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To my daughter, Leyla.
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Abstract

The Evolving Transformation System (ETS) is the first class(ification)-oriented rep-

resentational formalism. In ETS, all objects are viewed and represented as processes,

where object representation is a temporal sequence of structured events called a

struct. Compared to the conventional mathematical, i.e. “spatial”, representations,

it appears to be a more basic form of representation, which however, can be spatially

instantiated.

The main objective of this thesis is to illustrate with implementation the process of

spatially instantiating ETS structs. This involves the design and implementation of

abstract data types, data structures and algorithms for the basic concepts of ETS.

While the central concept of class generating system and its specification is imple-

mented as a finite state machine. The actual structs used for the spatial instantiation

process, are obtained by applying the above implementations to a system of interact-

ing class generating systems called “Bubble Man”. Finally, the structs generated by

the “Bubble Man” class generating systems are spatially instantiated via a system

of finite state transducers and a system of programmable “spheres” (or “bubbles”),

such that given a struct each transducer produces a “program”, which is then exe-

cuted by a particular “bubble”. I hope that this thesis will help one thinking about

the nature of the ETS object representation.
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Chapter 1

Introduction

That representation makes a difference is evident for a different reason. All mathematics

exhibits in its conclusions only what is already implicit in its premises . . . Hence all math-

ematical derivation can be viewed simply as change in representation, making evident

what was previously true but obscure.

This view can be extended to all of problem solving—solving a problem simply means

representing it so as to make the solution transparent. If the problem solving could

actually be organized in these terms, the issue of representation would indeed become

central.

H. A. Simon, [1]

We are unconsciously conditioned by all conventional formalisms to expect to see

spatial information somehow present in our various forms of representation.1 While

working with the ETS group on developing the “Bubble Man”, an application illus-

trating the main concepts of the radical new formalism named the Evolving Trans-

formation System, I realized I was missing something important conceptually. I

realized that I was focused on incorporating an objects structural features using the

ETS formalism, rather than focusing on identifying temporal features, in the form

of structured temporal events.

1As is the case in mathematics.
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This realization led to the following question: “What is the role of temporal and

spatial representation in light of the ETS formalism?”

1.1 Origin of ETS

ETS is an entirely new approach to the concept of representation. The original

motivation for “temporal (structural) representation” originated in an attempt to

generalize the “temporal” process of constructing the set, N, of natural numbers:

One can gain an initial intuitive understanding of the proposed represen-

tation by generalizing the temporal process of the (Peano) construction

of natural numbers: replace the single structureless unit out of which

a number is built by multiple structural ones. An immediate and im-

portant consequence of the distinguishability (or multiplicity) of units in

the construction process is that we can now see which unit was attached

and when. Hence, the resulting (object) representation for the first time

embodies temporal structural information in the form of a formative, or

generative, object “history” recorded as a series of (structured) events.

Each such event stands for a “standard” interaction of several object-

s/processes. [2, p. 1]

In figure 1.1 (left), a structured event denoted, π1, represents the restructuring of a

single object/process. To illustrate further, one might think of the object as being

an infinitely long piece of rope (without any knots or tangles in it), we then might

say that this straight piece of rope represents the number 0. The Peano “successor

operation” may be realized by tieing a knot in the rope and the observation of a

knot appearing on the rope is an event and represented by the primitive π1. In Fig.

1.1 (right), the first appearance of a knot, is represented with a primitive denoted

2



π1a, the resulting representation represents the natural number 1. The appearance

of a second knot on the rope is represented by a primitive denoted π1b, the resulting

representation represents the natural number 2. Likewise for the construction of

the number 3. The representations, shown in Fig. 1.1, record sequences of knots

appearing on a rope, such that the entire construction process of the numbers 1, 2

and 3 are recorded as a temporal sequence of events. These sequences of events store

not only the information that several knots were tied on a rope, but when they were

tied (relatively).

Figure 1.1: (a) The single primitive involved in the ETS representation of natural
numbers. (b) Structs representing the numbers 1, 2, and 3.

Of course, the development of the Evolving Transformation System has been further

motivated by the need for classification. Since it appears that structural represen-

tation lends itself to the inductive recovery of a generative schema for producing a

family of similar structural representations. Such that, given a small “training set”

of structural representations, the entire class of these structural representations may

be learned inductively.

