class description

after considering only a very small part of the total search space. In all cases

Valletta found the correct TS description after considering less than 200 dif-

ferent class descriptions. Valletta’s distance-driven search proved to be very

efficient.

�

cc ba acc abba bba37 36 3537 34 33 32

38
39

43 45 48 49

cacc

ba abbaba abcacc bbaabba ccabab abbab40 41 42 44 46 47abba

Search Tree for datasetA302

abbab ccabab abbab abbab ccabab

52 6153
50

51 58 59 54 55 60

Figure 7.2: The search tree created by Valletta for the a302 dataset.

As explained in Chapter 5, the search tree is expanded only on the basis of the

234

value of f2, the average pair-wise distance in C+. To put things into perspective,

the smallest search space, i.e. that of the bin01 dataset, contained 215 different

feature sets. Figure 7.2 shows the actual search tree built by Valletta for the

a302 dataset. The nodes shown circled in red represent the final TS description.

For this dataset Valletta created a search tree with 61 nodes. The number shown

in black to the left of each node is the actual node number. Due to restricted

space, only the nodes in the first level of the tree that have children are shown.

• Valletta took just over 1.5 hours to find the correct class description for the

a702 dataset. This was not because the search is inefficient. In fact, the number

of different feature sets considered by Valletta before it found the correct class

description was 179. This was only slightly more than that for the a703 dataset

which was drawn from exactly the same kernel language. The a702 dataset,

however, contained many more strings (128 in C+) and the average length of

the strings was much longer. This adversely affected the learning time. This

issue is discussed in Section 7.8.

• The number of features and/or the number of kernels did not seem to affect

Valletta. Valletta learned kernel languages with 7 features and 3 kernels with

no problems at all.

• Valletta performed much better on alphabets of higher (≥ 4) cardinality. This

is because, with high cardinality alphabets, the pre-processing stage finds fewer

candidate features in C+. This issue is discussed in Section 7.8

• The values of the I and J parameters were both set to 3 for all datasets. Valletta

therefore always expanded the top three nodes in the PENDING list and three

other nodes chosen according to the heuristic described in Chapter 5.

235

7.2 The Darwin Search Engine

As we noted in the previous section, Valletta learned the correct TS description of

each kernel language in the testing datasets after considered a relatively very small

number of feature sets (i.e. TS descriptions). Valletta therefore manifested very

quick convergence to the target TS description. As has been emphasized many times

in this thesis, Valletta’s search is entirely distance-driven. At each iteration of the

learning loop only the value of the f2 function is used to determine which features

are considered next. Valletta’s performance is analysed later on in Section 7.8. In

this section we discuss the Darwin genetic algorithm (GA) search engine which was

added to Valletta in order to perform comparisons between Valletta’s distance-driven

search and the adaptive search technique used by genetic algorithms [88]. Valletta’s

results left us in no doubt that distance-driven search performs much better than

random search. The reason why the Darwin GA engine was implemented was be-

cause the author wanted to compare Valletta’s search technique to another search

technique that is in widespread use. Valletta’s modular design made it relatively

easy to replace the distance-driven search engine with the GA engine. Exactly the

same pre-processing stage is used together with the same distance function, EvD.

Moreover, the same methods of computing f , f1, and f2 are retained. All that was

changed was the actual search technique. In this way, one could compare the two dif-

ferent search techniques — with all other things being equal. Darwin actually forms

part of Valletta — the user is given the option to decide which search technique to

use — ETS distance-driven search or the GA engine.

The Darwin search engine uses conventional GA adaptive search techniques. Val-

letta’s pre-processing stage first finds all the candidate features in the usual manner

as described in Chapter 5. Darwin then creates an initial population of 256 chromo-

somes. Each chromosome is a string in which each character corresponds to one of

236

the candidate features. In other words, if the preprocessing stage finds n candidate

No

Start

Expand Population
(Mutation/Crossover)

1 - Reduce C+
2 - Reduce C-
3 - Compute F

Is >= Threshold ?f

For each
chromosome

Main Learning Loop

Pre-processing Stage
1 - Build Suffix Trie
2 - Find all repeated factors in C+
3 - Build Search Lattice

Create Initial Population (128)

Yes

Stop

Choose Best 128
Chromosomes

Figure 7.3: High-level flowchart of the Darwin genetic algorithm search engine.

features, then the chromosomes are strings over an alphabet of n characters. Each

chromosome, therefore, represents a set of features. After the initial set of chro-

mosomes is created (i.e. the initial population), Darwin then enters into the main

learning loop. This loop is repeated until learning is achieved or until a specified

number of iterations is made without the algorithm registering an improvement in

the value of f2. This is depicted in Figure 7.3. In the main learning loop the set of

237

chromosomes is expanded via the mutation and crossover genetic operations. The

mutation operator is a unary operator. It acts on one chromosome and makes random

changes to a number of randomly selected character positions. A new chromosome

is thus created. The crossover operator is a binary operator. It acts on two chromo-

somes and selects a random position in each of the chromosomes. The first part of

the first chromosome is joined to the second part of the second chromosome to create

a new chromosome. The second part of the first chromosome is joined to the first

part of the second chromosome to create another new chromosome. Let us illustrate

with an example. Suppose that the pre-processing stage finds the following set of 7

candidate features:

00, 101, 1011, 0110, 11, 010, 111001.

The chromosomes are then drawn from the set of all strings over the alphabet Σ =

{a, b, c, d, e, f, g}. Note that |Σ| = 7. Now consider the chromosome acd. This

represents the set of features {00, 1011, 11}. Suppose that through mutation the new

chromosome afd is created (i.e the c was changed into an f). The new chromosome

represents the set of features {00, 010, 11}. To see how crossover works consider the

following two chromosomes:

acde and fgbd.

Suppose that the 3rd and the 4th positions are randomly chosen in the first and

second chromosomes respectively. Each chromosome is now divided into two parts.

Crossover then entails joining the first part of the first chromosome to the second

part of the second and the second part of the first chromosome to the first part of

the second. This creates the two new chromosomes:

acd and fgbde.

238

The fitness function used in Darwin is actually f2 itself. It must be pointed out,

however, that Darwin does not use f2 to decide which feature sets to consider. This

is done by the mutation and crossover operators we just described. Valletta, on

the other hand, uses f2 to decide which features are to be added to the current set

of features. This is a fundamental and important difference. Darwin’s search is not

distance-driven — distance is used only as a stopping criterion. Valletta uses distance

to direct the search and also as a stopping criterion, i.e. to determine when a correct

class description has been found.

Darwin expands the population of chromosomes by adding 128 new chromosomes

through mutation and a further 128 chromosomes through crossover. The value of

f is then computed for each of the chromosomes and the fittest 256 chromosomes,

i.e. the 256 chromosomes with the lowest values of f2 are selected. The rest are

discarded. This cycle is repeated until either a TS description valid with the training

sets is found or a pre-specified number of cycles (generations) is made without an

improvement in the value of f2 being registered.

The results of the test run with the Darwin GA engine are listed in Table 7.2 over-

leaf. Darwin was run on each of the 12 datasets used test Valletta. Darwin managed

to correctly learn each of the kernel languages and found the target TS descriptions

but took much longer. Due to the stochastic nature of genetic algorithms Darwin

would often return very different times on the same dataset. The initial popula-

tion is chosen randomly and, consequently, the running times varied greatly. Darwin

would sometimes find the correct class description in the initial population, albeit

very rarely, and sometimes it would takes many hours and many generations to find

the same class description. The times shown in Table 7.2 are the averages taken over

5 separate runs. The 5th column shows the average number (mean) of generations

239

(populations) that was generated by Darwin before the correct class description was

found. The last column shows the number of different valid feature sets (TS descrip-

tions) considered by Darwin. Darwin automatically discarded invalid feature sets,

i.e. feature sets that were not substring-free1. Darwin still managed to find the cor-

rect class description after considering a relatively small number class descriptions,

i.e. it considered a very small part of the total search space. Valletta, however, did

much better. Valletta started the search from a single point in the search space and

then used distance (the value of f2) to direct the search. On the other hand, Darwin

started the search in 256 different locations in the search space and then used genetic

operators to modify the chromosomes and thereby broaden the search.

Problem Valletta St Nodes Darwin Generations Chromosomes

bin01 13 secs 58 10 mins 18 2,648

bin01n 15 secs 64 10 mins 17 2,502

a301 23 mins 176 2 hrs 28 4,115

a302 51 secs 73 1 hr 34 mins 55 8,065

a302n 55 secs 67 1 hr 48 mins 55 8,103

a701 48 mins 163 2 hrs 19 mins 32 4,696

a702 1 hr 37 mins 179 43 hrs 55 mins 33 4,855

a703 11 mins 149 3 hrs 11 mins 29 4,243

a703n 12 mins 153 3 hrs 32 mins 29 4,271

a1101 6 mins 137 2 hrs 34 mins 23 3,374

a1101n 7 mins 163 2 hrs 53 mins 23 3,381

Table 7.2: A comparison of the results obtained for Valletta and Darwin.

1I.e. when a feature is a substring of another feature.

240

7.3 Testing with the GSN DataSets

In addition to the datasets that were created purposely for Valletta, Valletta was

also tested on the original GSN datasets as used by Nigam in his Masters thesis

[92]. The GSN datasets comprise 6 training sets covering three confluent single-

kernel languages. Each language has two training sets — one with noise and the

The GSN Datasets

Problem |C+| |C−| Description
nigam01 5 4 Kernel: cccc

Features: ee, ded Average Length: 2.5 chars
Single kernel, Confluent, No noise.
Average length of strings: 28 characters.

nigam01n 5 4 Kernel: cccc
Features: ee, ded Average Length: 2.5 chars
Single kernel, Confluent, ≈ 5% noise.
Average length of strings: 28 characters.

nigam02 6 5 Kernel: ccdbeebdccdbeebd
Features: dd, ede, cdbebdc Average Length: 4 chars
Single kernel, Confluent, No noise.
Average length of strings: 59 characters.

nigam02n 6 5 Kernel: ccdbeebdccdbeebd
Features: dd, ede, cdbebdc Average Length: 4 chars
Single kernel, Confluent, ≈ 10% noise.
Average length of strings: 59 characters.

nigam03 8 5 Kernel: bddaccaa
Features: bddabcdadd, bddaaceeabcdd, eadededeabcd
Average length of features: 11.7 chars.
Single kernel, Confluent, No noise.
Average length of strings: 103 characters.

nigam03n 8 5 Kernel: bddaccaa
Features: bddabcdadd, bddaaceeabcdd, eadededeabcd
Average length of features: 11.7 chars.
Single kernel, Confluent, ≈ 10% noise.
Average length of strings: 103 characters.

Table 7.3: The GSN datasets used for Valletta/GSN comparison.

241

other with no noise. Table 7.3 lists the training sets and the properties of each of

the languages. The number of training examples in all the training sets is very small

- less than 13 strings in C+ and C− combined. All the languages are confluent.

This means that no two features overlap, i.e. no prefix of any feature is a suffix of

any other feature. Nigam probably chose only confluent sets of features because of

the added complications of making the GLD function work with a non-confluent set

of features. Learning confluent languages is easier, of course, since there is always

one normal form for each string. Valletta easily learned all the languages in the

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0

nigam01

nigam01n

nigam02

nigam02n

nigam03

nigam03n

GSN Algorithm Valletta

Valletta 10.67 15.81 23.85 30.93 60.69 109.47

GSN Algorithm 17.3 17.0 90.0 95.2 657.5 659.0

nigam01 nigam01n nigam02 nigam02n nigam03 nigam03n

Figure 7.4: Comparing the running times of the Valletta and GSN algorithms.

GSN datasets, even those with noise, and took significantly less time than the GSN

algorithm. It must be strongly emphasized that the comparison between the running

times of the two algorithms must be taken in the proper context. The GSN algorithm

was implemented in Modula-2 on a Sun Sparcstation-2 running the UNIX operating

242

system while Valletta was implemented in PowerBASIC�, a dialect of BASIC, and

run on a PC running Microsoft Windows 2000�. The actual running times, therefore,

are not comparable. It is evident from the graph in Figure 7.4, however, that Valletta

is much less sensitive to the increase in the length of the training strings and the

feature length. As pointed out in Chapter 4, we observed that the GSN algorithm

is particularly sensitive to the length of the features. As was then explained, this

is due to the feature-construction technique used by this algorithm. Valletta does

not build the features but identifies all candidate features in a pre-processing stage.

The search space of Valletta’s learning stage is completely determined by the pre-

processing stage. At each pass of the learning loop, the GSN algorithm constructs

new features from the current set of features through left and right concatenation

of the characters in the alphabet. With larger alphabets and large feature sets this

process very quickly becomes very computationally intensive.

Another thing that must be pointed out is that, with the GSN datasets, Valletta

was instructed to consider only single-kernel TS descriptions. This was easily done

since Valletta is a variable-bias algorithm and the user can change the algorithm’s

inductive bias by modifying a number of input parameters. This was done because

we knew that the target languages have only one kernel.

7.4 Learning in the Presence of Noise

Noise is present in most real-world pattern recognition and machine learning applica-

tions [16]. It was therefore one of the main objectives that Valletta should be able to

learn in the presence in noise. In GI problems noise usually takes the form of spuri-

ous characters inserted in the strings. Three different types of noise were considered.

Each type required a different technique to handle it. The three types of noise are:

(a) Feature Noise This consists of extra characters inserted inside the features

243

of a kernel language.

(b) Kernel Noise All other spurious characters are classified as kernel noise.

(c) Misclassification Noise This is the case when strings belonging to the target

language are inserted in C−.

Let us illustrate the difference between feature and kernel noise with the following

example. Consider the kernel aabaa, the feature bab (shown in red), and the string

s = aabbabaa. The string s contains one instance of the feature bab and contains no

noise. Now consider also the following strings:

aabbcabaa

acabbabaa

aabbabcaa

The first string contains an extra character c (shown in blue) inserted inside the

feature bab. This is feature noise. The second string contains an extra c inserted in

the kernel and not in any feature. This is kernel noise. The third string contains

an extra c inserted at the end of the feature bab. Since the extra character is not

inside the feature this is also considered to be kernel noise. As explained in Chapter 5,

Valletta deals with feature and kernel noise in different ways. Feature noise is detected

and removed during the reduction of the strings in C+ to their normal forms. This

process is called feature repair. Kernel noise is not removed and remains in the normal

forms. Kernel noise is detected and measured when Levensthein distance is computed

between the normal forms. This process was also explained in Chapter 5. Valletta,

therefore, not only distinguishes between the two types of noise but also handles

them in different ways. Feature repair is a very important facility in Valletta since

without this facility, if a feature has just one extra character, the whole corrupted

feature has to be considered as noise. This affects the value of f2 and increases the

244

learning time. In some cases it can make learning impossible or make the algorithm

find an incorrect TS description. This was a problem with the GSN algorithm and

is the most probable reason why it could not handle too much noise.

Another problem with the GSN algorithm was that it could not handle misclassi-

fication noise. If a string that belongs to the target language is inserted in C− then

the value of f1, i.e. the minimum distance between C+ and C− would be zero and

therefore, the function

f =
f1

ε + f2

would obviously never exceed the threshold since f1 is zero. In Valletta this problem

was overcome by using a new method for computing f1. Instead of letting f1 be the

+

+

-

+

-+

-

+ -
+

-

+

-

+

-

Average interdistance
in C+

Distance between C+

and closest 10% of C-

f1

f2

- C-

C+

Figure 7.5: The new method for computing f1 used for Valletta.

minimum distance, over all pairs, between C+ and C−, f1 is defined to be the average

distance between the strings in C+ and the closest 10% of the strings in C−. This

is depicted in Figure 7.5 above. The percentage was chosen arbitrarily and can be

changed if necessary. In the case when a small number of strings in the class C are

added to C− (i.e. misclassification noise), f1 does not return zero. This new method

worked extremely well on the Valletta datasets and was also successfully used for the

Monk’s Problems datasets discussed in the next section.

245

7.5 The Monk’s Problems

In the summer of 1991 at the 2nd European Summer School on Machine Learning,

a number of researchers proposed a suite of simple machine learning problems they

called the Monk’s Problems2. The aim of the exercise was to test the leading machine

learning algorithms on a common suite of three problems and to see which of the

algorithms perform the best. The Monk’s problems are set in an artificial robot

domain. The robots in this domain are described by six different attributes [122].

Figure 7.6: Some robots of the Monk’s Problems.

x1 : head shape ∈ {round, square, octagon}
x2: body shape ∈ {round, square, octagon}
x3 : is smiling ∈ {yes, no}
x4: holding ∈ {sword, balloon, flag}
x5: jacket colour ∈ {red, yellow, green, blue}
x6: has tie ∈ {yes, no}

There are three problems in the Monk’s Problems. Each problem is a binary clas-

sification task, i.e. the learning algorithm must determine whether or not a robot

belongs to a given class. Each problem consists of a logical description of the class

and a training set that contains a proper subset of all the 432 possible robots in

2The school was held near the monastery of Corsendonk.

246

the domain. The learning task is then to generalize over these examples and, if the

learning algorithm allows, to output a class description. The three classes are:

(a) Monk1:

(head shape = body shape) or (jacket colour = red)

124 labelled examples were randomly selected from 432 possible robots. No

misclassifications.

(b) Monk2:

exactly two of the six attributes have their first value

169 labelled examples were randomly selected from 432 possible robots. No

misclassifications.

(c) Monk3:

(jacket colour is green and holding sword) or

(jacket colour is not blue and body shape is not octagon)

122 labelled examples were randomly selected from 432 possible robots. 5%

misclassifications.

Problem 3 is the only problem that contains noise and was included to test the

performance of the algorithms in the presence of noise. Problem 2 is very similar to

parity problems. Problems 1 and 3 are in DNF form and are therefore supposed to be

solvable by symbolic learning algorithms such as ID3, AQ, etc. Problem 2 combines

attributes in a way which makes it awkward to express in DNF or CNF.

Table 7.4, reproduced from [122] and shown overleaf, lists the results obtained

by the different learning algorithms on the Monk’s Problems datasets. As Thrun

explains in [122], the experiments were performed by leading researchers, each of

whom was an advocate of the algorithm he or she tested and, in many cases, the

creator of the algorithm itself.

247

Learning Algorithm #1 #2 #3

AQ17-DCI 100% 100% 94.2%
AQ17-HCI 100% 93.1% 100%
AQ17-FCLS 92.6% 97.2%
AQ17-NT 100%
AQ17-GA 100% 86.8% 100%
Assistant Professional 100% 81.3% 100%
mFoil 100% 69.2% 100%
ID5R 81.7% 61.8%
IDL 97.2% 66.2%
ID5R-Hat 90.3% 65.7%
TDIDT 75.7% 66.7%
ID3 98.6% 67.9% 94.4%
ID3, no windowing 83.2% 69.1% 95.6%
ID5R 79.7% 69.2% 95.2%
AQR 95.9% 79.7% 87.0%
CN2 100% 69.0% 89.1%
CLASSWEB 0.10 71.8% 64.8% 80.8%
CLASSWEB 0.15 65.7% 61.6% 85.4%
CLASSWEB 0.20 63.0% 57.2% 75.2%
PRISM 86.3% 72.7% 90.3%
ECOWEB leaf prediction 71.8% 67.4% 68.2%
ECOWEB l.p. & information utility 82.7% 71.3% 68.0%
Backpropagation 100% 100% 93.1%
Backpropagation with weight decay 100% 100% 97.2%
Cascade Correlation 100% 100% 97.2%

Table 7.4: The published results for the Monk’s Problems.