3



1.2 ETS concept of class in a nutshell

ETS is an event-based class(ification)-oriented formal language for representing real-

ity as a hierarchical system of evolving classes of structural processes. These struc-

tural processes are represented in ETS as temporal sequences of structured events

called structs, and the structured events are referred to as primitive transformations

(cf. Sec. 2.1.1 p. 9, and for an example of an ETS struct cf. Fig. 2.3 p. 15).

ETS views the concept of class as a collection of “structurally similar” processes,

and is defined in ETS via the concept of class generating system. A class generating

system, in ETS, is a generative mechanism used to output all the structural entities

belonging to a particular class. More specifically, class generating systems assemble

class elements according to a given step-wise specification. Such that, given an initial

piece of structure (contributed by the environment) and a step-wise specification, for

each step in the specification a “structurally formulated extension”2 is assembled to

the “working struct”. The result is a struct representing a particular class element

(e.g. cf. Fig.’s 2.8 p. 25).

To help further clarify the ideas of class and class element generation, the following

illustrative analogy is offered. Assume that there exists a special abstract machine

whose internal memory stores a struct. To borrow from the theory of finite state

automata, this special machine can be used to accept/generate a set of structs. To

generate a struct, at each state, the machine nondeterministically selects a “struc-

turally formulated extension” from a subset of possible extensions and assembles it

to the class element (“working struct”) under construction.

This machine describes an interesting relationship among the outputs (structs) that

is analogous to the one described by finite state machines for regular languages, where

2A struct satisfying some “structural formula” (structural constraint) selected by the generating
system.

4



the struct-generating machine may be thought of as defining a “language” such that

each struct generated is a “word” in that “language”. However, in ETS, we say that

such a machine defines a “class” and each struct produced is an “object/instance”

of that class. ETS suggests, that a strong relationship exists between class elements

(the outputs of the above machines), which referred to as “structural similarity” [3],

such that two structs are structurally similar if (and only if) they are outputs of the

same class generating system.

1.3 Motivation

This thesis is an attempt to elucidate the concept of ETS temporal representation

compared to more familiar forms of representation, e.g. spatial representation. It

appears that ETS structural representation are more fundamental, or basic, in na-

ture compared to spatial representations, e.g. pictures and computer graphics, based

on the idea that ETS structs record less information by recording interactions be-

tween objects in a system, as structured events called “primitive transformations”.

Moreover, it appears that “more is less”, and that ETS structs encode sufficient

information to reconstruct the original system of objects, i.e. ETS structs may be

“spatially instantiated”.

In [2, pp. 22-23], the conventional view of reality (maintained in science) is portrayed

as being “object-centred”, whereas the ETS model suggests a process view of reality

and emphasizes the “transformative” event, rather then on the objects themselves.

The object-centered view of reality forms what is referred to as an object environ-

ment, the process-centered view forms what is referred to as event environment, “by

admitting the above two environments and creating an interface between them: the

ETS model operates with ideal events that correspond to real events in the object

environment. A real event is accounted for [. . . ] by its idealized version[. . . ], while

5



in the object environment a real event is accounted for by the realization of an ideal

event.”

In my attempts to study the role of temporal representation and its relation to

conventional spatial representations, a software system was developed (the imple-

mentations of which have been generalized and are discussed in Ch. 4), the software

system contains a subsystem that implements the “event environment” as a system

of several running and interacting class generating system processes3. The software

system also contains two additional subsystems, one that implements the process of

spatial instantiation of ETS structs as a system of finite state transducers. The other

subsystem implements the object environment as a system of 3D models and involves

the use of “Microsoft’s XNA content pipeline” for rendering and manipulating 3D

models. These two subsystems are tightly coupled such that a finite state transducer

is implemented and associated with each 3D model.

1.4 Scope

In order to apply the software system, an ETS class description was needed, and

for simplicity the illustrative example found in [2, Sec. 8] referred to as the class of

“2D Bubble Men” was selected and extended. The class of “2D bubble men” is a

three-level class, such that it is recursively defined via several two-level classes, which

are then recursively defined by several single-level classes. Discussion of multi-level

classes and their associated concepts (e.g. multi-level structs, structural constraints

and generating systems) is left out, since, given the simplistic nature of the example,

the organizational roles played by the higher-level classes are limited and may be

implemented with nested queues. It was, therefore, unnecessary to implement ADTs

3The term process is used to emphasize the idea that a single class generating system may be
specified, and have several processes/instantiations generating structs simultaneously.