The algorithms tested included the various decision tree learning algorithms such

as ID3 and its variations, mFOIL — a rather interesting inductive learning system

that learns Horn clauses using a beam search technique, and various neural networks

such as Backpropagation and Cascade Correlation. No algorithm managed to cor-

rectly learn all three classes, although some came very close. In spite of the fact that

the Monk’s Problems are defined in a symbolic rather than a numeric domain, the

best performing algorithms were, most surprisingly, the neural networks.

248

Testing Valletta on the Monk Datasets

Very early in Valletta’s development we were looking for real-world kernel lan-

guages that could be used to test Valletta and to demonstrate it’s usefulness. When

we looked at the Monk’s problems we discovered that the Monk’s problems can quite

easily be posed as GI3 problems. In particular, each of the Monk’s three classes of

robots can be represented by a kernel language.

H1
H2
H3

⎫⎬
⎭head shape : round, square, octagon

B1
B2
B3

⎫⎬
⎭body shape : round, square, octagon

S1
S2

}
is smiling? : yes, no

O1
O2
O3

⎫⎬
⎭holding : sword, ballon, flag

J1
J2
J3
J4

⎫⎪⎪⎬
⎪⎪⎭

jacket colour : red, yellow, green, blue

T1
T2

}
has tie? : yes, no

Figure 7.7: The Alphabet used to encode the Monk datasets.

Consider the encoding of the attribute values as shown in Figure 7.7 above. The

alphabet used is Σ = {H,B, S,O, J, T, 1, 2, 3, 4}. Each attribute value is assigned a

unique tag over Σ. For example the value head shape = square is assigned the tag

H2. The string H2B3S1O2J3T2 represents a robot that has a square head, an

3Every learning problem could, in theory, be reduced to a Grammatical Inference problem

249

octagonal body, is smiling, holds a balloon, wears a yellow jacket, and has no tie.

The class of robots in Problem 1 can be described by the following kernel language:

Kernels: H1B1, H2B2, H3B3, H1B1J1, H2B2J1, H3B3J1, H1B2J1, H1B3J1,

H2B1J1, H2B3J1, H3B1J1, H3B2J1.

Features: H1, H2, H3, B1, B2, B3, S1, S2, O1, O2, O3, J1, J2, J3, J4, T1,

T2.

The features H1, H2, H3, B1, B2, B3, and J1 are assigned a zero weight while the

other features are assigned a non-zero weight. Normal Levensthein distance is then

used. Each tag is, in essence, indivisible and is considered to be a single ‘character’.

It is easy to see that the kernels capture the description of the class. The values of the

discriminating attributes of the class are all in the set of kernels. Each of the Monk’s

problems can be described by a confluent kernel language of this type. The above

description is, admittedly, somewhat cumbersome but our aim was to demonstrate

the versatility of kernel languages and also that of Valletta.

The Monk datasets were re-encoded as described above and used by Valletta to

learn each of the Monk’s problems. Valletta did manage to learn Problems 1 and 2

but took a very long time to do so — an average of 8 hours. Valletta could not learn

Problem 3 with 100% accuracy and an analysis of this revealed that this was due

to the fact the training set for Problem 3 was not structurally complete. This was

because one of the kernels was not in the training sets. When a string containing the

missing kernel was added to the dataset of Problem 3, Valletta successfully found the

correct class description. Most of the algorithms tested on the Monk’s problems took

only a few minutes to learn and it was therefore decided to investigate why Valletta

took so long.

It turned out that Valletta took such a long time to learn the Monk’s problems

because it has a much broader bias than was necessary for the Monk’s problems. In

250

other words, it was considering a search space of TS descriptions that was very much

larger than the space of possible TS descriptions that were consistent with the Monk

datasets. Valletta did not know that each feature had to be exactly 2 characters or

that the target kernel language was confluent. It considered TS descriptions that

have features with 4 characters and more. This made Valletta consider thousands of

invalid TS descriptions before the correct description was found. This is very often

a problem with many learning algorithms and an issue that is discussed later on in

the chapter. It is important that the inductive bias of the algorithm is not broader,

i.e. larger, than necessary. In learning it is paramount that the learning algorithm

designer or practitioner makes use of all the information available to him or her. The

author therefore decided to design and implement a version of Valletta that learned

only the subclass of kernel languages that can be used to describe problems such

as those in the Monk’s problems. It must be emphasized that was, by no means,

cheating in any way. The new algorithm, which was called Mdina4, after Malta’s

ancient capital, learns trivial (see Chapter 3) kernel languages, i.e. those where each

rewrite rule is of the form a ↔ ε for some character a ∈ Σ. Mdina has a much

broader bias than that required for the Monk’s problems but it bias is much smaller

than Valletta’s. Mdina can be used to learn all trivial languages and not just those

that are kernel language encodings of problems such as the Monk’s problems. Mdina

is much faster than Valletta for a number of reasons. In trivial kernel languages each

feature is a single character. Given a set of features F , aleph(F), i.e. the characters

used in F , cannot be used in the kernels. This is because, by definition, a kernel

cannot contain a feature as a substring. It is therefore clear that, given a set of

features F and a set of kernels K, then;

aleph(K) = Σ− aleph(F)

4Pronounced Im-dina.

251

In other words, the alphabet Σ is partitioned. One partition being the characters

used for the features and its complement being the characters used in the kernels.

The implication of this is that learning trivial kernel languages reduces to the problem

of finding the correct partitioning of Σ that achieves class separation. The problem,

of course, is how to do this efficiently. We abandoned the tag scheme used to test

Valletta on the Monk datasets and re-encoded the Monk datasets using the alphabet

shown in Figure 7.8 below.

a
b
c

⎫⎬
⎭head shape : round, square, octagon

d
e
f

⎫⎬
⎭body shape : round, square, octagon

g
h

}
is smiling? : yes, no

i
j
k

⎫⎬
⎭holding : sword, ballon, flag

l
m
n
o

⎫⎪⎪⎬
⎪⎪⎭

jacket colour : red, yellow, green, blue

p
q

}
has tie? : yes, no

Figure 7.8: The alphabet used by MDINA.

Mdina is different from Valletta in a number of key areas:

(a) Mdina uses a very simple procedure for computing normal forms — it simply

deletes the characters in aleph(F) from the strings in C+ and C−. This is

because the features are all single-character and the characters used in the set

of features cannot occur in the kernels. This makes string reduction very fast.

252

(b) As a consequence of the above, Mdina does not need to build or construct

features (like the GSN algorithm) or even search for valid feature sets (like

Valletta). It simply considers different binary partitions of Σ.

(c) In order to handle noise properly, Mdina uses the following definition of f1;

f1 is the average distance between C+ and the closest 10% of the

strings in C−.

This is necessary to handle misclassification noise (See Section 7.4).

Mdina learned all the Monk’s problems in a very short time. Problem 1 took just

8.6 seconds to solve. Problem 2 took 6.1 seconds and Problem 3 took 6.7 seconds to

solve. For problem 3 we added one string, aegilp, to the training set in order to make

the training set structurally complete. In other words, after the addition of aegilp,

the training set of Problem 3 contained all the kernels.

Kernels discovered by Mdina
Problem #1 Problem #2 Problem #3

ad ad dil
adl ag dim
ael ai din
afl al dl
bdl ap dm
be dg dn
bel di eil
bfl dl eim
cdl gl ein
cel gp el
cf il em
cfl ip en

lp fi
fin

Table 7.5: The kernels discovered by the Mdina algorithm.

Table 7.5 lists all the kernels discovered by Mdina. In each case Mdina very quickly

discovered the correct partitioning of Σ that gave class separation. In each case the

253

kernels discovered by Mdina were the kernels in the TS description of each of the

Monk classes.

7.5.1 A Discussion of the Results

Mdina is a grammatical inference algorithm based on the ETS model that learns triv-

ial kernel languages. Mdina uses distance as a stopping criterion as well as to direct

the search process. Mdina was not designed for the Monk’s problems and did not

incorporate any knowledge about the Monk datasets. The reason it managed to learn

all of the Monk’s problems was because each class in the Monk’s problem can be rep-

resented by a kernel language. This serves to demonstrate that kernel languages are

quite versatile. This thesis contains other examples of ‘real-world’ kernel languages.

It is quite possible that many classes in CNF or DNF form can be represented by

kernel languages and, to the best of the author’s knowledge and belief, Mdina is the

first application of a GI algorithm to these types of problems.

The most important result, in the author’s opinion, is Mdina’s performance on

Problem 3. Careful choice of the f1 function allowed Mdina to easily learn the prob-

lem in spite of the 5% misclassification noise. The method used for computing f1

was not chosen specifically for the Monk’s problems but rather for all learning prob-

lems that include misclassification noise. Mdina does not have a variable inductive

preference bias and exactly the same preference bias was used for all the three prob-

lems. This result served to highlight the elegant and economical way noisy classes

are handled in the ETS Model. The features capture the regularity in the language

and the ‘noise’ is handled by the distance function.

254

The technical report that describes the Monk’s problems and the results obtained

by the various algorithms [122] does not attempt to analyse or explain the results. The

author feels the whole exercise served more to determine whether each algorithm had

the correct inductive bias to learn each of the Monk’s problem than to determine the

actual learning ability of the various algorithms. Each of the algorithms listed in the

report are widely used and have undoubtedly successfully been used for other learning

tasks. The author thinks that the apparent inability of some of the algorithms to

learn the Monk’s problems is due more to their type of inductive bias rather than to

anything else. The results also served to highlight the usefulness of kernel languages

and also the versatility, flexibility, and power of the ETS model and the idea of using

distance to define classes and to direct the search. A question that begs to be asked

is: Does Mdina have exactly the right inductive bias for the Monk’s problems? In

order to answer this question the author wrote a program that considers all possible

partitions of the alphabet Σ and that count the number of partitions of Σ that allow f

to exceed the threshold. In other words, the program performs a brute-force search for

all the TS descriptions of kernel languages that are consistent with each of the Monk

datasets. It turned out that each dataset has around 4 to 5 TS descriptions consistent

with it. The reason that Mdina found the correct TS description was because it gave

preference to TS descriptions that have the least number of characters in the kernels.

Mdina, therefore, employs a form of Occam’s Razor as its inductive bias. It gives

preference to TS descriptions with a fewer number of characters in the kernels.

255

7.6 Comparison with the Price EDSM Algorithm

The Evidence-Driven State Merging (EDSM) algorithm developed by Rodney Price

[73] is currently recognized to be very much the state-of-the-art in DFA learning al-

gorithms. The EDSM algorithm was the co-winner of the Abbadingo DFA learning

competition (see Appendix E). The competition involved the learning of randomly

generated DFAs with up to 512 states from a finite set of labelled training strings.

The EDSM algorithm is an evidence-driven state-merging algorithm as described

in Section 2.7 of Chapter 2. State-merging DFA learning algorithms work by first

building a prefix-tree acceptor from the training set and then merging compatible

states to create cycles and thus achieve generalization [127]. The author downloaded

the EDSM code, recompiled it for the Windows 2000 platform, and conducted some

experiments on the data sets used to test Valletta. This was done in order to com-

pare the EDSM algorithm and Valletta in the areas of efficiency, class representation,

robustness, and inductive bias. It must be emphasized that, as Bunke (and many

others) pointed out, many GI algorithms are designed for specific domains and it is

therefore often difficult, if not impossible, to compare the performance of two given

algorithms. Strictly speaking, Valletta and EDSM are not really comparable. They

are targeted at different domains and have different inductive biases. However, the

author wanted to see how Valletta compares with a leading GI algorithm and also to

see if any lessons can be learned. The Price EDSM algorithm was an ideal candidate.

It won the Abbadingo DFA competition and is considered by many in the GI com-

munity to currently be the leading DFA learning algorithm. Valletta does not learn

DFAs but kernel languages are regular so the author thought it would be interesting

to compare the two algorithms on the same datasets. It is the author’s belief that

most DFA learning algorithms have too broad a bias. This issue is discussed in detail

later on in Section 7.8 where the results obtained are analysed.

256

To get a feel of the EDSM algorithm the author first ran it on some randomly

generated datasets of a very simple regular language – 0{1}∗. Numerous small train-

ing sets of around 5 positive and 5 negative examples were tried. It was noticed that

EDSM was very sensitive to the choice of the strings in C−.

Accepting state

Start State

0

1

2
0/1

1

0

0
0

1

2

1 0/1

1

0

0

(i) (ii)

1

Figure 7.9: The DFAs produced by the EDSM algorithm for different 0{1}∗ datasets.

Figure 7.9(i) shows the DFA output by EDSM from the following set of labelled

strings5.

A 0
A 01
A 011
A 0111
A 01111
R 010
R 0101
R 0110
R 00
R 0001

The DFA produced by EDSM from the above training set accepts the string 101

5A denotes an Accepted string and R denoted a Rejected string

257

which is not in the language. New strings were then added, one at a time, to C−

and the DFA output by the EDSM algorithm was recorded. New strings were added

to C− until the target DFA was obtained. The strings added in C− were carefully

chosen so as to exclude the acceptance of strings known not to belong to the lan-

guage. The string 101, for example, is accepted by the DFA shown in Figure 7.9(i)

when, clearly, this string does not belong to 0{1}∗. This string was therefore added

to C−. EDSM finally produced the correct target DFA with the following training set:

A 011
A 0
A 0111
A 01111
A 0111111
A 011111111
A 01
R 0101
R 0110
R 11
R 1011
R 1010
R 000
R 0100
R 0001
R 01001
R 110
R 100
R 00

The results of these experiments strongly suggested that, in general, EDSM tends

to under-generalize rather than over-generalize. This is not-surprising. EDSM was

designed the class of regular languages. Its learning domain is therefore very large.

The problem with such learning algorithms is that the training sets have to be quite

large. This is not a criticism — simply an observation. This happens because a

small training set tends to have many class descriptions (in this case DFAs) that

258

are consistent with the training examples. The algorithm therefore require large

training sets in order to exclude the large number of incorrect, but very similar, class

descriptions.

Since kernel languages are regular the author also tried some of the Valletta

training sets on EDSM. Figure 7.10 shows the DFA produced by EDSM on the bin01

training set. The strings in the training set are listed in Appendix C. It is quite

obvious that EDSM did not output the correct DFA. This is because EDSM treated

0

2

0

Accepting state

Start State

1

5

4

3

1
0

1

0

0

1
1

1

0

0

1

Figure 7.10: The DFA produced by the EDSM algorithm for the bin01 dataset.

the class as a normal regular language. EDSM, unlike Valletta, does not implicitly

incorporate information about kernel languages. The number of regular languages

consistent with the training examples is very much larger than the number of kernel

259

languages consistent with the same set. For this reason EDSM would probably require

much more training examples. The author also designed a small training set for a

very simple kernel language, kernel01. The DFA produced by EDSM is shown in

Figure 7.11.

0

2

0

Accepting state

Start State

1

5

4

3

6

1

0

0

0

00

0
1

1

1
1

1

1

Figure 7.11: The DFA produced by the EDSM algorithm for the kernel01 dataset.

Table 7.6, overleaf, lists the strings in the kernel01 training set. Given the previously

observed sensitivity of the EDSM algorithm to the strings in C− we manually built

C−, which contains 6 strings, from strings that are, in general, longer than those

in C+. Valletta easily learned the correct class description even from such a small

training set. The DFA produced by the EDSM algorithm was not the target DFA. It

260

C+ C−

00101010 100011010
1000111 10101010101
1010011 0000
1100101 00100000111
10001010 1010

10111110

Table 7.6: The kernel01 training set.

was not even similar to the target DFA. It accepts strings not in the kernel language.

Many more new strings were added to C− but the author could not manage convince

EDSM to output the correct DFA. This is probably because the training set was used

was structurally complete for Valletta but not for the EDSM algorithm. This issue

is discussed later on in this chapter.

The EDSM experiments highlighted the importance of using a learning algorithm

that is targeted at the right learning domain and that has the correct inductive bias

(language bias and preference bias, see Chapter 2). Kernel languages are regular and

are therefore, in theory, learnable by the EDSM algorithm. However, since the EDSM

has such a large learning domain6, it very likely requires very large training sets. The

beauty of the ETS model is that the practitioner can incorporate the inductive bias

he or she deems fit for the domain. There is no such thing as a universal learning

algorithm — at least so far. Further analysis and a discussion of the results obtained

is contained in Section 7.8.

6I.e the space of all hypotheses learnable by the algorithm.

261

7.7 Representation and Bias

It has been emphasized many times in this thesis that the ETS Model is a learning

model and not a learning algorithm. The ETS Model does not impose a fixed lan-

guage bias or preference bias on a learning problem. The language bias of a learning

algorithm is the choice of representation of the domain of discourse, i.e. the numeric

or symbolic encoding of the objects. The inductive preference bias of a learning al-

gorithm is the preference of certain hypothesis over others. Let us illustrate both

notions with an example. Suppose we want to learning a given regular language

from a finite set of training examples. We can use a GI algorithm that accepts the

strings as input or we can re-encode the strings as vectors and use an Artificial Neu-

ral Network (ANN). Both algorithms, supposedly, are learning the same class. Each,

however, has a different language bias. Is there anything to be gained (or lost) by re-

encoding the strings as vectors? The GI algorithm can try to find a class description

consistent7 with the training set in a number of different ways. It could search the

space of all DFAs, or the space of all left-linear grammars, or even perhaps the space

of all regular expressions. All are class descriptions of regular languages. Suppose we

choose DFAs. We could then search for the DFA with the minimum number of states

that is consistent with the training examples or perhaps the DFA with least number

of cycles. This is called the inductive preference bias of the algorithm. Since, in

general, there may be many class descriptions consistent with the training examples,

a change of the inductive preference bias of the algorithm may result in a different

class description being found. One of the main advantages (and, in the author’s

opinion, one of the most appealing features) of the ETS Model is that the user is not

restricted to any particular language or preference bias. As explained in Chapter 1,

7I.e. a class description with accepts the positive training examples and rejects the negative

training examples.

262

the ETS Model does insist that the domain of discourse is encoded as structs, which

have a certain compositional structure, but this still allows a lot of flexibility for the

user. The reader is referred to the recent technical report completed by the author’s

colleagues in the Machine Learning Group at the University of New Brunswick for

an exposition [54]. With ETS, we can use strings, trees, graphs, matrices, etc. ETS

also does not impose a preference bias on the designer of the learning algorithm.

In this Section we shall attempt to argue the importance of not being restricted to

a particular form of representation (language bias) and to a fixed preference bias.

We shall also argue that the choice of representation affects the choice of inductive

bias. In fact, a change of representation changes the learning problem itself. We also

present arguments that support the claim that a change of representation can make

a learning problem much harder unless we happen to know the correct inductive bias

appropriate for that particular representation.

7.7.1 What is Representation?

The issue of representation deals with the encoding, into some mathematical struc-

ture, of the domain of discourse of some learning problem. We cannot over-emphasize

the fundamental, and very important, distinction between the objects themselves in

some domain of discourse and their representation, i.e. the numeric or symbolic

encoding of the objects (as strings, numbers, vectors, graphs, etc.). Consider, for ex-

ample, the set of all humans. A human can be encoded, or represented, in a number

of ways;

(a) Bitmap encoding, i.e. a picture (binary image) of a human,

(b) Genome, a string containing the DNA sequence of a human,

(c) 2-D vector, e.g. (weight, height), and

263

(d) Attribute n-tuple, e.g. race, complexion, colour of hair, etc.

Depending of what classes we want to consider in a given domain of discourse,

an encoding may or may not be appropriate for the purpose of class description. It

was shown in [108], for instance, that a 2-D vector (weight, height) is, in general,

sufficient to distinguish the class of male humans from the class of female humans. In

fact, when the vectors are plotted in the Cartesian plane it is easy to see that the two

classes form two recognizable clusters. It is also conceivable that one can distinguish

between males and females from bitmap representations. If, on the other hand, we

want to consider the class of humans who have minor thalassaemia, a completely

asymptomatic congenital condition of the blood, then such a 2-D vector will not do.

Neither would a bitmap. The genome representation of the human would, in this

case, be required. This is because people with minor thalassaemia are not externally

distinguishable but their DNA contains the thalassaemia gene.

A representation may be better than another because it ‘stores more informa-

tion’ relevant to the class in question. It has been argued that there is no form of

representation that can ‘store all the information‘ about a given object in the do-

main of discourse. The closest thing to such a perfect form of representation must

surely be the ‘transporter’ device in the Startrek TV series. The transporter device

can, allegedly, ‘dissolve’ a human into the constituent atoms, encode the human is

some form, transfer this information to another location, and reconstruct the ex-

act human, from different atoms, complete with identical DNA, thoughts, feelings,

emotions, memory, experiences, etc.

Another argument why one particular representation may be better than another

is that the regularities of a particular class might not be ‘visible’ under some repre-

sentations [21]. We illustrate with an example.

264

String Gödel Number

ab 4

aabb 900

aaabbb 889,350

aaaabbbb 8,687,348,670

Table 7.7: Some strings from anbn and their Gödel Numbers.

Table 7.7 shows, in the first column, four strings from the language anbn. It should

be easy to anyone with a basic knowledge of formal languages to guess from which

language the strings are drawn. The second column shows the Gödel number of the

same strings. All we have done is to re-encode the strings as natural numbers. We

have used the Gödel number encoding of the strings. This mapping is deterministic

and computable in polynomial time. The regularity that was previously visible in

the strings now ‘seems’ to have disappeared. It is clearly more difficult for humans

to ‘guess’ the correct class if the encoding is not ‘right’. But why? Are learning

algorithms also sensitive to the ‘appropriate’ choice of representation?

As Clark and Thornton explain in [21]:

Some regularities enjoy only an attenuated existence in a body of training

data. These are regularities whose statistical visibility depends on some sys-

tematic re-coding of the data. The space of possible re-coding is, however,

infinitely large — it is the space of applicable Turing machines.

Many learning algorithms accept only one form of representation of the input

data. This means that the practitioner must always use the same encoding (repre-

sentation) of the domain of discourse. It is well known that artificial neural networks

(ANNs) accept only vectors as input. The questions we ask is: Does the choice of

representation affect learning? In other words, are learning algorithms sensitive to

265

re-encodings of the domain of discourse and do these re-encodings affect the learning

process in general?

7.7.2 Is Representation Important?

In the early days of A.I. (i.e. 1960’s to 1980’s) most researchers agreed that repre-

sentation was an important issue in cognitive science. Recently this assumption has

been questioned. As Thornton explains in [119],

Now there is growing disagreement over the relevance of representation and

a steadily deepening polarization of views with respect to the necessity of

employing it in cognitive machinery.

An argument very often used by those who do not see representation as a crucial

issue is that if a class in a given domain of discourse can be learned in polynomial

time under one encoding then it should be learnable in polynomial time in another

encoding as long as the mapping from one encoding is deterministic and is computable

in polynomial time. This argument, prima facie, makes sense. Suppose we have a

GI algorithm that learns the language anbn from a finite number of examples in time

polynomial in the size of the training set. If we can re-encode the strings as natural

numbers using, for instance, the Gödel encoding of the strings, then there must be a

polynomial algorithm to learn the same class. Before we present our objections and

reservations to this argument we want to first clarify a number of points.

(a) It is always assumed that, under any reasonable encoding, a class is always

computable. If, for example, our domain of discourse is the set of all animals

and we want to consider the class of cats, then if we encode the animals as

strings, the set of strings corresponding to cats must be a computable language.

This assumption is fundamental since if a class is not computable (under some

encoding) then it cannot have a finite description.

266

(b) If a class is computable and has a finite description under some encoding E

then it is still computable and has a finite description under encoding E ′ as

long as there is a deterministic and computable mapping from E to E ′. If the

language anbn is a computable language and has a finite description then the

set of natural numbers which are Gödel encodings of the strings of this language

must also be a computable set with a finite description. The finite description

of anbn is a formal grammar while the description of the associated set of Gödel

numbers is a set of µ-recursive functions. It is well known from the Theory of

Computation that graphs can be encoded as strings and string as numbers. In

fact, for every computable language, the set of Gödel number encodings of the

strings in the language is itself a computable set [115].

The argument of those who do not see representation as an issue is that any

representation can be used as long as the encodings form a computable set. This

argument is used mostly by those in the connectionist community. This is probably

because artificial neural networks, ANNs, only accept vectors as input. Although the

above is, in theory, true we believe that researchers in the connectionist and machine

learning communities who claim that representation is not an important issue are

missing some important points.

We are not claiming that classes become ‘unlearnable’ if the representation is

changed. What we are claiming is that the learning problem changes if the represen-

tation changes. Let us consider again the language anbn and the set of strings drawn

from this language shown in Table 7.7. It is conceivable that one can design a simple

GI algorithm that learns languages of this type. Now what if one is given only the

Gödel encodings of this language? Does learning become harder? We claim that these

are two different learning problems. If one encodes the strings as natural numbers,

the class then changes too. In other words, the specification of the class is tied to the

267

form of representation. The set of natural numbers that are Gödel number encodings

of the strings in anbn is no longer the class anbn. This set of numbers is computable

and does have a finite description (a set of µ-recursive functions) but might require a

completely different learning algorithm with a different inductive bias and a different

search strategy. This goes some way towards explaining why neural networks per-

form so badly in certain applications. It has been claimed that a neural network (of

the appropriate size) can compute a computable function in the Euclidean space R
n.

In other words, given an ANN of the appropriate size, a set of weights exists that

computes the function. Even if this is true the problems remain. When one chooses a

particular architecture and size of a neural network one is putting an implicit bound

on the size of the class description. Suppose, for example, that we have an ANN

with n weights to learn a class C. We are then implicitly assuming that C can be

described (or parameterized) with n real numbers. This issue has recently received

attention from the connectionist community [75]. To demonstrate this we conducted

a number of experiments with ANNs. We tried to train a Backpropagation neural

network with the complete datasets for 8, 10, 12, and 16-bit even parity mapping.

By complete we mean that for each n-bit parity we labelled each of the 2n strings

with a T (True) or F (False). The reason we tried complete datasets was to find the

optimal network size, i.e. number of weights, for each of the mappings. For the 8-bit

parity dataset we first tried an 8×8×2 network. This did not converge after running

for many hours. We then tried changing the various learning parameters but to no

avail. We increased the number of hidden neurons to 16 and then to 32 and got very

much the same results. We finally tried a network with 64 hidden neurons and the

network converged within a few seconds. This network had (8× 64) + (64× 2) = 640

weights. The ANN for 10-bit parity converged in just over 3 mins and required 256

hidden neurons while the ANN for 12-Bit parity required 1024 hidden neurons and

268

converged in just under 12 minutes. We couldn’t use Backpropagation to learn the

16-bit parity problem since the ANN software we used, Brainmaker�, was limited

to 1024 hidden neurons. We then used a Cascade Correlation neural network to

learn the 16-bit even parity mapping. The Cascade Correlation network changes

its architecture during learning. We then tried to train the networks on incomplete

data, sometimes with datasets that contained up to 85% of the 2n possible strings.

The networks never generalized correctly from incomplete data. This phenomenon

has been observed many times [120]. We were not surprised at the neural network’s

inability to learn from incomplete parity data. There is absolutely no reason why a

learning algorithm should generalize correctly from incomplete parity data unless the

algorithm has the right inductive bias. This point is, most unfortunately, not always

well understood. For any given training set of incomplete parity data, there might be

thousands of mappings that are consistent with the training set. Why should then

the neural network converge to the parity mapping? It will only do so if it has the

correct inductive preference bias. Our experiments with the complete parity datasets

demonstrated that a Backpropagation neural network can, in fact, represent the par-

ity mapping. In other words, given an ANN of appropriate size, there exist a set of

weights that can describe (or parameterize) the parity mapping. Generalization from

incomplete training sets is a totally different issue. Neural networks do not learn the

parity mapping precisely because they do not have the correct bias. Moreover, the

inductive bias of a neural network is fixed and can only be changed slightly by mod-

ifying some learning parameters. It is therefore unlikely that anyone can convince

a Backpropagation ANN to generalize correctly from incomplete examples. Some

researchers, including Thornton [120], have proposed various reasons as to why this

happens. Valletta, and for that matter all ETS learning algorithms, do not have a

fixed inductive preference bias. The ETS model provides a general framework for

269

learning. The designer of the learning algorithm then incorporates the appropriate

preference bias for the domain.

It turns out that, for any given n, the set of binary strings that are odd or even

parity are a kernel language. For example, 4-bit even parity can be described by the

following TS description:

Kernels: ε, 11, and 1111.

Transformations: 0→ ε (Weight 0.0) and 1→ ε (Weight 1.0)

We ran Valletta on a number of incomplete 16-bit parity datasets – par01 had

no noise and par02 had 2% misclassification noise. In each case Valletta found the

correct TS description is less than 3 minutes on a training set of several thousand

strings. The training examples were the same that were used, unsuccessfully, to train

the ANNs.

par01 16-bit parity-problem training set (even parity) used to train Back-propagation
neural network. Binary alphabet, very large training set (≈ 10, 000), multiple
kernels, no noise, confluent.
Kernels: 11 , 1111 , 111111 , 11111111 , 1111111111 , 111111111111 ,
11111111111111 , and 1111111111111111 .
Features: 0 , and 1 .

par02 16-bit parity-problem training set (even parity) used to train Back-propagation
neural network. Binary alphabet, large training set (≈ 8, 000), multiple kernels,
2% misclassification noise, confluent.
Kernels: 11 , 1111 , 111111 , 11111111 , 1111111111 , 111111111111 ,
11111111111111 , and 1111111111111111 .
Features: 0 , and 1 .

Valletta, can learn the parity mapping even with very small, structurally complete

datasets of less than 20 strings. We must emphasize that is because Valletta has

the right inductive bias. When Valletta learns, it first considers the ‘simple’ TS

descriptions, i.e. the TS description with the least number of features. It so happens

270

that the parity problem has a very simple TS description and this was very close to

the Valletta’s starting point in the search space. This is depicted in Figure 7.12 below.

It might turn out that under some other representation, the target class description

Search Space

�

Start

�

�

�

�

�

�

�

�

�

Class Descriptions

Figure 7.12: Enumerating the search space.

will be ‘far away’ from the starting point in the search space. The phenomenon

was evident when the author was considering ETS learning of chain-code picture

languages [2]. A picture such as a rectangle could be represented by its string contour

encoding. It this case, the language of all strings that are contour encodings of

rectangles (or any other figure) would be a context-sensitive language — sometimes

with many productions. A GI learning algorithm that used Occam’s bias would

have a hard time learning these classes. This because the algorithm would first

consider grammars with small number of productions before grammar with a large

number of productions. The target grammar would therefore be ‘far away’ from

the starting point in the search space. The same class of figures encoded as graphs

could be represented by a very simple graph grammar. This would arguably be

much closer to the starting point of the search if one used a learning algorithm with

Occam’s bias to search the space of graph grammars. We also strongly feel that

the ‘correct’ inductive bias for a given learning problem depends on the choice of

representation. If the representation is changed then a new, completely different

bias might be required. Most learning algorithms search through the space of class

271

descriptions by first considering the simple class descriptions and progressing to more

complex class descriptions. A DFA learning algorithm might first consider DFAs with

1 state, then DFAs with 2 states, and so on. In other words, the algorithm exploits an

ordering of the space of class descriptions (i.e the search space). This bias is another

example of Occam’s bias. In essence, a learning algorithm’s inductive preference bias

specifies the method of enumerating the space of class descriptions. The algorithm

stops when it finds a class description consistent with the training set. If one changes

the method of enumerating the space, a different class description may be found.

This is because, in general, the search space may contain several class descriptions

consistent with the training set. In the case of parity problem, a neural network

finds the first set of weights consistent with the set of incomplete parity data. It

so happens that the mapping found by the network is not the correct (i.e. parity)

mapping. This means that the network does not have the ‘right’ bias for the parity

problem.

Wolpert [139] and many others have shown that no inductive bias can achieve a

higher generalization accuracy than any other bias when considered over all classes in

a given domain. In spite of this, it has been documented that certain bias do perform

better than average on many real-world problems [118]. This strongly suggests that

many real-world problems are homogenous in nature in that they require very similar

inductive biases. This explains why certain learning algorithms such as ID3 do well

on most applications. When learning algorithms do badly it is very often a case of

incorrect inductive bias. This is why we designed Valletta to have a variable inductive

preference bias. The user can, to a certain extent, change the algorithm’s bias by

modifying a number of parameters.

272

7.8 Analysis of the Results

Valletta’s Overall Performance

The results of the tests carried out on Valletta using the purposely designed

datasets showed that Valletta, in one particular case (the a702 dataset), took just

over 1.5 hours to find the correct class description. This is by no means catastrophic

since artificial neural networks often require many hours of training time. In order

to find out more why Valletta sometimes takes a few seconds to train and sometimes

takes more than one hour, The author used a code profiler8 to determine which

sections of the code were taking up the running time. The results are shown in Figures

7.13, 7.14, and 7.15. The a70x datasets was chosen since the training examples of

this dataset were drawn from the same kernel language. The dataset a702 has a

large number (≈ 128) of relatively long (average length 145 characters) in C+ while,

a703 has 24 strings of average length (≈ 80 characters). The a701 dataset has 41

strings of average length (≈ 87 characters). All the datasets have exactly the same

C− training set.

13%

3%

2%

25%

57%

Reduction

Distance Matrix
Computation

F1 Computation

F3 Computation

Kernel Selection/F2
Computation

Figure 7.13: Breakdown of running time by procedure for the a701 dataset.

8A tool which determines the CPU used by each procedure or function in a program.

273

5%

2%

9%
1%

83%

Reduction

Distance Matrix
Computation

F1 Computation

Kernel Selection/F2
Computation

F3 Computation

Figure 7.14: Breakdown of running time by procedure for a702 dataset.

26%

7%

4%

18%

45%

Reduction

Distance Matrix
Computation

F1 Computation

F3 Computation

Kernel Selection/F2
Computation

Figure 7.15: Breakdown of running time by procedure for a703 dataset.

The results clearly show that Valletta’s search time is completely unaffected by large

training sets and longer strings. The number of different TS descriptions considered

by Valletta in each of the case did not exceed 200. This is a very small part of the

total search space. An analysis of the output of the code profiler revealed that, in the

case of the a702 dataset Valletta spent more than 80% of the time computing the

distance matrix. The distance matrix stores the WLD between all pairs of normal

274

forms of C+. Distance matrix computation is quadratic in the number of normal

forms. In addition, each distance computation is quadratic in the length of the two

strings. The whole process, although still quadratic, is still compute intensive. As

the number of features increases and the length of the strings increase, the number

of normal forms increases too. The pie charts produced by the code profiler revealed

that as the cardinality of C+ got larger and the strings got longer Valletta took more

time to perform string reduction, kernel selection, and in particular, distance matrix

computation. This is not of great concern. It should not be too difficult to modify

Valletta in order to parallelize these processes. In fact, in Chapter 8, the author

proposes a distributed version of Valletta that farms out these processes to a number

of machines on a TCP/IP network. A number of tests that were conducted confirmed

that this is feasible.

Search Tree Construction

As can be seen in Table 7.1 on page 232, Valletta constructed very small search

trees for each of the datasets. The actual CPU required for learning each of the classes

varied considerable but the size of the search trees was reasonably uniform. In the

search tree each node represents a set of features. For each node, Valletta reduces

the strings in C+ to their normal forms (module the set of features associated with

that node) and then search for a set of kernels from amongst the normal forms that

minimizes f2. Nodes are stored in the PENDING list (actually a priority queue) and

this list is ordered according to the value of f2 in each iteration of the main learning

loop. The top I nodes are then expanded by adding new children. A further J nodes

are then expanded according to the heuristic described in Chapter 5. Figure 7.16

(also shown on page 234) shows the actual search tree built by Valletta for the a302

275

dataset. The final search tree contained 61 nodes. Figure 7.16 does not show all the

nodes in the first level of the tree — only those that have children. The number in

black shown next to each node is the actual node number assigned by Valletta. The

nodes shown encircled in red represent the feature set that returned a value of f2 of

zero. This was the target set of features. Note that the nodes that are expanded

�

cc ba acc abba bba37 36 3537 34 33 32

38
39

43 45 48 49

cacc

ba abbaba abcacc bbaabba ccabab abbab40 41 42 44 46 47abba

Search Tree for datasetA302

abbab ccabab abbab abbab ccabab

52 6153
50

51 58 59 54 55 60

Figure 7.16: The search tree created by Valletta for the a302 dataset.

by the algorithm are, in the majority of cases, nodes whose labels are either features

in the target set of features or substrings of these features. The phenomenon was

observed for all of the datasets.