6



and data structures for the multi-level features of the ETS formalism, and so, for

the purpose of this thesis work, the “Bubble Man” class is viewed as a system of

single-level classes rather than as a single three-level class. Although, in Ch. 3, no

attempt is made to portray the example in any other way than as three-levels of class

representations. Moreover, this thesis will limit discussion of temporal and spatial

representation to single-level structs and associated concepts. With regard to the

process of spatial instantiation, only spatial instantiation of single-level structs are

considered.

1.5 Organization of this thesis

First I would like to remind the reader that the Evolving Transformation System is a

radically new “structural” representational formalism, and moreover, it is considered

to be the first language to provide a formal definition of the concept of class. With

this in mind, the ideas, concepts and formal definitions I rely upon are not only novel

but several are recent additions to the ETS formalism.

I cannot hope to provide the reader with a comprehensive understanding of ETS and

the many implications associated with it. Instead I hope to guide the reader in the

right direction. To this end, I have organized the thesis as follows:

• In Chapter 2, an overview of the key features and concepts of ETS, relied upon

for application and implementation, are semi-formally presented here. Note

that many of the figures, in this chapter have been adapted from [2].

• Discussed in Chapter 3, the Bubble Man, which is also the main illustrative

example in [2], and initial motivation for this work, is the application chosen for

simulating the systematic class element generation and spatial instantiation of

ETS structural representations. Also, given that the Bubble Man was initially

7



developed for illustrating ETS concepts in Idem., many of the figures in this

chapter have been adapted from Idem.

• The abstract data types and data structures developed for the implementation

of level 0 object and class representation are presented in Chapter 4. Along

with the implementations of the ETS class generating system and the inter-

face, between event and object environments, used to spatially instantiate ETS

structs.

• Finally, in Chapter 5, a summary, results of this study, and suggestions for

future work are presented.
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Chapter 2

On the Evolving Transformation

System

Thus nature is a structure of evolving processes. The reality is the process.

It is nonsense to ask if the colour red is real. The colour red is ingredient

in the process of realisation. The realities of nature are . . . the events in

nature.

A. N. Whitehead, [4]

2.1 Object representation

2.1.1 Structured events

The evolving transformation system formalism addresses a universal view of nature,

whereby objects are understood to be structural processes, which may be observed

over time—alternatively, their evolution may be reasoned about—and represented

as a temporal sequence of “structured events”. These structured events signify an

interruption in the flow of predetermined primal processes.
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When defining a set of primitive transformations one must first decide at which stage

of representation one will begin. This stage is called stage 0, or the initial stage,

and its critical feature is the specification of a set of “primal disjoint” classes of

processes,

C = {C1, C2, . . . , Cm} .

Where each element of such a class, ci ∈ Ci, is a structural process whose structure

is suppressed. This effectively makes each element, of such a class, unstructured

and indistinguishable from another. For this reason, when describing the concept of

primitive, in the following section, the structural processes involved in a particular

interaction/event will be referred to as primal classes (de-emphasizing the notion

of structure). However, it is still helpful to remember that each such element is a

structural representation of an observed process, and it has, time and again, proven

helpful to reason about this structure when defining a set of primitives.

2.1.1.1 Concrete and abstract primitives

A basic concept and first definition of ETS [2, Def. 1], is that of a primitive

transformation, or primitive, and it is the basic building unit of an ETS object

representation. Basically, a primitive is defined in terms of the set of primal classes

they transform,

Init(cπi)〈Cj1 , Cj2 , . . . , Cjp(i)
〉, p(i) > 0,

called initials, and the resulting set of primal classes,

Term(cπi)〈Ck1 , Ck2 , . . . , Ckq(i)
〉, q(i) > 0,
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called terminals. Other properties of a primitive include a name, cπi, and a set of

labels,

Li,Li ⊆ Cj1 × Cj2 × . . .× Cjp(i)

associated with cπi.
As a consequence of suppressing the structure of the initial and terminal primal

classes, there are two kinds of primitives: abstract and concrete. A concrete prim-

itive, πia, has a label, a, from the above mentioned set of labels, a ∈ Li, such that,

a is a tuple consisting of concrete class elements,

a = 〈c1, c2, . . . , cp(i)〉

one from each initial primal class, i.e. c1 ∈ Cj1 . More formally a concrete primitive