During learning, Valletta maintains a record of the pass number and the values of

the f , f1, and f2 functions for each node in the search tree. Every time the algorithm

detects a reduction in the value of f2 a log file is updated. Table 7.8, overleaf, shows

that trace of the log file for the a703 dataset. The first column shows the pass number

(i.e. iteration of the main learning loop). The next three columns show the values

of the f1, f2, and f functions respectively. The last column shows the set of features

associated with the node that gave a reduction in f2. Before learning starts, the value

of the value of the bestf2 variable is set to large real constant. Every time the values

276

of f1, f2, and f are computed for a node in the tree, the value of f2 is compared to

the value of bestf2. If it is less the log is updated and the value of bestf2 is set to

the new value. As can be seen in Table 7.8, the set of features associated with a

Pass f1 f2 f Features

1 446.47 186.52 2.39 acd
1 444.20 178.69 2.48 ggfcbd
1 418.75 150.65 2.78 acdeeegb
3 305.36 130.16 2.34 cdfba, fbacd
3 384.44 118.65 3.24 fba, ggfcbd
3 396.00 112.03 3.53 acd, ggfcbd
3 300.38 92.60 3.24 fba, acdeeegb
3 337.30 86.65 3.89 ggfcbd, acdeeegb
4 303.56 77.64 3.91 cdfba, acefb, acd
4 384.79 72.92 5.27 bfg, fba, ggfcbd
4 300.38 63.58 4.72 bfg, fba, acdeeegb
4 380.60 62.12 6.12 acefb, fba, acdeeegb
4 386.64 58.58 6.60 acefb, ggfcbd, acdeeegb
4 293.95 49.91 5.89 fba, ggfcbd, acdeeegb
5 263.60 49.78 5.29 gfc, bfg, fba, acdeeegb
5 305.06 35.04 8.70 bfg, acefb, fba, acdeeegb
5 271.50 32.31 8.40 cdfba, acefb, ggfcbd, acdeeegb
5 230.88 29.21 7.90 fbacd, acefb, ggfcbd, acdeeegb
6 271.15 28.31 9.57 bacd, bfg, acefb, fba, acdeeegb
6 222.09 23.90 9.29 gfc, bfg, acefb, fba, acdeeegb
6 232.39 22.49 10.33 bacd, cdfba, acefb, ggfcbd, acdeeegb
6 242.51 13.75 17.64 bfg, cdfba, acefb, ggfcbd, acdeeegb
6 282.67 12.99 21.86 bfg, acefb, fba, ggfcbd, acdeeegb
7 222.28 8.10 27.43 gacd, bacd, cdfba, acefb, ggfcbd, acdeeegb
7 175.44 6.10 28.72 gacd, cdfba, fbacd, acefb, ggfcbd, acdeeegb
7 164.27 5.19 31.60 bfg, cdfba, fbacd, acefb, ggfcbd, acdeeegb
8 153.51 1.80 85.05 gac, fbac, bfg, cdfba, acefb, ggfcbd, acdeeegb
8 164.27 0.00 16427.00 gacd, bfg, cdfba, fbacd, acefb, ggfcbd,

acdeeegb

Table 7.8: A trace of the f , f1, and f2 functions for the a703 dataset.

reduction in the value of f2 is almost always a subset of the target set of features or

contains strings that are substrings of the target set of features. The target set of

277

features is shown in the last line of the table. This state of affairs occurred for every

dataset used to test Valletta. Figure 7.17 shows a line graph of the values of f , f1,

0

100

200

300

400

500

600

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

f1

f2

f

Figure 7.17: The behaviour of the f , f1, and f2 functions for the a703 dataset.

and f2 functions for the trace in Table 7.8. Note that a reduction in the value of f2

does not necessarily imply an increase in the value of f1. Note also that both f2 and

f decrease and increase monotonically respectively. The results obtained go some

way in explaining why Valletta manifested relatively quick convergence to the target

TS description. The nodes that were expanded, in the majority of cases, represented

features set that contained strings that were either target features or substrings of

the target features. Even if Valletta adds a string (to a set of features) that is a

substring of a target feature, this almost always results in a reduction in the value of

f2. As can clearly be seen in Table 7.8, the set of features ‘evolves ’ (directed by the

value of f2) into the final set of features that minimizes f2 and hence maximizes f .

278

Valletta vs Darwin

The efficiency of Valletta’s distance-driven search engine in finding the correct TS

description after considering only a small number of TS descriptions was beyond the

author’s initial expectations. It was for this reason that the author designed and im-

plemented the Darwin GA search engine. The aim was to compare Valletta’s distance

driven search with another popular search technique. Darwin still returned good re-

sults but nowhere near those of Valletta. In other words, Valletta’s distance-driven

search proved much more efficient. Darwin often took many hours to train – even on

datasets that Valletta took only a few seconds. The two methods employ completely

different search techniques. Valletta starts the search in one single point in the search

space and then uses distance to direct the search. Valletta’s search is not monotonic

and sometimes must backtrack but, in general, it converges to the correct class de-

scription very quickly. Darwin, like all genetic algorithm search engines, starts the

search in a number of randomly selected locations in the search space and then uses

mutation and crossover genetic operators to broaden the search. A genetic algorithm

therefore performs a parallel search in the space of all chromosomes. Darwin uses

exactly the same pre-processing stage and the same methods for computing f , f1, and

f2 that are used by Valletta. The fitness function that was used was the value of f2

for each chromosome. Valletta, in each case, converged to the target TS description

after it considered less than 200 different class descriptions. Darwin required several

thousand. In essence, the main difference between Valletta and Darwin is the search

technique. Also, the stochastic nature of genetic algorithms makes it very difficult

to incorporate an inductive preference bias. This is because the search through the

hypothesis space is directed by the genetic operators — which are stochastic.

279

Valletta and the EDSM Algorithm

As we have noted before, Valletta and the EDSM algorithm are not, strictly

speaking comparable. However, since kernel languages are, in fact, regular, the author

ran the EDSM algorithm on some of Valletta’s datasets. In spite of being a general

purpose DFA learning algorithm, EDSM did rather badly on the datasets that it

was asked to learn. This is not because EDSM is a bad learning algorithm. The

learning of DFAs is, in general, very hard. The EDSM algorithm was meant to

learn regular languages while Valletta was designed to learn a very specific sub-class.

The EDSM algorithm therefore is meant for a much larger domain then Valletta.

As a consequence, the EDSM algorithm requires much larger training sets. Let us

illustrate this point with a simple example. Humans can learn to distinguish between

dogs and cats very quickly because the two classes are well delineated. In other words

there are just cats and dogs. A few examples of each class are sufficient for learning.

If there were thousands of other species of animals that were neither cats nor dogs

but somewhere in between then learning would clearly be much more difficult. Given

a small (structurally complete) training set of strings drawn from a kernel language

there might be a hundred or so different kernel language TS descriptions consistent

with this training set. On the other hand, there might be several million DFAs

consistent with this small training set. For this reason, algorithms with a very large

learning domain, such as EDSM, require a large number of training examples to learn.

More formally, the EDSM learns a very large concept class with a high VC dimension.

An implication of this is that a large number of training examples are required so

the algorithm can exclude the ‘incorrect’ class descriptions. The author noticed this

in his experiments with the EDSM algorithm. This algorithm is very sensitive to the

choice of strings in C−. The author also feels that this is a strong argument against

trying to develop general purpose learning algorithms that are ‘too general’. With

280

ETS one can design the algorithm to suit the domain in question and then incorporate

the most appropriate inductive preference bias. A leading researcher once told the

author at a NIPS9 meeting that ”the most important thing in learning is to make the

most of the data given to you”. Many others seems to share this view. It must also

be stressed that different learning algorithms require a different definition of what

constitutes structural completeness. Valletta’s structurally complete training sets

were very small while those of EDSM were much larger. Valletta only required that

each feature occurred at least twice in the whole training set while ESDM requires

that each transition in the target DFA is used a number of times in the generation

of C+. A practitioner who wants to select an algorithm or technique for learning in

a particular domain should therefore always ensure that:

(a) The data is structurally complete with regards to the selected learning algo-

rithm, and

(b) the inductive preference bias of the algorithm is suitable for the domain.

Valletta and the Monk’s Problems

The results obtained on the Monk datasets confirmed the importance of using

an algorithm that is targeted on the right domain. When Valletta was first used to

learn the Monk’s problems, the algorithm would take several hours. The author then

designed and implemented a special version of Valletta that was targeted at trivial

kernel languages. In this type of kernel language the features all consist of a single

character. These kernel language are called trivial because the set of features induces

a trivial string rewriting system (see Chapter 2). The modified algorithm was called

Mdina. Mdina successfully learned all of the Monk’s problems including the third

one. For the third problem, an extra string was added to the positive training set

9A connectionist group.

281

to make it structurally complete. Exactly the same inductive preference bias was

used on all three problems. Mdina incorporated a new method of computing f1, i.e.

the distance between the positive and negative training sets. This new method is

described in Section 7.4 and allowed Mdina to successfully handle misclassification

noise.

Other Observations and Notes

• A number of colleagues asked the author: Does Valletta perform a greedy

search? Valletta builds the feature sets by adding the features that reduce

f2 the most. This might lead one to think that Valletta is performing a greedy

search. Such a technique cannot work, however, because, if the set of features

is not confluent, then the order that the features are added to the feature set

is critical. An investigation of how Valletta was expanding the search tree re-

vealed that it was often the case that Valletta would expand features sets that

had very small values of f2 only for the expanded feature set to register an

increase in f2. This happens because, when the set of features is non-confluent,

the order in which the feature set is built is crucial. This phenomenon is what

prevents Valletta from conducting a purely monotonic search.

• Our experiments with neural networks on complete parity datasets confirmed

that a neural network of the appropriate size and architecture can, in fact,

represent mappings such as even parity. The reason the neural networks fail

to generalize from incomplete parity training sets must be because they don’t

have the correct inductive bias. Neural networks of the right size converge

from incomplete parity data but learn a mapping other than the parity map-

ping. There may, in theory, be several mappings consistent with an incomplete

parity dataset. The ANN finds the first mapping consistent with the training

282

examples. This mapping is very often not the parity mapping. The results the

author obtained reinforced his conviction that learning algorithms that have a

variable inductive preference bias have a distinct advantage over those that have

a fixed bias such as ID3, Backpropagation, etc. The author’s own criticisms of

the neural network approach are the following:

(a) ANNs seem to have a fixed inductive preference bias,

(b) They search a large hypothesis space. The VC dimension of the concept

class is therefore usually quite large and a large number of examples are

required.

(c) ANNs randomize their weights before learning starts. This means that the

final set of weights, and therefore the mapping they learn, is not unique.

(d) The class description returned by ANNs is a set of weights. For most

purposes this is unusable.

• It was observed that, in general, Valletta performed much better on alphabets

of higher cardinality. This was because, in the case of large alphabets, features,

indeed any strings, are statistically much less likely to occur in random strings.

For example the string 101 is very likely to occur in random strings over the

binary alphabet. The string abcgaf, on the other hand, is relatively rare in

random strings over the alphabet {a, b, c, d, e, f, g}. This is well documented in

textbooks on word combinatorics [79]. The implication of this is that it is much

easier to see regularity in strings over larger alphabets. In fact, the bin01 and

bin02 datasets were used to test Valletta precisely because the author wanted

to test Valletta on kernel languages over binary alphabets. These were, by

far, the hardest languages to learn. Very often, each string in C+ would have

numerous normal forms. In fact, bin02 was used as a benchmark language.

283

• The a701, a702, and a703 datasets were designed to test Valletta’s robustness.

Different researchers use different definitions of what constitutes robustness. We

could, for example, call a learning algorithm robust if it satisfies the following

conditions:

(a) All structurally complete training sets produce the same class description

(b) Once the learning algorithm discovers the target class description, adding

more strings to C+ should not make the algorithm converge to another

class description.

The first requirement depends on the inductive bias of the algorithm. Different

structurally complete training sets can have different sets of TS descriptions

that consistent with the training examples. Which TS description is found first

depends on the inductive bias of the algorithm. Valletta and GSN do not really

optimize the f function. They both stop when the find a TS descriptions that

makes f exceed a pre-set threshold. This is not equivalent to optimization.

The second condition is much more realistic. Valletta was tested on many

different structurally complete training sets for the a70x kernel language and

the algorithm always converged to the correct class description. Adding more

training strings to a structurally complete training set that was previously used

to successfully find the target TS description did not affect Valletta. Once it

found the correct class description, the addition of more strings to C+ did not

effect performance.

284

Chapter 8

Conclusions and Future Research

All truths are easy to understand once they are discovered;

the point is to discover them.

Galileo Galilei

This final chapter contains three sections. The first section contains a summary

of the conclusions that were reached in this thesis. The second section contains a list

of the main contributions made, and finally, in the last section we discuss some of the

future directions that the author is currently investigating with regard to pursuing

this work.

8.1 Conclusions

The Role of Distance in Class Description

In this thesis the author has tried to show how and why, under the ETS hypothesis

for class structure, distance allows for a compact and economical class description of

formal languages. Conventional symbolic or propositional class descriptions of formal

languages such as grammars and automata are not suitable for noisy classes. Neural

285

networks and other vector space methods can handle noisy classes better but provide

poor descriptions of the class. A set of weights is not considered by many to be

an appropriate, i.e meaningful, class description. String TS descriptions allow for a

more compact form of description of noisy languages when compared to stochastic

grammars and stochastic automata. Noise can take many forms. It can consist

of spurious characters inserted, according to some distribution, into the strings of

the language or it can take the form of misclassification of samples in the training

sets. The features and kernels of the TS description capture the regularity of the

language. Noise is handled by the distance function that forms an integral part of

the description. In this thesis we have also seen how the distance function can be

chosen to suit the concept class. The flexibility of the ETS model allows the learning

algorithm designer to choose the distance function and the definitions of the f1 and

f2 functions to suit the learning task at hand.

The Role of Distance in Learning

When the author first started work on this research he was reasonably confident that

he could demonstrate the usefulness of distance for the purpose of class description.

What was not clear in the beginning, was whether it was possible to show that

distance can also be used to direct the learning process. Valletta was conceived, in

part, in order to answer this question. The results obtained with Valletta suggest

that distance can be used, on its own and without any other heuristics, to direct the

search for the target class description. Valletta’s distance-driven search engine found

the correct class description after considering a relatively very small number of points

in the search space. Valletta’s search was not necessarily monotonic. Monotonicity

can only be achieved if it can be guaranteed that, during training, any new feature

added to the current set of features is a feature in the final class description. In other

words, each new feature must belong to the final class description. This would allow

286

the feature set to be built one feature at a time. It is not clear whether this can

always be done.

Representation DOES Matter

The issue of which is the best structural representation is perhaps one of the least

understood areas in Machine Learning. By representation we mean the encoding

of the domain of discourse into some mathematical structure such as scalars, vec-

tors, strings, trees, graphs, etc. The choice of representation is important since a

change of representation, i.e. the re-encoding of the domain of discourse, may re-

quire a completely different learning algorithm, with a different bias, and a different

search technique. Moreover, the ‘right’ inductive bias depends on the choice of rep-

resentation since the complexity of the class description changes if the representation

changes. A class of figures drawn in the Cartesian plane may have a complex class

description (context-sensitive grammar) when represented as strings (chain-codes)

but may have a very simple class description (context-free graph grammar) when

represented as graphs. Since most learning algorithms use a version of Occam’s bias

and consider simple class descriptions before complex ones, the time complexity of

learning may be effected. A complex class description may be ‘far away’ from the

learning algorithm’s starting point in the space of class descriptions. Representation

is also important since the regularities of a class may become ‘invisible’ if the set of

instances is re-encoded. Learning would still, in theory, be possible but much harder.

In this thesis we have seen that a change of representation may also change the re-

quirements of structural completeness. The importance of this point, for machine

learning in general, cannot be over-emphasized.

The Advantages of ETS

The ETS inductive learning model provides a general framework for learning and

287

should not be compared with specific learning algorithms such as ID3, Neural Net-

works, Candidate Elimination, etc. ETS does not impose a fixed language or pref-

erence bias on the learning algorithm designer. The main idea behind ETS is the

use of distance for the purpose of class description and for directing the learning

process (see above). One can design ETS learning algorithms for any domain. Un-

like the case for neural networks, the designer of the ETS learning algorithm is not

forced to use vectors to encode the instance space. This is an important advantage of

ETS since it allows the designer to incorporate the inductive preference bias and the

search technique he or she deems fit for the domain in question. This flexibility was

demonstrated in the design of the Valletta algorithm which was conceived, in part,

to address the problems that were identified with the earlier GSN algorithm. Val-

letta uses a new string edit distance function that was purposely developed for kernel

languages. Valletta also uses new definitions for the f , f1 and f2 functions in order

to handle multiple-kernel languages. The search process was entirely directed by the

value of f2 (average inter-distance in C+). The inductive preference bias was chosen

to suit the concept classes. This is not possible with most other learning algorithms.

Many learning algorithms fail in certain domains (such as the Monk’s problems) pre-

cisely because one cannot change their in-built inductive preference bias. With ETS

this is not a problem. ETS also provides a natural method for coping with noisy

languages. This was demonstrated by the examples of noisy kernel languages that

were used to test Valletta as well as by the new method for computing the f1 function

that was developed in order to properly handle misclassification noise.

8.2 Contributions of this Thesis

(a) Refined and updated the definitions of Transformations System (TS) Descrip-

tions of formal languages originally proposed by Goldfarb in [47]. In this thesis

288

we have seen how and why these TS descriptions allow a more compact and

economical representation of formal languages. In particular, compared with

other forms of description, TS descriptions provide a more elegant and prac-

tical method for describing noisy languages than do stochastic grammars and

stochastic automata. Briefly, this is because with string TS descriptions the

practitioner can tailor the distance function to suit the domain, quantity of

noise, etc.

(b) Formal definitions for the class of regular languages called kernel languages. It

was also shown that there are practical applications of this interesting class of

languages.

(c) The development of a new string edit distance function, Evolutionary Distance

(EvD), and an algorithm for its computation. EvD solves the problems that

were identified with the GLD function. EvD is a metric and allows for the

proper and correct description of kernel languages. EvD can distinguish be-

tween feature noise and kernel noise and incorporates a feature-repair facility

that removes noise (spurious characters) from corrupted features. EvD can be

computed in linear time if the set of features is confluent. EvD was then suc-

cessfully used in the Valletta ETS learning algorithm for learning both noiseless

and noisy kernel languages.

(d) A new ETS inductive learning algorithm — Valletta. Valletta addresses the

problems that were identified in the analysis of the GSN algorithm and incor-

porates the following features:

• Valletta uses a pre-processing stage to efficiently find all non-overlapping

repeated substrings in the C+ training set and builds a data-structure, the

search lattice, to enable the learning stage to efficiently construct feature

289

sets.

• Valletta uses a new data structure, the parse graph. The parse graph is

used to reduce the strings in the training sets to their normal forms modulo

a given set of confluent or non-confluent set of features.

• Valletta employs a new method for computing the f function. This new

method was necessary since, unlike the GSN algorithm, Valletta learns

multiple kernel languages. An approximation algorithm is used by Valletta

for the NP-Complete problem of kernel selection. The new f function also

allows for correct learning in the presence of misclassification noise which

the GSN algorithm could not handle.

• Valletta uses a new search strategy and does not perform simplex opti-

mization. The search strategy used is essentially a search in the space of

all possible TS descriptions. Valletta builds a search tree from this space.

The search space is completely specified by the set of repeated substrings

built by the preprocessing stage. Valletta always learned the correct class

description quickly in spite of the huge size of this space. In fact, Val-

letta always finds a TS description that is consistent with a structurally

complete training set.

• Unlike many other learning algorithms such as Candidate Elimination,

ID3, and Back Propagation, Valletta is a variable-preference-bias algo-

rithm. This means that the user can select the appropriate inductive

preference bias according to the application. This is an important advan-

tage over other learning algorithms which have a fixed inductive preference

bias.

(e) Valletta is completely distance driven. This means that, at each time step in the

learning process, only the current distance function is used to direct the search.

290

No heuristics were incorporated into the search engine in order to accelerate

the search. This was because we wanted to verify experimentally that distance

can, in fact, be used to direct the learning process.

(f) A series of experiments using Valletta itself, artificial neural networks, the

EDSM automata learning algorithm, the Monk’s Problems datasets, and a ver-

sion of Valletta that uses a genetic algorithm search engine called Darwin were

conducted in order to show that:

• Distance can be used to direct the search for the correct TS description.

This view is supported by the results that were obtained from comparing

Valletta’s distance-driven search to the adaptive search technique used by

the Darwin genetic algorithm.

• The inductive bias of an algorithm is what determines whether an algo-

rithm learns the class or not. It is meaningless to talk about the robustness

of an algorithm since the robustness of a learning algorithm is a function of

its inductive bias. The results of experiments conducted with the EDSM

algorithm, the Monk’s problems datasets, and incomplete parity datasets

which were used to train neural networks, support this view.

• Representation is important. Changing the representation of the domain

of discourse may change the learning problem and one may require a dif-

ferent algorithm, with a different search method, and indeed, a different

inductive bias. The re-encoding of the objects in the domain of discourse

can increase the time complexity of learning since the descriptive com-

plexity of the class changes under different encodings. A change of repre-

sentation means that the requirements of the structural completeness of

training sets changes too. This has important implications for machine

291

learning since a training set may be structurally complete for one learning

algorithm but not for the other.

8.3 Future Research

It is the author’s belief that this thesis has only scratched the surface in the area

of ETS learning of formal languages. The main aim behind the development of

the Valletta algorithm was to provide an extended proof-of-concept of the ideas in

Goldfarb’s ETS theory. Throughout the preparation of this thesis, we frequently

encountered issues and problem that could easily have been Ph.D. topics in their

own right. It was sometimes not easy to remain focused on the central research

objective. In this section we shall discuss some of the main issues and problems

which require further investigation. Also included are some ideas for upgrading and

refining the Valletta algorithm described in this thesis and also for modifying Valletta

for learning other types of formal languages.

8.3.1 Extensions to Valletta

Enhancements to the Search Engine Valletta’s search for the target TS descrip-

tion is directed only by the value of f2. Nodes in the search tree, corresponding

to set of features, and expanded if they have a small value for f2. The fea-

tures added are obtained from the search lattice. The search lattice is only

used in order to ensure that any new nodes added to the search tree repre-

sent substring-free feature sets. In theory, given a node n in the search tree

associated with a set of features F , one could perform a statistical analysis of

the normal forms of C+ modulo F and then choose new features based on the

number of occurrences in the normal forms. Suppose, for example, the node n

292

represents the set of features F = {ab, cb}. After reducing C+ modulo F we

could expand F by examining the normal forms and finding the substrings in

RC+ that occur most frequently in the normal forms. This should significantly

accelerate the search for the target TS description.

The Kernel Selection Procedure Finding a set of kernels that minimizes f2 from

amongst the normal forms (modulo a set of features) of C+ was shown to

be NP-Complete. The approximation algorithm used by Valletta selects the

‘most likely’ candidate kernels from the set of normal forms and then consider

various subsets of the set of candidate kernels as determined by the α and β

functions. This procedure worked well but is rather compute intensive. Unlike

the GSN algorithm, which computes f2 once, Valletta computes f2 for many set

of candidate kernels and then selects the set of kernels that minimized f2. This

procedure could conceivably be improved by using more complex heuristics to

choose which set of normal forms are the most likely to be the target set of

kernels. Given a set of normal forms, one could check, for each normal forms

in the set, how many times it occurs in C+ (i.e. in how many strings) and one

could also exclude set of kernels which contain strings that are normal forms of

the same strings. A number of such heuristics would improve the running time

of the kernel selection procedure.

Incremental Learning Although Valletta does not have such a feature, it should

be relatively straightforward to add an incremental learning facility to Valletta.

Incremental learning is a term used to describe that ability of some learning al-

gorithms to continue learning when the training set changes — usually through

the addition of more training examples. This is, of course, what humans do

very well. To incorporate incremental learning in Valletta one would have to

add the facility to build a new search lattice from the modified training set and

293

then modify the search tree (i.e. the search space of TS descriptions) and then

continuing the learning process.

Parallelization In Chapter 7 we noted that with large datasets, the number of dif-

ferent TS descriptions considered by Valletta was approximately the same as for

the case with small datasets. Valletta took somewhat longer to learn because

long strings have many normal forms when reduced modulo a set of features.

This was particularly evident with the A702 dataset. The computation of the

distance matrix and the kernel selection process therefore took more time. A

number of experiments conducted with a code profiler1 confirmed that these

two processes were taking up to 85% of the running time. One idea for dealing

with this problem is that the computation of the these two processes can be

farmed to different machines on a switched network. Another candidate for

parallelization of the search engine itself. During learning, Valletta considers a

number of different feature sets (TS descriptions) and computes the f function

for each of them. As was seen in Chapter 7, the computation of the f function is

rather compute intensive and therefore makes an ideal candidate for paralleliza-

tion. Again, the computation of the f function for different feature sets can be

farmed out to a number of different machines in a network. To investigate this,

the author implemented a small TCP/IP network consisting of a PC running

the main Valletta program and a number of daemons (slaves). This network is

depicted in Figure 8.1. The implementation was straightforward since Power-

BASIC includes a powerful TCP/IP Sockets API library. Tests showed that

the communications overhead is very small compared to the significant increase

in speed that is gained. The main Valletta daemon simply farms out the com-

1A software utility that records the CPU time of each function and/or code segment in a running

program.

294

Main Daemon (Master)Valletta

Daemon (Slave) Node

Socket to Valletta

Socket to Daemon Node

Valletta

Figure 8.1: A TCP/IP Farm for parallelizing Valletta.

putation of f function for each of the feature sets to the slave daemons running

on the other machines in the TCP/IP network. The daemons then return the

values of f1, f2 and f3 back to the main Valletta program.

8.3.2 A Distance Function for Recursive Features

The rewrite rules that we have considered in this thesis are of the form a ↔ ε, i.e.

the right hand side is always the null string. This means that the rules allow only

insertion and deletion of substrings. In general, the introduction of substitutions, i.e.

rewrite with both sides being non-empty strings, have more expressive power and can

describe languages that cannot be described using only insertions and deletions. For

such rules, the most interesting are the recursive rewrite rule of the form xyx ↔ y

for y ∈ Σ+ and x, z ∈ Σ∗. These rules are important because the right hand side

is a substring of the left hand side and can therefore be applied many times —

295

hence the name recursive features. These rules can be used to describe classes of

both regular and context-free languages. The language anbn is an example. The

possibility of modifying Valletta to learn such languages depends on the development

of string distance algorithms that can work with such rewrite rules and also on the

development of pre-processing algorithm that identify candidate recursive features.

We feel that both problems can be solved. Valletta would not require much more

modification since we envisage that exactly the same distance-driven search technique

can be used with these languages.

8.3.3 ETS Learning of Other Regular Languages

In this thesis we considered the learning of kernel languages. We believe that the ideas

and algorithms used to learn kernel languages can be used, after being appropriately

modified, to learn any regular languages. The idea here is that if one can characterize

a regular language by all the cycle-free paths in the minimal canonical automaton

for that language, then one could conceivably use rewrite rules that ‘eat ’ the cycles

and thus be able to transform any string in the language into any other string in

the same language. Let us demonstrate with a simple example. Consider the DFA

of the regular language ab∗a in Figure 8.2 shown below. Note that there is only

b

1 2 3
aa

Accepting state

Start State

Figure 8.2: A DFA for the regular language ab∗a.

one cycle-free path in the automaton, λaaλ. The symbol λ is here being used to

296

denote the ends of the string. One can then use the λ-transformation λab ↔ λa to

transform any string in ab∗a into any other string in the same language. The role of

such a rewrite rule is to ‘eat ’ the cycles. The λ symbol, which denotes the beginning

of the string, prevents the rewrite rule being applied anywhere in the string. This

idea is feasible since any finite automaton can be characterized by the set of all its

k-tails [86]. One would, of course, need to develop a new distance function for these

λ-transformations but, other than that, the Valletta algorithm should not require

much modification.

8.3.4 Open Questions

(a) It is not exactly clear why Valletta converges so quickly to the correct class

description. Distance proved to be suitable for directing the learning process.

The results obtained in this thesis must be further corroborated by new research

that investigates this issue.

(b) In this thesis we considered only rewrite rules that are ‘variable free’, i.e. no

non-terminal symbols are used in the rule. Rewrite rules that allow variables are

more powerful and can describe a broader class of languages than can rewrite

rules defined on the terminal alphabet only [80]. The problem is whether it is

feasible to design computationally tractable string edit distance algorithms and

ETS learning algorithms for this type of rewrite rules. New research is required

to investigate these issues.

(c) The number of unique normal forms modulo a given set of features is always

much smaller than the number of paths in the parse graph. Is there an efficient

polynomial-time procedure for extracting these normal forms?

(d) Is there an ETS learning algorithm that learns kernel languages monotonically?

297

8.4 Closing Remarks

The debate on which is the best approach for modelling intelligence, connectionist or

symbolic, will undoubtedly rage on. In this thesis we presented a new technique for

learning a subclass of the regular languages from a finite set of positive and negative

training samples. Our algorithm is an implementation of Goldfarb’s ETS Model. The

ETS model is a unification of both the above competing approaches. It is hoped that

this thesis convinces some readers that there is indeed ‘life outside the connectionist

and symbolic camps’ and also that it encourages researchers in machine learning to

develop ETS learning algorithms for other domains.

298

Bibliography

[1] Abela, John, Topics in Evolving Transformation Systems, Masters Thesis, Fac-
ulty of Computer Science, University of New Brunswick, Canada, 1994.

[2] Abela, John, Learning Picture Languages, Technical Report TR-CS-9605, De-
partment of Computer Science and Artificial Intelligence, University of Malta,
1996.

[3] Angluin, D., On the Complexity of Minimum Inference of Regular Sets, Info-
mation and Control, Vol. 39, pp. 337-350, 1978.

[4] Angluin, D., Inference of Reversible Languages, Journal of the Association of
Computing Machinery, 29(3), pp. 741-765, 1982.

[5] Anthony, M. and Biggs, N., Computational Learning Theory, Cambridge Uni-
veresity Press, 1992.

[6] Anzai, Y., Pattern Recognition and Machine Learning, Academic Press, 1992.

[7] Baader, Franz and Nipkow, Tobias, Term Rewriting and All That, Cambridge
University Press, 1998.

[8] Barsalou, Lawrence W., Cognitive Psychology - An Overview for Cognitive Sci-
entists, LEA Publishers, 1992.

[9] Baxter, Jonathan, A Model of Inductive Bias Learning, Department of Sys-
tems Engineering, Research School of Information Science and Engineering,
Australian National University, Canberra 0200, Australia, 1998.

[10] Boasson, L., Grammaires á Non-termineux separes, International Colloqium on
Automata, Langauges, and Programming, Lecture Notes in Computer Science,
Vol. 85, pp. 109-118, Springer Verlag, Berlin/New York, 1980.

[11] Boasson, L., and Senizergues G., NTS Languages are Deterministic and Con-
gruential, Journal of Computer and System Sciences, Vol. 31, pp. 332-342,
1985.

299

[12] Book, Ronald V. and Otto, Friedrich, String-Rewriting Systems, Springer-
Verlag, 1993.

[13] Book, Ronald V., Thue Systems as Rewriting Systems, J. Symbolic Computa-
tion, Vol. 3, pp. 39-68, 1987.

[14] Boolos, George and Jeffrey, Richard, Computability and Logic, Cambridge Uni-
versity Press, 1989.

[15] Briscoe, Garey and Caelli, Terry, A Compendium of Machine Learning Volume
1: Symbolic Machine Learning, Ablex Publishing Corporation, 1996.

[16] Bunke, H. and Sanfeliu, A., (eds) Syntactic and Structural Pattern Recognition
- Theory and Applications, World Scientific series in Computer Science, Vol. 7,
1990.

[17] Buntine, Wray, A Critque of the Valiant Model, In Proceedings of the Eleventh
IJCAI, Detroit, MI, Vol. 1, pp. 837-842, Morgan Kaufmann, 1989.

[18] Carrasco, Rafael and Oncina, Jose (Eds.), Grammatical Inference and Applica-
tions, Springer-Verlag, 1994.

[19] Chan, Tony Y. T., Learning as Optimization: A Unified Paradigm, Ph.D. The-
sis, University of New Brunswick, 1991.

[20] Cherkassky, Vladimir and Mulier, Filip, Learning From Data Concepts, Theory
and Methods, Wiley Interscience, 1998.

[21] Clarke, A. and Thornton, C., Trading Spaces: Computation, Representation,
and the Limits of Uniformed Learning, Cognitive and Computing Sciences,
University of Sussex, Brighton, UK, 1995.

[22] Culbertson, Joseph C., On the Futility of Blind Search, Techical Report TR
96-18, Department of Computing Science, University of Alberta, Edmonton,
Alberta, 1996.

[23] Davey, B. A. and Priestley H. A., Introduction to Lattices and Order, Cambridge
Mathematical Textbooks, 1990.

[24] Dietterich, T. G., Learning and Inductive Inference in Edward A. Feigenbaum
and Paul R. Cohen, editors, The Handbook of Artificial Intelligence, Vol. 3,
Chapter 14, William Kaufmann, Inc., 1982.

[25] Dreyfus, Hubert, What Computers Can’t Do, First Edition, Harper and Row,
1972.

300

[26] Duda, Richard and Hart, Peter, Pattern Classification and Scene Analysis,
Wiley Interscience, 1973.

[27] Duda R., Hart P., and Stork D., Pattern Classification, Second Edition, John
Wiley & Sons, New York, ISBN 0471056693, 2001.

[28] Dupont, P., Regular Grammatical Inference from Positive and Negatives Sam-
ples by Genetic Search : the GIG method, Lecture Notes in Artificial Intel-
ligence, No. 862, Springer Verlag, Grammatical Inference and Applications,
ICGI’94, pp 236–245, 1994.

[29] Dupont, P., Miclet, L., and Vidal, E., What is the Search Space of the Regular
Inference in Carrasco, Rafael and Oncina, Jose (Eds.), Grammatical Inference
and Applications, Springer-Verlag, 1994.

[30] Fodor, J. et al, The Psychology of Language, McGraw-Hill, New York, 1974.

[31] Fodor, J., The Language of Thought, Thomas Y. Crowell, New York, 1975.

[32] Fodor, J., The Mind-Body Problem, in Scientific American, 244, pp. 114-123,
1981.

[33] Fu, King Sun, Syntactic Pattern Recognition and Applications, Prentice-Hall,
1982.

[34] Gardner, H., The Mind’s New Science - A History of the Cognitive Revolution,
Basic Books, 1987.

[35] Garey, Michael and Johnson, David, Computers and Intractability A Guide to
the Theory of NP-Completeness, W.H. Freeman and Company, 1979.

[36] Giles, J.R., An Introduction to the Analysis of Metric Spaces, Australian Math-
ematical Society Lecture Series 3, Cambridge University Press, 1987.

[37] Gold, E.M., Language Identification in the Limit, Information and Control,
Vol. 10, pp. 447-474, 1967.

[38] Gold, E.M., Complexity of Automaton Identification from Given Data, Infor-
mation and Control, Vol. 37, pp. 302-320, 1978.

[39] Goldfarb, Lev, A Unified Approach to Pattern Recognition, Pattern Recogni-
tion, Vol. 17, No. 5, pp. 575-582, 1984

[40] Goldfarb, Lev, A New Approach to Pattern Recognition, in L. N. Kanal and A.
Rosenfield, editors, Progress in Machine Intelligence and Pattern Recognition,
Vol. 2, North-Holland Publishing Company, Amsterdam, 1985.

301

[41] Goldfarb, Lev, On the Foundations of Intelligent Processes - 1: An Evolving
Model for Patter Learning, Pattern Recognition, 23, pp. 595-616, 1990.

[42] Goldfarb, Lev, A Unified Metric Model for Pattern Learning, in Proceedings
IASTED International Symposium on Machine Learning and Neural Networks,
M. H. Hamza, editor, New York, October 10-11, pp. 96-99, 1990.

[43] Goldfarb, Lev, Why Do We Need the Auxilliary Vector Representation for the
Metric Pattern Recognition Problem?, Technical Report TR90-056, Faculty of
Computer Science, University of New Brunswick, 1990.

[44] Goldfarb, Lev, A Working Characterization of Intelligence and a New Model,
Technical Report TR90-062, Faculty of Computer Science, University of New
Brunswick, 1990.

[45] Goldfarb, Lev, Verifiable Characterization of an Intelligent Process, Fourth
UNB Artificial Intelligence Symposium, Lev Goldfarb and Bradford G. Nicker-
son, editors, pp. 67-80, Sept. 20-21, 1991.

[46] Goldfarb, Lev, What is Distance and why do we need the Metric Model for
Pattern Learning, Pattern Recognition, Vol. 25, No. 4, pp. 431-438, 1992.

[47] Goldfarb, Lev, Transformation Systems are More Economical and Informative
Class Descriptions than Formal Grammars, in Proceedings of the 11th IAPR
International Conference on Pattern Recognition, Vol. 2, pp. 660-664, IEEE
Computer Society Press, Los Angeles, 1992.

[48] Goldfarb, Lev, On some Mathematical Properaties of the ETS Model, Technical
Report TR93-079, Faculty of Computer Science, University of New Brunswick,
UNB, September 1993.

[49] Goldfarb, Lev, and Nigam, Sandeep, The Unified Learning Paradigm - A
Foundation for A.I., in Honovar V and Uhr L, editors, Artificial Intelligence
and Neural Networks: Steps Towards Principled Integration, Academic Press,
Boston MA, 1994.

[50] Goldfarb, L., Abela, J., Bhavsar, V. C., Kamat, V. N., Can a Vector-Space
Based Learning Model Discover Inductive Class Generalization in a Symbolic
Environment?, Pattern Recognition Letters, 16, pp. 719-726, 1995.

[51] Goldfarb, Lev, Inductive Class Representation and its Central Role in Pattern
Recognition, in Proceedings of the 1996 International Mutlidisciplinary Confer-
ence on Intelligent Systems, NIST, Albus, J., Meystel, A., and Quintero, R.,
editors, U.S. Government Printing Office, Washington, Vol. 1, pp. 53-58, 1996.

302

[52] Goldfarb, L. and Deshpande, S., What is a Symbolic Measurement Process?,
in Proceedings 1997 IEEE Conference on Systems, Machines, and Cybernetics,
IEEE Press, Vol. 5, pp. 4139-4145, 1997.