πia is defined as a tuple

πia = 〈cπi, Init(cπi), Term(cπi), a〉.
See Fig. 2.1, notice that the initial primal classes are marked as various shapes on the

top while the terminal primal classes are shown on the bottom. Unfortunately, the

corresponding shape does not distinguish between the class, in an abstract primitive,

and its element, in the concrete primitive. (The only processes identified are the

initials of π2b : b = 〈c1
i , c

2
j , c

3
k〉, where cst is the tth process from the primal class

Cs.)

An abstract primitive, e.g. πi, then, as its name suggests, is representative of a

family of concrete primitives (see Fig. 2.1):

πi = {πi(a) | a ∈ Li}.
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Figure 2.1: Pictorial illustration of two abstract primitives (left) and three concrete
primitives (right).

2.1.1.2 Primitive-classes

Primitive classes are considered to be very useful generalizations of the concept of

primitive transformation. It is understood that such generalization affords one the

freedom to choose more appropriate primal classes without being concerned about

an explosion in the number of primitives. Also, the concept of primitive-class is the

most recent addition to the ETS formalism, and therefore, is not as fully developed

as the other concepts such as the abstract and concrete primitive transformations.

Basically, among a set of predefined abstract primitives Π, a family Π∗ of structurally

similar primitives:

Π∗ = {π1,π2, . . . ,πt} ,

is considered to be a class of abstract primitives, referred to as a primitive-class,

and denoted [π∗]. Thus, Π∗ may be referred to as the name of the class induced by

the corresponding equivalence relation, [π∗], on Π, see Fig. 3.2 and [2, Appendix].

2.1.2 Structs and their operations

2.1.2.1 Structs

The second basic concept of ETS is that of the (level 0) struct, see Fig. 2.3 and

[2, Def. 3], which is understood to represent macro-events, or pieces of formative

history. More formally structs consist of a set of primitives, Πσ, and a relation struct

12



Figure 2.2: Primitive-classes and their elements.

link, SLσ, which is a finite subset of the relation class link between concrete

primitives1 CLC,Π,

SLσ ⊆ CLC,Π ⊆ Π× NTerm × Π× NInit.

For example, given the following tuple:

〈πia, ui, πjb, vj〉,

if πia’s ui
th terminal primal class is equivalent to πjb’s vj

th initial primal class, then

the above tuple represents an observed concrete primal class element connecting

concrete primitives πia and πjb. A struct link then is a particular element from the

set of possible class links between two concrete primitives.

In addition to the definitions of class link and struct link, there are two restrictions

1See [2, Def. 2] for the definition of relation CLC,Π.
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constraining the structure of structs: first, the directed graph2 of

ATTACHσ : Πσ × Πσ → P(SLσ)3

representing the projection of SLσ onto Π×Π is connected and acyclic. Second, any

terminal primal class can be connected to at most one initial primal class, and visa

versa:

∀〈πia, ui, πjb, vj〉, 〈πi′a′ , ui′ , πj′b′ , vj′〉 ∈ SLσ

πia = πi′a′ , ui = ui′ ⇐⇒ πjb = πj′b′ , vj = vj′ .

For example, given a set of primitives Πσ and a relation SLσ, one may graphically

represent the struct link relation using the primitives as nodes and class links as arcs.

The tuple

〈Πσ, SLσ〉

is a struct, σ, if the resulting graph is acyclic and connected and no terminal primal

classes are connected to more than one initial primal class and vice versa.

2.1.2.2 Substruct

Given two structs α = 〈Πα, SLα〉 and β = 〈Πβ, SLβ〉, it is said that α is a substruct

of β, denoted α b β, if

Πα ⊆ Πβ and SLα ⊆ SLβ ,

see [2, Def. 4].