[53] Goldfarb, Lev, and Hook, Jaroslav, Why Classical Models for Pattern Recog-
nition and not Pattern Recognition Models, in Proceedings of the International
Conference on Advances in Pattern Recognition, Plymouth, UK, Singh S., edi-
tor, Springer, London, pp. 405-414, 1999.

[54] Goldfarb, Lev, Golubitsky, O., Korkin, D., What is Structural Representation?,
Technical Report TR00-037, Faculty of Computer Science, University of New
Brunswick, 2000.

[55] Goldfarb, Lev, Golubitsky, O., Korkin, D., What is Structural Representation in
Chemistry?: Towards a Unified Framework for CADD, Technical Report TR00-
137, Faculty of Computer Science, University of New Brunswick, December
2000.

[56] Gruska, Jozef, Foundations of Computing, International Thomson Computer
Press, 1997.

[57] Gusfield, Dan, Algorithms on Strings, Trees, and Sequences, Cambridge Uni-
versity Press, 1997.

[58] Hall, P.A., and Dowling, G.R., Approximate String Matching, Comput. Sur-
veys, 12, pp. 381-402, 1980.

[59] Hein, James L., Discrete Structures, Logic, and Computability, Jones and
Bartlett Publishers, 1995.

[60] Hermes, Hans, Enumerability, Decidability, Computability, Springer-Verlag,
1969.

[61] Honovar, Vasant and Slutzki, Giora (Eds.), Grammatical Inference, Springer-
Verlag, 1998.

[62] Hopcroft, J., and Ullman, J., Introduction to Automata Theory, Languages,
and Machines, Addison-Wesley, Reading, MA, 1979.

[63] Huet, Gérard, Confluent Reductions: Abstract Properties and Applications to
Term Rewriting Systems, Journal of the ACM, vol. 27, No. 4, pp 797-821,
Octoboer 1980

[64] Hunt, J.W., and Szymasski, T.G., An Algorithm for Differential File Compar-
ison, Comm. ACM, 20, pp. 250-353, 1977.

[65] Hutchinson, Alan, Algorithmic Learning, Oxford University Press, 1994.

303

[66] Jain, Sanjay et al, Systems That Learn - An Introduction to Learning Theory,
MIT Press, 1999.

[67] Jantzen, Matthias, Confluent String Rewriting, EATCS monographs on theo-
retical computer science, Springer-Verlag, 1988.

[68] Johnson-Laird, Philip, The Computer and The Mind, Harvard University Press,
1988.

[69] Kearns, Michael and Vazirani, Umesh, An Introduction to Computational
Learning Theory, MIT Press, 1994.

[70] Kearns, M. amd Valiant, L., Crytographic Limitiations on Learning Boolean
Formulae and Finite Automata, Proc. of the 21st ACM Symposium on the
Theory of Computing, pp 433-444, 1989.

[71] Kruskal, B., and Sankoff, D., editors, Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparision, Addison-Wesley,
1983.

[72] Lamberts, Koen and Shanks, David, Knowledge, Concepts, and Categories,
MIT Press, 1997.

[73] Lang, K., Pearlmutter, B. A., and Price, R., Results of the Abbadingo One DFA
Learning Competition and a New Evidence-Driven State Merging Algorithm, in
Honovar, V. and Slutzki, G., (eds), Grammatical Inference, Fourth Interna-
tional Colloquium ICGI-98, Ames, Iowa, July 1998, published by Springer-
Verlag.

[74] Langley, Pat, Elements of Machine Learning, Morgan Kaufmann Publishers,
1996.

[75] Lawrence S., Giles, L., Chung Tsoi, A., What Size Neural Network Gives Opti-
mal Generalization - Convergence Properties of Backpropagation, Technical Re-
port, UMIACS-TR-96-22 and CS-TR-3617, Institute for Advanced Computer
Studies, University of Maryland, College Park, MD 20742, 1996.

[76] Lee, Lilian, Learning of Context-Free Languages: A Survey of the Literature,
Technical Report TR-12-96, Center for Research in Computing Technology,
Harvard University, 1996.

[77] Levensthein, V.I., Binary Codes Capable of Correcting Deletions, Insertions,
and Reversals, Dok. Akad. Nauk. USSR, vol. 163, pp. 845-848, 1965.

[78] Li, Ming, and Vitanyi, Paul, An Introduction to Kolmogorov Complexity and
Its Applications, Second Edition, Springer, 1997.

304

[79] Lothaire, M., Combinatorics on Words, Cambridge University Press, 1983.

[80] MacNaughton, R., et al, Church-Rosser Thue Systems and Formal Languages,
Journal of the ACM, vol. 35, pp. 324-344, 1998.

[81] McNaughton, R., Narendran, P., and Otto, F., Church-Rosser Thue Systems
and Formal Languages, Journal of the ACM, Vol. 35, No. 2, pp. 324-344, April
1988.

[82] McCreight, E.M., A Space-economical Suffix Tree Construction Algorithm,
Journal of the ACM, vol. 23, No. 2, pp. 262-272, 1976.

[83] Michalski, Ryszard et al, Machine Learning and Data Mining Methods and
Applications, John Wiley and Sons Ltd, 1998.

[84] Minsky, Marvin. L., and Papert, Seymour, Perceptrons, expanded edition, MIT
Press, Cambridge, MA, 1988.

[85] Michalski, R., Carbonel, J., Mitchell, T., (eds) Machine Learning - An Artificial
Intelligence Approach, Morgan Kaufmann Publishers Inc., 1983.

[86] Miclet, L., and de Gentile, C., Inférence Grammaticale à partir d’Exemples et
de Contre-Exemples : deux Algorithmes Optimaux (BIG et RIG) et une Version
Heuristique (BRIG), Actes des JFA-94, Strasbourg, France, pp. F1-F13, 1994.

[87] Miclet, L., Grammatical Inference in Bunke, H. and Sanfeliu, A., (eds) Syn-
tactic and Structural Pattern Recognition - Theory and Applications, World
Scientific series in Computer Science, Vol. 7, 1990.

[88] Mitchell, Tom M., Machine Learning, McGraw-Hill, 1997.

[89] Mitchell, Tom M., Generalization as Search, Artificial Intelligence, Vol. 18, pp.
203-226, 1982.

[90] Natarajan, Balas, Machine Learning A Theoretical Approach, Morgan Kauf-
mann Publishers, 1991.

[91] Needleman, S.B., and Wunsch, C.D., A General Method Applicable to the
Search for Similarities in the Amino Acid Sequence of Two Proteins, J. Mol.
Biology, 48, pp. 443-453, 1970.

[92] Nigam, Sandeep, Metric Model Based Generalization and The Generalization
Capabilities of Connectionist Models, Masters Thesis, Faculty of Computer Sci-
ence, University of New Brunswick, Canada, 1992.

[93] Nilsson, N. J., Artificial Intelligence: A New Synthesis, Morgan Kauffmann,
San Francisco, 1998.

305

[94] Oliveira, A., and Silva, J., Efficient Search Techniques for the Inference of Min-
imum Size Finite Automata, Workshop on Automata Induction, Grammatical
Inference, and Language Acquisition The Fourteenth International Conference
on Machine Learning (ICML-97), Nashville, Tennessee, July, 1997.

[95] Oommen, B.J., and loke, R.K.S., Pattern Recognition of Strings with Substitu-
tions, Insertions, Deletions, and Generalized Transpostions, Pettern Recogni-
tion, vol. 30, No. 5, pp. 789-800, 1997.

[96] Peterson, J.L., Computer Programs for Testing and Correcting Spelling Errors,
Comm. ACM, vol. 23, pp. 676-687, December 1980.

[97] Pitt, L., Inductive Inference, DFA’s, and Computational Complexity, Lecture
Notes in Artificial Intelligence, K. P. Jankte (editor), No. 397, Springer-Verlag,
Berlin, pp. 18-44, 1989.

[98] Pitt, L., and Warmuth, M., The Minimum Consistent DFA Problem Cannot
be Approximated Within Any Polynomial, Tech. Report UIUCDCS-R-89, Uni-
versity of Illinois, 1989.

[99] Quinlan, J. R., Induction of Decision Trees, Machine Learning, Vol. 1, pp.
81-106, 1986.

[100] Randall Wilson, D., and Martinez, Tony R., Bias and the Probability of Gen-
eralization, in Proceedings of the International Conference on Intelligent Infor-
mation Systems (IIS‘97), pp. 108-114, 1997.

[101] Reverz, G. E., Introduction to Formal Languuges, McGraw-Hill, New York,
1982.

[102] Rosch, Eleanor, H., On the Internal of Perceptual and Semantic Categories, in
Timothy E. Morre, ed., cognitive Development and the Acquisition of Language,
Academic Press, 1973.

[103] Ron, Dana, Automata Learning its Applications, Ph.D. Dissertation, Hebrew
University, 1995.

[104] Sakakibara, Y., Recent Advances in Grammatical Inference, Theoretical Com-
puter Science, 185, pp. 15-45, 1997.

[105] Sakoe, H., and Chiba, S., Continuous Word Recognition Based on Time Nor-
malization Technique Using Dynamic Programming, J. Acoustics Soc. Japan
(in Japanese), vol. 29, pp. 483-490, 1971.

[106] Sankoff, David and Kruskall, Joseph, Time Warps, String Edits, And Macro-
molecules, Addison-Wesley, London, 1983.

306

[107] Santoso, W. B., A Learning Algorithm for the Reconfigurable Learning Machine,
Master’s thesis, University of New Brunswick, 1992.

[108] Schalkoff, R., Pattern Recognition - Statistical, Structural, and Neural Ap-
proaches, John Wiley and Sons, Inc., 1992.

[109] Sellers, P.H., The Theory and Computation of Evolutionary Distances: Pattern
Recognition, J. Algorithms, 1, pp. 359-373, 1980.

[110] Senizergues, G., The Equivalence and Inclusion Problems for NTS Languages,
Journal of Computer and System Sciences, Vol. 31, pp. 303-331, 1985.

[111] Simon, H. A., Why Should Machines Learn?, In R. S. Michalski, J.G. Car-
bonell, and T. Mitchell, editors, Machine Learning: An Artificial Intelligence
Approach. Chapter 2, Tioga Publishing Co., 1983.

[112] Sloman, Steven A., and Rips, Lance J., Similarity and Symbols in Human
Thinking, MIT Press / Elsvier, 1998.

[113] Stender, J., and Addis, T., (eds.) Symbols versus Neurons, IOS Press, Amster-
dam, 1990.

[114] Stephen, Graham A., String Searching Algorithms, Lecture Notes in Comput-
ing, vol. 3, World Scientific, 1994.

[115] Sudkamp, Thomas, Languages and Machines, Addison Wesley Longman, 1997.

[116] Tanaka, E., Parsing and Error Correcting for String Grammars in Bunke, H.
and Sanfeliu, A., (eds) Syntactic and Structural Pattern Recognition - Theory
and Applications, World Scientific series in Computer Science, Vol. 7, 1990.

[117] Tanaka, E., Theoretical Aspects of Syntactic Pattern Recognition, Pattern
Recognition, Vol. 28, No. 7, pp. 1053-1061, 1995.

[118] Thornton, Christopher J., Techniques in Computational Learning Algorithms,
Chapman & Hall Computing, 1992.

[119] Thornton, Chris, Re-presenting Representation, Cognitive and Computing Sci-
ences, University of Sussex, Brighton, UK, 1994.

[120] Thornton, Chris, Parity: The Problem that Won’t Go Away, Cognitive and
Computing Sciences, University of Sussex, Brighton, UK, 1995.

[121] Thornton, Chris, There is No Free Lunch but the Starter is Cheap: Generali-
sation from First Principles, Cognitive and Computing Sciences, University of
Sussex, Brighton, UK, 1999.

307

[122] Thrun, Sebastian, et al, The Monk’s Problems: A performance Comparison of
Different Learning Algorithms, Carnegie Mellon University, CMU-CS-91-197,
December 1991.

[123] Thue, A., Probleme über Veränderungen von Zeichenreihen nach gegbenen
Regeln, Skr. Vid. Kristania, I Mat. Natuv. Klasse, No. 10, 1914.

[124] Tichy, W.F., The String-to-String Correction Problem with Block Moves, ACM
Transactions on Computer Systems, vol. 2, No. 4, pp. 309-321, November 1984.

[125] Tomita, M, Dynamic Construction of Finite Automata From Examples Using
Hill Climbing, Proc. of the 4th Annual Cognitive Science Conference, USA, pp.
105- 108, 1982.

[126] Tou, J.T. and Gonzalez, R.C., Pattern Recognition Principles, Addison-Wesley,
1974.

[127] Trakhtenbrot, B. and Brazdin Y., Finite Automata: Behaviour and Synthesis,
North Holland Pub. Co., Amsterdam, The Netherlands, 1973.

[128] Ukkonen, E., Constructing Suffix Trees On-line in Linear Time, in Leeuwen, J
van. (ed), Algorithms, Software, Architecture: Information Processing 92, vol.
1, pp 484-492, Elsevier, Amsterdam, 1992.

[129] Ukkonen, E., On-line Construction of Suffix Trees, Report A-1993-1, Depart-
ment of Computer Science, University of Helsinki, Finland, ISBN 951-45-6384-
0, February 1993.

[130] Van Mechelen, Iven et al, Categories and Concepts, Theoretical Views and
Inductive Data Analysis, Academic Press, 1993.

[131] Verma, R., and Goldfarb, L., A Metric Approach to Isolated Word Recognition,
The Fourth UNB Artificial Intelligence Symposium, Lev Goldfarb and Bradford
G. Nickerson, editors, pp. 169-182, September 20-21, 1991.

[132] Vidal, E., Grammatical Inference: An Introductory Survey, in Carrasco, R.,
and Oncina, J., (eds), Grammatical Inference and Applications, Second Inter-
national Colloquium, ICGI-94, Alicante, Spain, September 1994, published by
Springer-Verlag.

[133] von Helmholtz, H., The Origin and Correct Interpretation of our Sense Impres-
sions, in Selected Writings of Hermann von Helmholtz, R. Kahl, (ed.), Wesleyan
University Press, 1971.

[134] von Neumann, John, The Computer and the Brain, Yale University Press,
1958.

308

[135] Wagner, R.A., and Fischer M.J., The String-to-String Correction Problem,
Journal of the ACM, vol. 21, pp. 168-173, 1974.

[136] Warmuth, Manfred K., Towards Representational Independence in PAC Learn-
ing, In K.P. Janke editor, International Workshop: Analogical and Inductive
Inference, GDR, pp. 78-103, Lecture Notes in Artificial Intelligence (lncs) 397,
Springer-Verlag, New York, 1989.

[137] Watanabe, Satosi, Pattern Recognition: Human and Mechanical, Wiley Inter-
science, 1985.

[138] Weiner, P., Linear Pattern Matching Algorithm, in Proceedings of the 14th
IEEE Symposium on Switching and Automata Theory, pp. 1-11, 1973.

[139] Wolpert, D., and Macready, W., No Free Lunch Theorems for Search, Unpub-
lished MS, 1995.

309

Appendix A

Using Valletta

Valletta was developed under Microsoft Windows 2000� and written in the Power-

BASIC Console Compiler� (PBCC). PBCC is a dialect of BASIC that was designed

for very fast server-based web applications that run under Windows NT/2000. It

is produces only text (or console) mode applications and therefore does not have

any GUI overhead. PBCC also has the advantage that it incorporates some very

efficient string processing routines written in assembly language. In some tests we

performed it was nearly always faster than the best C compilers. In addition, PBCC

supports multi-threading, has in-built array sorting and searching, and produces only

optimized 32-bit code. PBCC was perfect for implementing Valletta. Valletta, the

program, is a ‘no-frills’ design but is still very user-friendly and easy-to-use. Valletta

consists of just one single executable of just 100K in spite of the fact that the whole

program required well over 5,500 lines of code. Running the program requires only

loading and running the executable valletta.exe. When Valletta loads it asks the user

for the filename of the problem file. Valletta then does the rest. During learning,

Valletta automatically displays and updates a number of values that allow the user

to monitor the progress of the learning process (see Figure A.1). These inlcude the

values of f , f1, and f2 as well as search tree statistics.

310

Figure A.1: The screen dump of Valletta during the learning process.

The problem file must have a filename that contains up to 8 characters and must

have the extension “.val”. The problem file contains the alphabet, the operating

mode, the name of the inductive bias parameters file, and the type of search to be

used by the Valletta’s search engine. The composition and structure of the problem

file is described at the end of this appendix.

311

The C+ and C− training set files must be prepared by the user before invoking

Valletta and must have the same filename as the problem file but must have the

extensions “.cp” and “.cm” respectively. Each file is a conventional ASCII text file

containing the training strings with the carriage return code used as a delimiter - i.e.

one string per line. The only other required file is file that contains the set of all non-

overlapping substrings in C+. This file have the same filename as the problem file but

with the extension “.rep”. The user would typically first create the training set files

and then invoke the GAST program, gast.exe, in order to create the “.rep” file. The

GAST program accepts as input a “.cp” file, constructs the global augmented suffix

trie, and then finds all the non-overlapping repeated substrings. These are written

to the “.rep” file. When this task is completed, Valletta can be invoked, the program

file filename is entered, and learning can proceed.

The problem file consists of a simple ASCII text file that contains the following

lines:

alphabet This is a string that contains the alphabet of symbols in lexicographical

order. Note that Valletta checks the training sets to ensure that the strings

contain only valid symbols.

bias The is the name of the inductive bias parameters file but without the .inb

extension.

mode This parameter is a positive integer in the range 1 to 3 and specifying the

operating mode. There are 3 distinct operating modes:

• 0 for Fast Mode. In this mode Valletta operates in the fastest possible

manner.

• 1 for Verbose Mode. In this mode Valletta generates more screen output

and writes logs.

312

• 2 for Debug Mode 1. In this mode Valletta as above but creates files

containing the normal forms of all strings in C+.

• 3 for Debug Mode 2. As above but also creates text file containing a trace

of the computation of the f function, the interdistance matrices, etc. Used

for debugging.

search type This is an integer that stores the type of search technique to be used

by Valletta.

• 0 for distance-directed ETS search.

• 1 for search using the Darwin Genetic Algorithm (GA) search engine.

• 2 for a step-by-step ETS search - i.e the program pauses after step to

allow the user to check the screen display. Used for debugging.

After the user enters the problem file filename, Valletta loads the C+ and the C−

training files and checks their validity. It then loads the file containing the repeated

substrings of C+ and builds the search lattice. It then pauses for user input. When

the user presses any key the learning process commences.

It is not usually practical to store the training set files in the same directory

as Valletta. For this reason Valletta loads the path for the training set files and

the inductive bias files from the valletta.ini file. This file is an ASCII text file that

contains just one string - the path to the training set files, the bias files, and the log

files. The log files are created during the learning process and contain a ‘trace’ of the

learning process.

The composition and structure of the inductive bias parameters file is described

in Appendix B.

313

Appendix B

Valletta ’s Inductive Bias

Parameters

Valletta’s inductive bias parameters are loaded from the file problem.inb. This files

is a standard ASCII text file and contains the following parameters:

distance function This is an string value used to specify the type of distance func-

tion used for F2 computation.

evd01 This is standard EvD distance. It does not perform feature repair.

evd02 This is EvD distance with feature repair.

MaxKerLen This is the maximum length any kernel of a TS description discovered

by VALLETTA.

MinFLen The is the minimum length of a feature in a TS description discov-

ered/considered by VALLETTA. Only features with length equal to or greater

than MinFLen will be considered

FTH This is a positive real number and represent the f function threshold. Learning

stops when this value is exceeded.

314

F2TH This is a positive real number and represent the f2 function threshold. The

target TS description must return a value of f2 that is less than this threshold.

ø O This is a real number in the interval (0, 1]. This value is multiplied by |C+| to

obtain MKO, the minimum number of times a kernel can occur in C+.

χ Chi This is a real number in the interval (0, 1]. This value is multiplied by |C+|

to obtain MKN, the maximum number of kernels in the target TS description.

α Alpha This is a real number in the interval (0, 1]. This value is passed as a

parameter to the Sα function which is used to control kernel selection. See

Chapter 5.

β Beta This is a real number in the interval (0, 1]. This value is passed as a param-

eter to the Sβ function which is used to control kernel selection. See Chapter

5.

π Pi This is a positive integer in the range 2-12. It is passed as a parameter to the

Sα and Sβ functions which are used to control kernel selection. See Chapter 5.

µ Mu This is a positive integer in the range 2-32. It is passed as a parameter to the

Sα and Sβ functions which are used to control kernel selection. See Chapter 5.

MFN . This is a real number in the interval [0, 1] and represents the maximum

amount of noise allowed in a feature. This value is used for feature repair.

Notes:

The above parameters are used to specify Valletta’s inductive preference bias and

also to define the requirements of the structural completeness of the training sets.

The value of MaxKerLen, MinFLen, ø, and χ are also used to define the structural

315

completeness requirements of C+. The other parameters are used to control the al-

gorithms inductive bias. The values of α and β can be changed by the user to give

preference to TS descriptions that minimize or maximize the number of features and

kernels.

316

Appendix C

Training Sets used to test Valletta

In this Appendix we list some of the datasets used to train Valletta.

bin01 Binary alphabet, medium sized training set (≈ 35), single kernel, no noise.

Kernel: 101 .

Features: 11 , 00 , and 010 .

Non-confluent.

bin01n Binary alphabet, medium sized training set (≈ 35), single kernel, 2% mis-

classification noise.

Kernel: 101 .

Features: 11 , 00 , and 010 .

Non-confluent.

bin02 Binary alphabet, large sized training set (> 64), single kernel, no noise.

Kernel: 101 .

Features: 11 , 00 , and 010 .

Non-confluent.

a301 Three-letter alphabet {a, b, c}, medium sized training set (≈ 45), one kernel,

317

no noise.

Kernel: abbcb.

Features: bab, abba, cacba, and bbcab.

Non-confluent.

a302 Three-letter alphabet {a, b, c}, medium sized training set (≈ 45), two kernels,

no noise.

Kernels: abbcb,cccbbc.

Features: bab, abba, and cacc.

Non-confluent.

a302n Three-letter alphabet {a, b, c}, medium sized training set (≈ 45), two kernels,

12% noise.

Kernels: abbcb,cccbbc.

Features: bab, abba, and cacc.

Non-confluent.

a701 Seven-letter alphabet {a, b, c, d, e, f, g}, medium-sized training set (≈ 40), two

kernels, no noise.

Kernels: gadcffb,acbcffgcbbe.

Features: bfg , gacd , acefb, fbacd , ggfcbd , cdfba, and acdeeegb.

Non-confluent.

a702 Seven-letter alphabet {a, b, c, d, e, f, g}, large training set (≈ 128), two kernels,

no noise.

Kernels: gadcffb,acbcffgcbbe.

Features: bfg , gacd , acefb, fbacd , ggfcbd , cdfba, and acdeeegb.

Non-confluent.

a703 Seven-letter alphabet {a, b, c, d, e, f, g}, small training set (≈ 24), two kernels,

318

no noise.

Kernels: gadcffb,acbcffgcbbe.

Features: bfg , gacd , acefb, fbacd , ggfcbd , cdfba, and acdeeegb.

Non-confluent.

a703n Seven-letter alphabet {a, b, c, d, e, f, g}, small training set (≈ 24), two kernels,

10% noise.

Kernels: gadcffb,acbcffgcbbe.

Features: bfg , gacd , acefb, fbacd , ggfcbd , cdfba, and acdeeegb.

Non-confluent.

a1101 Eleven-letter alphabet {a, b, c, d, e, f, g, h, i, j, k}, small training set (≈ 15),

three kernels, no noise.

Kernels: hgaidcfkfb, fkighbdafkfb, jahbcfikgcbde.

Features: aih, degai , acefb, bfjbace, cjkcbd , cdfba, and facdiikhgeeb.

Non-confluent.

a1101n Eleven-letter alphabet {a, b, c, d, e, f, g, h, i, j, k}, small training set (≈ 15),

three kernels, no noise.

Kernels: hgaidcfkfb, fkighbdafkfb, jahbcfikgcbde.

Features: aih, degai , acefb, bfjbace, cjkcbd , cdfba, and facdiikhgeeb.

Non-confluent.

In the datasets that follow, • denotes the end-of-string marker.

319

A301

Features bab, abba, bbcab, cacba
Kernel/s abbcb
Remarks Multiple kernel, medium training set, non-confluent, no noise.

C+ (14 strings, 5/55)
abbbbcabcbabbabba•
acacbcbbcb•
cacbcbbcabcacbccacbcabbaacacbcbabbbcabbabbcacbcabbabbcabbbcabbbababba

babbabbabcabbababbbcabbbcabbbabbbcababbaabbabbcabcacbcbbcab•
babbbcababbcabcacbcbabbcacbcbbcabbbcabcacbcbbbcabbbcabcbabbabbababbab

bbcabcacbc•bbcabbbcabcacbcababbbcacbcbabccacbcbbabcacbc•
abbaabbaaabbababcacbcbbbcabcacbcabbabbabbbcabbabcacbccbbcabbbbcababba

cacbcbabcacbc•
bbcababababbabbcabcacbcbabbcacbcbabbbcabbbcabbbbcabcacbccacbcbbcabbbc

abcbbcababbababbbcabbabbbbcababbabbcabcacbcbbcabcacbcbabbbcabcacbcb

bcab•
bbcabbababbaaabbacacbcabbabbbcabcacbcbabbababbababbaccacbcbbcabcacbcb

bcabbcacbcbbcabcacbcabbabbcabcacbcbbcab•
acacbccacbcbbbcabbcbababbabbababba•
acacbcabbabbabbbcabbabcacbcbabbaabbacacbcbbcabcacbccabbaabbacacbcbbab

babbabcacbcbbcabbabcacbcbab•
bbcabcacbccacbcababbabbcabbabbacacbccbabcacbcbcacbcbabbabbbcabbab•
cacbcbabbbcabcacbcaabbababbababbabbbcabcacbcbabbabbcabbbcabbbcabbabcb

abbabbbcababbababbaabbaabbacacbcabbaabbaabbabab•
abbabbcb•
bbcabbbcabaabbababbabbabbabcabbabbcabbcacbc•
abbcb•
aabbacacbcbbcabbabbaabbabbcabbcacbcbbcabcacbccabbabababbababbcacbcbbc

abcacbcbabcacbc•
cacbccacbccacbcacacbcbbababbabbcabbcacbcabbaabbacbbcabbbcabbbcabbabbc

acbccacbcbabcacbcabba•
bbcababbacacbcabbaacacbcabbacacbcbbabcacbcbbcabbbababbabbcabbabcbabba

bbbcabbabbbabbbcabbbcabbbcabcacbccacbcabbaabbabbcabbab•
cacbcabbaaabbabbcabbbbbcababbababcabbabbababbabbcabbab•
bbcabbbcababbaabbabbabbabbcabbbcababbacbcacbccacbcbabbababba•
cacbcababbabcacbcabbaccacbcbbabcacbc•
abbaababbbabbbcabbbabcacbccbbcabbbcabbbbcababbababbabbbcab•
abbabababbabababbcabcacbccacbcbbbcabcacbcbabbabbaabbabbcabcacbccbbcab

bbcabbabbcacbcbbcabbabbabcacbcbab•
bababbaabbacacbccacbcacacbcbbcababbababbabababbabbbcabbbcabbbcabccacb

320

cbababbabbabbbcababbabbcababbacacbc•
cacbcbbcabcacbcacacbccacbcbababbabbababbababbbabcacbcabbacacbcccacbcb

bcabcacbcbbbcabcacbcbabbbcabcacbcbbcabbab•
babcacbcabbaabbcabbababbababbbcabbabbaabbabbcabbabcacbcbbabcbabbbcabc

acbcabbacacbcbbbcabbbcababbababcacbc•
bababbabbcabcacbcabbcabbbcabbbcabbabbcacbcbcacbcbababbacacbccbababbab

bcabbcacbccacbcbbcababbabbcabbab•
abbababbbcababbcababbababbbbcababbabbabcacbccacbcccacbccacbcabbababba

cacbc•
babcacbcabbacacbcabbaacacbcbabcacbcbabbbbcabbbcabcacbcbabbabbcabcbbca

bbabbbcabbbcabbcacbcbabcacbcbabbabbabbbcabbbcab•

C- (15 strings, Min/Max Length 34/66)
bcbbbcccbcbbccbbcacacacccabbccabccbbbabbba•
cccabbcacbcaaacabcccbccbccbbabcbac•
abbbaabccaabcbcaccabccacacabbcccabaabcaabaaaacbcaabccabbccbbcaccbc•
aabbbbaaccbacbcaaacabbbbcbcacaaaaabbbabcacabccbacbbcbbcbcbca•
cabaacbaaacaacbccbcabacacaaaaccccaccccaccaaacbcbabbabbbcacacaabaa•
bbaacbacaacabaaaaacbabbbaaacbabbbabbacabcaacaccaacac•
baacaccbbbaabbcabbaaaaccaacbbbcabccabacacaccbbcccaaabacccbc•
bbbaabacacbcaabbbaaaaacacacbccbaabbcc•
accaabbabccbbcbbcaabaacaaaaaccaaaacaaaacbccaaca•
abcaccccabbbbbcacaaabcabccacbbaacaacabbacabaccbba•
babbcbcccacaaccbabcbccabcabcacaccaaaccaacccbaabaaab•
cabbabbbabccabbcbcccaacacabaacaccc•
ccacabacabbcabbbacccccabccaabcbcabbaaaaaacabacbacbaaacabbbcc•
acbbaccbccaaaabccababacbbccbcaaaccbbbbbbabcabbbc•
cbbaabaacaaaaaacbbccaabbaabababbbbccccbccac•

321

A302

Features bab, abba, cacc
Kernel/s abbcb, cccbbc
Remarks Multiple kernel, small training set, non-confluent, no noise.

C+ (14 strings, 5/55)
ababbababbaccaccb•
abbcb•
babababbabbabccaccbabba•
caccabbaacaccbbabbabbababccacccaccbabbacacccacc•
abbcabbab•
caccabcaccbcb•
abbabbcb•
caccbabccabbaccaccbabbababbacbabcaccabba•
bababbacbabccabbabbabbaccaccbabbab•
abbacaccccacccacccbabcabbababbbabbabbcaccabbacabbacacc•
babcabbaccbabbababbacbab•
babcacccabbababccaccccacccaccbbabbabbccaccabbabababba•
babccaccbabccaccbabcabbaabbababbacaccbabbaabbaccacccacc•
caccccacccabbaabbacabbabbabcaccbabbacaccccacccacccacc•
C- (15 strings, Min/Max Length 34/66)
bcbbbcccbcbbccbbcacacacccabbccabccbbbabbba•
cccabbcacbcaaacabcccbccbccbbabcbac•
abbbaabccaabcbcaccabccacacabbcccabaabcaabaaaacbcaabccabbccbbcaccbc•
aabbbbaaccbacbcaaacabbbbcbcacaaaaabbbabcacabccbacbbcbbcbcbca•
cabaacbaaacaacbccbcabacacaaaaccccaccccaccaaacbcbabbabbbcacacaabaa•
bbaacbacaacabaaaaacbabbbaaacbabbbabbacabcaacaccaacac•
baacaccbbbaabbcabbaaaaccaacbbbcabccabacacaccbbcccaaabacccbc•
bbbaabacacbcaabbbaaaaacacacbccbaabbcc•
accaabbabccbbcbbcaabaacaaaaaccaaaacaaaacbccaaca•
abcaccccabbbbbcacaaabcabccacbbaacaacabbacabaccbba•
babbcbcccacaaccbabcbccabcabcacaccaaaccaacccbaabaaab•
cabbabbbabccabbcbcccaacacabaacaccc•
ccacabacabbcabbbacccccabccaabcbcabbaaaaaacabacbacbaaacabbbcc•
acbbaccbccaaaabccababacbbccbcaaaccbbbbbbabcabbbc•
cbbaabaacaaaaaacbbccaabbaabababbbbccccbccac•

322

Appendix D

GI Benchmarks

The following are some public training samples for grammatical inference. The list

was compiled by Pierre Dupont and is available at the Homepage of the Grammatical

Inference Community (see Appendix F) and the Gowachin Competition web-site (see

Appendix E). The training samples for these languages are available at these sites.

The first set of 7 benchmarks was proposed by M. Tomita in [125]. All examples are

over a two-letter alphabet and the size of the target DFAs ranges from 1 to 4. Notice

that L1 and L2 are kernel languages.

L1 a∗.

L2 (ab)∗.

L3 any sentence without an odd number of consecutive a’s after an odd number of

consecutive b’s.

L4 any sentence over the alphabet {a, b} without more than two consecutive a’s.

L5 any sentence with an even number of a’s and an even number of b’s.

L6 any sentence such that the number of a’s differs from the number of b’s by 0

modulo 3.

323

L7 a∗b∗a∗b∗.

A second set of 7 languages was compiled by L. Miclet and C. de Gentille [86]

and by P. Dupont [28]. This set contains languages over a three-letter alphabet. The

data was generated by random walks in the canonical DFA for each language and

its compliment. For each language, 20 training sets were generated as just described

and the resulting samples range in size from 1 to 156 strings. whereas their length

varies from 1 to 1017 characters.

L8 a∗b.

L9 (a∗ + c∗)b.

L10 (aa)∗(bbb)∗.

L11 any sentence with an even number of a’s and an odd number of b’s.

L12 a(aa)∗b.

L13 any sentence over the alphabet {a, b} with an even number of a’s.

L14 (aa)∗ba∗.

L15 bc∗b + ac∗a.

Another benchmark was proposed by A. Oliveira and J. Silva. This benchmark

was developed in order to test the BIC algorithm [94]. The benchmark consists of

115 randomly generated DFAs whose size, after minimization, is between 3 and 19

states. A total of 575 training sets were generated, with each training set containing

twenty strings with the length of each string being exactly 30 characters. Finally,

the reader is referred to the Abbadingo and Gowachin regular-language inference

competitions (see Appendix E). The web-sites for these competitions includes links

to some training datasets (languages over a 2-letter alphabet only).

324

Appendix E

GI Competitions

E.1 The Abbadingo One Learning Competition

In 1996, Babak Pearlmutter and Kevin Lang posted a set of challenging DFA learn-

ing problems designed to allow researchers to test their favourite learning algorithms.

This benchmark was formulated in the form of the Abbadingo One Learning Compe-

tition. The datasets were artificially generated (i.e., the target DFAs were randomly

generated). The Abbadingo competition evoked significant interest and several peo-

ple from all over the world participated in the competition. The eventual winners

came up with algorithms that were significant improvements over the existing meth-

ods for learning DFAs. The competition is now over but one can still download the

challenge problems. The Abbadingo homepage contains a number of articles on Ab-

badingo One as well as links to paper that describe the winning algorithms. The

Abbadingo One homepage is located at:

http://abbadingo.cs.unm.edu/.

325

E.2 The Gowachin DFA Learning Competition

Following the success of Abbadingo One, Kevin Lang, Babak Pearlmutter, and Fra-

nois Coste teamed up to launch the Gowachin Learning Competition. In this compe-

tition, users are allowed to generate their own problem (by specifying the size of the

target DFA, the number of training examples, and the noise level). The Gowachin

homepage is located at:

http://www.irisa.fr/Gowachin/.

326

Appendix F

Internet Resources

F.1 Grammatical Inference Homepage

The semi-official Homepage of the Grammatical Inference Community is located at:

http://www.univ-st-etienne.fr/eurise/gi/gi.html.

The website is maintained by Colin de la Higuera, Email: cdlh@univ-st-etienne.fr,

and contains tutorials, links to data and program repositories, conference announce-

ments and links, links to homepages of researchers in the GI community, a list of

publications and technical reports, and links to journals and books.

F.2 The pseudocode LATEX environment

All the algorithm pseudocode in this thesis was formatted using the excellent pseu-

docode LATEX environment created by D.L. Kreher of the Department of Mathematical

Sciences, Michigan Technological University, Houghton, Michingan and D.R. Stinson

of the Department of Combinatorics and Optimization of the University of Waterloo,

Waterloo, Ontario. The package is easy to use, produces an easy-to-read Pascal-like

syntax and is easily customizable.

327

The style file pseudocode.sty, together with other required files and documentation

can be downloaded from the following WWW site:

http://www.math.mtu.edu/ kreher.

328

Appendix G

The Number of Normal Forms of a

String

If a set of features induces a confluent string rewriting system we are guaranteed to

have only one normal form per string. If, on the other hard, the set of features is

non-confluent then each string can have many normal forms. In some pathological

cases the number of normal forms can be super-polynomial in the length of the string.

In fact, the number of normal forms of a string (modulo a given set of features) is

bound from above by a function that is exponential in the length of the string. This

is because the number of ways in which the features can be deleted from a string

is equal to the number of paths (from the start node to the end node) in the parse

graph of the string. This can happen with a set of features that overlap with each

other. The number of paths between the start node and the end node of the parse

graph can be exponential in the number of nodes and hence the length of the string.

In practice, the number of unique normal forms is usually much smaller since many

paths yield the same normal form. Consider the string 000 and the feature 00. The

feature can be deleted from this string in two different ways, i.e. 0A and A0 where

A = 00. In each case the normal form is the same, i.e. 0. The fact that the number

329

of unique normal forms is usually much smaller than the number of paths in the

parse graph leads the author to feel that it may be possible to develop an efficient

algorithm that will extract all the unique normal forms from the parse graph without

considering all possible paths. As described in Chapter 6, a number of heuristics

Edit Tree for ababababa
Y

bXbaFeatures

aba
bab

X
Y

a b a b a b a b a $S

�

X

baYa

Xba

aYa

abX

Ya

bX

X

aY

abX

X

aY

abX

Y X

bXba

baYa

Xba

aYa

abX

Ya

bX

Parse Graph for ababababa

Normal Forms

X--Y--X--

X--bX--ba

X--baY--a

aY--X--ba

aY--aY--a

aY--abX--

abX--Y--a

abX--bX--

�

bba

baa

aba

aaa

aab

aba

abb

Figure G.1: The reduction of the string ababababa modulo the feature set {aba, bab}.

were used in Valletta in order to speed up the search for the unique normal forms

but the author feels that faster algorithms are possible.

330

It was observed that in certain cases, in particular when considering strings over

two-symbol alphabets, the number of unique normal forms would approximate the

total number of paths in the parse graph. A relatively short string (50-80 characters)

would then have quite literally thousands of normal forms.

Consider the set of features {aba, bab} and strings in (ab)+a. The features aba

and bab overlap with themselves and with each other. This feature set is therefore

strongly non-confluent. In fact, it has a τ number (see Page 126) of 1.0 which is the

highest possible. Figure G.1 shows the parse graph and the edit tree for a string in

(ab)+a. Note that, in this example, every path in the parse graph yields a unique nor-

mal from and the number of unique normals forms is therefore equal to the number

of paths in the parse graph. A test on the string (ab)25a (51 character long) yielded

476,763 unique normal forms.

Consider also the set of features {ab, bc} and the string s = abck for some positive

integer k1. Note that for each occurrence of abc in s, one can either delete an ab or

a bc. This means that the number of normal forms is equal to the number of strings

in {a, c}k which is exponential in k and therefore in the length of the string.

1Special thanks to Prof. J. Horton

331

Appendix H

Kernel Selection is NP-Hard

H.1 The Kernel Selection Problem

The strings in a kernel languages are generated from a finite set of kernels and a finite

set of features by inserting, anywhere, in any order, and any number of times, the

features in the kernels. This suggests that if one deletes the features from a given set

of strings, what remain are the original kernels. This is only true if the set of features

induces a confluent string rewriting system. If the set of features is non-confluent

there then might be more than one way of deleting the features. This means that

each string can have many normal forms of which one must be the kernel. The kernel

selection problem (KS) is the task for finding the original kernels from the sets of

normal forms of each string.

Suppose we have a set T of 5 training strings labelled 1, 2, 3, 4, 5 and a set

of features F . Suppose also that the normal forms (modulo F) of the string 1 are

{a, b, c} where a, b, and c are strings (not symbols). Likewise, let us suppose that

the normal forms of string 2 are {c, b, e}, of string 3 {f, a, d}, of string 4 {c, b, d}, and

those of string 5 are {d, e, a}. Notice that some strings share normal forms. The set

of normal forms N is therefore {a, b, c, d, e, f}.

332

In general, when learning kernel languages, we assume that the number of kernels

in the target language is much smaller than the number of training strings. A learning

algorithm therefore may (depending on its inductive bias) try to find a kernel language

description of the training set that minimizes the number of kernels. We therefore

have to try to find a minimal set of kernels (i.e. normal forms) such that each string

is reduced, modulo F, to one of these kernels. In the above example, a minimal

set of kernels is {a, c}. Another is {b, d}. Every instance of the kernel selection

problem is therefore an instance of the minimum hitting set (MHS) problem which

is provably NP-Hard. This, however, is not enough to show that kernel selection is

NP-Hard — only that kernel selection is a subproblem of MHS. To show that KS is

NP-Hard we use polynomial-time transformation from a known NP-Hard problem —

Minimum Vertex Cover (MVC). In other words we show that if we have a subroutine

to solve the KS problem we can also use this subroutine to solve the MVC problem

and if our subroutine runs in polynomial time then MVC would then also have a

polynomial-time solution.

H.2 Transformation from MVC

For any instance of MVC we transform the instance to KS as follows1. Given a graph

G = (V,E) we construct our instance of KS by creating a string axb for every edge

(a, b) ∈ E. The strings so formed will be our C+ training set. For the alphabet we

shall use the vertex labels and a special symbol x. We construct the features by tak-

ing all strings of the form ax and xa for any a ∈ V . Each string axb, corresponding

to the edge (a, b) can then be reduced in two ways: by removing ax to obtain the

normal form b or by removing xb to obtain the normal form a. The normal forms are

then the vertex labels of G. The problem of kernel selection is then equivalent to that

1Special thanks to Prof. J. Horton

333

MVC since if we obtain a minimum set of normal forms that ’cover’ every string we

get also a minimum set of vertices that cover every edge. Clearly the transformation

can be done in polynomial time.

b

d

c

a

e

f Strings

axb

axc

axd

exd

exf

dxf

Features

ax

xa

bx

xb

cx

xc

dx

xd

ex

xe

fx

xf

Normal Forms

axb

axc

axd

exd

exf

dxf

:

:

:

:

:

:

a, b

a, c

a, d

e, d

e, f

d, f

Figure H.1: How to transform Minimum Vertex Cover to Kernel Selection.

Figure H.1 shows an example of how the transformation is done. In this example

G = (V,E) where V = {a, b, c, d, e, f} and E = {(a, b), (a, c), (a, d), (d, e), (d, f), (e, f)}.

Note that the set of normal forms {a, d, e} which are a minimal kernel set for the

strings in the training set also represent a minimum vertex cover for G.

334

Appendix I

Trace of GLD Computation

Generalized Levensthein Distance or GLD is the string edit distance algorithm that

was used by Nigam [92] for the GSN ETS inductive learning algorithm. In this

appendix we have included a trace of the GLD algorithm as it computes the distance

between the strings aba and abbba. The edit-operations transformations are shown

below followed by the match matrices (see Chapter 4). The particular example is

interesting because, although GLD computes the distance correctly, it shows the

problem of using GLD for the description of kernel languages. If aa, bb, and aba

are features of the kernel language that has ε, the empty string, as a kernel then

aba belongs to the language but abbba does not since the latter string is obtained

by inserting a feature inside another feature. Since abbba does not belong to the

language then the distance to aba, which is in the language, should be greater than

zero. In our case GLD returned a distance of 0 between the two strings. An analysis

of the trace reveals that this happens because GLD performs what we call deletion

with concatenation, i.e. when the feature is deleted the two remaining parts of the

strings are joined together. The EvD distance algorithm (Chapter 3) avoids this

problem by using θ-reduction.

335

Trace of GLD Computation

Operations Weights

a 0.5

b 0.5

aa 0.0

bb 0.0

aba 0.0

String 1 : aba

String 2 : abbba

MATCH matrix for string 1 : aba

1 a 1 0 3 0 0 0 0 0 0 0

2 b 0 2 0 0 0 0 0 0 0 0

3 aa 0 0 0 0 0 0 0 0 0 0

4 bb 0 0 0 0 0 0 0 0 0 0

5 aba 0 0 1 0 0 0 0 0 0 0

MATCH matrix for string 2 : abbba

1 a 1 0 0 0 5 0 0 0 0 0

2 b 0 2 3 4 0 0 0 0 0 0

3 aa 0 0 0 0 0 0 0 0 0 0

4 bb 0 0 2 3 0 0 0 0 0 0

5 aba 0 0 0 0 0 0 0 0 0 0

Computing Generalized Distance for aba and abbba

Row 1 Col 1

S2(1) Op(1)=a with Wgt= 0.50

Copying from DM(1 0)= 0.50

Therefore W = 1.00 New v is 1.00

S1(1) Op(1)=a with Wgt= 0.50

Copying from DM(0 1)= 0.50

Therefore W = 1.00 New v is 1.00

Op1 is 1=a Op2 is 1=a

Copying from DM(0 0)= 0.00

Therefore W = 0.00 New v is 0.00

Row 2 Col 1

S2(2) Op(2)=b with Wgt= 0.50

Copying from DM(1 1)= 0.00

336

Therefore W = 0.50 New v is 0.50

S1(1) Op(1)=a with Wgt= 0.50

Copying from DM(0 2)= 1.00

Therefore W = 1.50 New v is 0.50

Op1 is 1=a Op2 is 2=b

Copying from DM(0 1)= 0.50

Therefore W = 100.49 New v is 0.50

Row 3 Col 1

S2(3) Op(2)=b with Wgt= 0.50

Copying from DM(1 2)= 0.50

Therefore W = 1.00 New v is 1.00

S2(3) Op(4)=bb with Wgt= 0.00

Copying from DM(1 1)= 0.00

Therefore W = 0.00 New v is 0.00

S1(1) Op(1)=a with Wgt= 0.50

Copying from DM(0 3)= 0.50

Therefore W = 1.00 New v is 0.00

Op1 is 1=a Op2 is 2=b

Copying from DM(0 2)= 1.00

Therefore W = 100.99 New v is 0.00

Op1 is 1=a Op2 is 4=bb

Copying from DM(0 1)= 0.50

Therefore W = 100.49 New v is 0.00

Row 4 Col 1

S2(4) Op(2)=b with Wgt= 0.50

Copying from DM(1 3)= 0.00

Therefore W = 0.50 New v is 0.50

S2(4) Op(4)=bb with Wgt= 0.00

Copying from DM(1 2)= 0.50

Therefore W = 0.50 New v is 0.50

S1(1) Op(1)=a with Wgt= 0.50

Copying from DM(0 4)= 1.00

Therefore W = 1.50 New v is 0.50

Op1 is 1=a Op2 is 2=b

Copying from DM(0 3)= 0.50

Therefore W = 100.49 New v is 0.50

Op1 is 1=a Op2 is 4=bb

Copying from DM(0 2)= 1.00

Therefore W = 100.99 New v is 0.50

337

Row 5 Col 1

S2(5) Op(1)=a with Wgt= 0.50

Copying from DM(1 4)= 0.50

Therefore W = 1.00 New v is 1.00

S1(1) Op(1)=a with Wgt= 0.50

Copying from DM(0 5)= 1.50

Therefore W = 2.00 New v is 1.00

Op1 is 1=a Op2 is 1=a

Copying from DM(0 4)= 1.00

Therefore W = 1.00 New v is 1.00

Row 1 Col 2

S2(1) Op(1)=a with Wgt= 0.50

Copying from DM(2 0)= 1.00

Therefore W = 1.50 New v is 1.50

S1(2) Op(2)=b with Wgt= 0.50

Copying from DM(1 1)= 0.00

Therefore W = 0.50 New v is 0.50

Op1 is 2=b Op2 is 1=a

Copying from DM(1 0)= 0.50

Therefore W = 100.49 New v is 0.50

Row 2 Col 2

S2(2) Op(2)=b with Wgt= 0.50

Copying from DM(2 1)= 0.50

Therefore W = 1.00 New v is 1.00

S1(2) Op(2)=b with Wgt= 0.50

Copying from DM(1 2)= 0.50

Therefore W = 1.00 New v is 1.00

Op1 is 2=b Op2 is 2=b

Copying from DM(1 1)= 0.00

Therefore W = 0.00 New v is 0.00

Row 3 Col 2

S2(3) Op(2)=b with Wgt= 0.50

Copying from DM(2 2)= 0.00

Therefore W = 0.50 New v is 0.50

S2(3) Op(4)=bb with Wgt= 0.00

Copying from DM(2 1)= 0.50

Therefore W = 0.50 New v is 0.50

S1(2) Op(2)=b with Wgt= 0.50

Copying from DM(1 3)= 0.00

338

Therefore W = 0.50 New v is 0.50

Op1 is 2=b Op2 is 2=b

Copying from DM(1 2)= 0.50

Therefore W = 0.50 New v is 0.50

Op1 is 2=b Op2 is 4=bb

Copying from DM(1 1)= 0.00

Therefore W = 99.99 New v is 0.50

Row 4 Col 2

S2(4) Op(2)=b with Wgt= 0.50

Copying from DM(2 3)= 0.50

Therefore W = 1.00 New v is 1.00

S2(4) Op(4)=bb with Wgt= 0.00

Copying from DM(2 2)= 0.00

Therefore W = 0.00 New v is 0.00

S1(2) Op(2)=b with Wgt= 0.50

Copying from DM(1 4)= 0.50

Therefore W = 1.00 New v is 0.00

Op1 is 2=b Op2 is 2=b

Copying from DM(1 3)= 0.00

Therefore W = 0.00 New v is 0.00

Op1 is 2=b Op2 is 4=bb

Copying from DM(1 2)= 0.50

Therefore W = 100.49 New v is 0.00

Row 5 Col 2

S2(5) Op(1)=a with Wgt= 0.50

Copying from DM(2 4)= 0.00

Therefore W = 0.50 New v is 0.50

S1(2) Op(2)=b with Wgt= 0.50

Copying from DM(1 5)= 1.00

Therefore W = 1.50 New v is 0.50

Op1 is 2=b Op2 is 1=a

Copying from DM(1 4)= 0.50

Therefore W = 100.49 New v is 0.50

Row 1 Col 3

S2(1) Op(1)=a with Wgt= 0.50

Copying from DM(3 0)= 0.00

Therefore W = 0.50 New v is 0.50

S1(3) Op(1)=a with Wgt= 0.50

Copying from DM(2 1)= 0.50

339

Therefore W = 1.00 New v is 0.50

S1(3) Op(5)=aba with Wgt= 0.00

Copying from DM(0 1)= 0.50

Therefore W = 0.50 New v is 0.50

Op1 is 1=a Op2 is 1=a

Copying from DM(2 0)= 1.00

Therefore W = 1.00 New v is 0.50

Op1 is 5=aba Op2 is 1=a

Copying from DM(0 0)= 0.00

Therefore W = 99.99 New v is 0.50

Row 2 Col 3

S2(2) Op(2)=b with Wgt= 0.50

Copying from DM(3 1)= 0.50

Therefore W = 1.00 New v is 1.00

S1(3) Op(1)=a with Wgt= 0.50

Copying from DM(2 2)= 0.00

Therefore W = 0.50 New v is 0.50

S1(3) Op(5)=aba with Wgt= 0.00

Copying from DM(0 2)= 1.00

Therefore W = 1.00 New v is 0.50

Op1 is 1=a Op2 is 2=b

Copying from DM(2 1)= 0.50

Therefore W = 100.49 New v is 0.50

Op1 is 5=aba Op2 is 2=b

Copying from DM(0 1)= 0.50

Therefore W = 100.49 New v is 0.50

Row 3 Col 3

S2(3) Op(2)=b with Wgt= 0.50

Copying from DM(3 2)= 0.50

Therefore W = 1.00 New v is 1.00

S2(3) Op(4)=bb with Wgt= 0.00

Copying from DM(3 1)= 0.50

Therefore W = 0.50 New v is 0.50

S1(3) Op(1)=a with Wgt= 0.50

Copying from DM(2 3)= 0.50

Therefore W = 1.00 New v is 0.50

S1(3) Op(5)=aba with Wgt= 0.00

Copying from DM(0 3)= 0.50

Therefore W = 0.50 New v is 0.50

Op1 is 1=a Op2 is 2=b

340

Copying from DM(2 2)= 0.00

Therefore W = 99.99 New v is 0.50

Op1 is 1=a Op2 is 4=bb

Copying from DM(2 1)= 0.50

Therefore W = 100.49 New v is 0.50

Op1 is 5=aba Op2 is 2=b

Copying from DM(0 2)= 1.00

Therefore W = 100.99 New v is 0.50

Op1 is 5=aba Op2 is 4=bb

Copying from DM(0 1)= 0.50

Therefore W = 100.49 New v is 0.50

Row 4 Col 3

S2(4) Op(2)=b with Wgt= 0.50

Copying from DM(3 3)= 0.50

Therefore W = 1.00 New v is 1.00

S2(4) Op(4)=bb with Wgt= 0.00

Copying from DM(3 2)= 0.50

Therefore W = 0.50 New v is 0.50

S1(3) Op(1)=a with Wgt= 0.50

Copying from DM(2 4)= 0.00

Therefore W = 0.50 New v is 0.50

S1(3) Op(5)=aba with Wgt= 0.00

Copying from DM(0 4)= 1.00

Therefore W = 1.00 New v is 0.50

Op1 is 1=a Op2 is 2=b

Copying from DM(2 3)= 0.50

Therefore W = 100.49 New v is 0.50

Op1 is 1=a Op2 is 4=bb

Copying from DM(2 2)= 0.00

Therefore W = 99.99 New v is 0.50

Op1 is 5=aba Op2 is 2=b

Copying from DM(0 3)= 0.50

Therefore W = 100.49 New v is 0.50

Op1 is 5=aba Op2 is 4=bb

Copying from DM(0 2)= 1.00

Therefore W = 100.99 New v is 0.50

Row 5 Col 3

S2(5) Op(1)=a with Wgt= 0.50

Copying from DM(3 4)= 0.50

Therefore W = 1.00 New v is 1.00

341

S1(3) Op(1)=a with Wgt= 0.50

Copying from DM(2 5)= 0.50

Therefore W = 1.00 New v is 1.00

S1(3) Op(5)=aba with Wgt= 0.00

Copying from DM(0 5)= 1.50

Therefore W = 1.50 New v is 1.00

Op1 is 1=a Op2 is 1=a

Copying from DM(2 4)= 0.00

Therefore W = 0.00 New v is 0.00

Op1 is 5=aba Op2 is 1=a

Copying from DM(0 4)= 1.00

Therefore W = 100.99 New v is 0.00

End of Computation

Final distance matrix is:

ε a b b b a
ε 0.00 0.50 1.00 0.50 1.00 1.50
a 0.50 0.00 0.50 0.00 0.50 1.00
b 1.00 0.50 0.00 0.50 0.00 0.50
a 0.00 0.50 0.50 0.50 0.50 0.00

Table I.1: Distance matrix after GLD computation of aba and abbba.

Table I.1 is the distance matrix after GLD computation is completed. The edit

sequences that yields the minimum cost of transforming aba into abbba is shown in

red.

342

Vita

John M. Abela jabel@cs.um.edu.mt

3, Kaless Street,
Sta. Venera,
HMR 16,
Malta
Date of Birth: 13th November, 1961.

Academic Qualifications:

B.Sc. (Mathematics and Computer Science), University of Malta, 1991.
M.Sc. (Computer Science), University of New Brunswick, 1994.
Ph.D. program, Faculty of Computer Science, UNB, 1996-2001.

Recent Publications:

Abela, John, Learning Picture Languages, Technical Report TR-CS-9605, Depart-
ment of Computer Science and Artificial Intelligence, University of Malta, 1996.

Goldfarb, L., Abela, J., Bhavsar, V. C., Kamat, V. N., Are Vector-Space Models
Capable of Inductive Learning in a Symbolic Environment?, In Proceedings of the
10th Biennial Conference of the Computer Society of the Computational Study of
Intelligence, Morgan Kauffman Pub., Palo Alto, Ca., 1995.

Goldfarb, L., Abela, J., Bhavsar, V. C., Kamat, V. N., Can a Vector-Space Based
Learning Model Discover Inductive Class Generalization in a Symbolic Environment?,
Pattern Recognition Letters, 16, pp. 719-726, 1995.

Working Experience:

Employed since 1994 as Assistant Lecturer with the Department of Computer Science
and A.I., Faculty of Science and I.T., University of Malta, Valletta, Malta. Prior to
that the author operated his own I.T. consultancy and software development business.