2The vertices of the graph are the elements of Πσ and the edges are defined by the ordered
pairs, Πσ ×Πσ, of ATTACHσ, see [2, Def. 3, p. 29]

3P(SLσ) represents a powerset of SLσ.
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Figure 2.3: Two structs σ1 and σ2.

2.1.2.3 Struct assembly

If structs overlap it is understood that the objects represented are, themselves, in-

teracting. Overlapping level 0 structs, e.g. σ1, σ2, . . . , σr (σi = 〈Πσi
, SLσi

〉), can then

be assembled into a larger struct A(σ1, σ2, . . . , σr), if the pair

σ = 〈
r[
i=1

Πσi
,
r[
i=1

SLσi
〉

is a valid level 0 struct called the assembly of level 0 structs σ1, σ2, . . . , σr, denoted

as σ = A(σ1, σ2, . . . , σr) or

σ = σ1 / σ2 / . . . / σr ,

see Fig. 2.4 and [2, Def. 8].
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Figure 2.4: Three structs (top row) and their assembly.
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2.2 Class representation

2.2.1 Specifying structure

2.2.1.1 Unit-constraints

Although the unit-constraint is a recent development in ETS it is now a central

concept and may be thought of as an extension to the concept of a class link

between two primitives [2, Def. 2]. In addition to describing class links between

primitives—unit-constraints are used to constrain admissible structure to a family

of structural units fixed between two pivot primitives. Such a mechanism affords

the designer more flexibility by allowing one to specify how two primitives are to be

connected without spelling out all such possible ways. Furthermore, it appears that

the unit-constraint is a natural way to account for environmental influences (class

noise).

Basically, to specify a unit-constraint between two primitives a designer simply states

that a unit-constraint exists between a certain terminal primal class of a primitive,

πia, and the initial primal class of another primitive, πjb:

UCon〈πia, ui〉〈πjb, vj〉(Π∗,FR)

Where Π∗ is a subset of Π, called noise primitives and the set, FR, called forma-

tion rules for specifying various admissible sets Π∗’s, consisting of concrete primi-

tives from Π∗, which may be “absorbed” into the structure between the two pivots.

See Fig. 2.5 for an illustrative example, and [2, Def. 9] for a formal definition.

In Fig. 2.5, a unit-constraint UCon〈π1a, 1〉〈π2b, 2〉(Π∗,FR) is shown, along with

several structs. Three structs satisfy the given unit-constraint, e.g. (σ1, σ2, σ3), and

three do not, e.g. (σ4, σ5, σ6). In σ5, π4q is not a descendant of π1a and in σ6 , π3k is
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not an ancestor of π2f . The rules FR are not described in this figure, however on can

think of a simple example: at most two occurrences of π2 , at most five occurrences

of π3 , one occurrence of π4 , and at most three occurrences of π6 . Also notice,

at the bottom-left of the figure is a pictorial representation of the unit-constraint

with pivot primitives π1a and π2f , the light gray ellipse connecting them stands for

a corresponding admissible substruct. On the right, non-pivot primitives are shown

shaded in light gray.

Figure 2.5: An example of a unit-constraint.
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2.2.1.2 Structural constraints

A central definition for single level class representation is that of the (level 0)

structural constraint, which is a formal mechanism for specifying a family of

structs sharing a particular structural “backbone”, which may be thought of as a

kind of “structural formula”.

Formally, the structural constraint consists of a set of pivot primitives Π and a tuple

of sets of primitives UT

Con(Π,UT ) =


UCon〈π1a, u1〉〈π2b, v2〉(Π∗1,FR1) , . . .

. . . ,UCon〈π2k−1,c, u2k−1
〉〈π2k,b, v2k

〉(Π∗k,FRk)
·
,

Conceptually, it is easier to think of a structural constraint as a collection of unit

constraints.

Then, when specifying such structural formulas, it is helpful to visualize the structure

and proceed as if one were constructing the constraint out building blocks. Each

such building block is a particular unit-constraint and may be “snapped” together

at the pivots forming a complex structure4, see Fig. 2.6 and [2, Def. 10]. In

Fig. 2.6 an example of a structural constraint is illustrated, e.g. Con(Π, UT ) , with

Π = { π1a , π2f , π3k , π6u } and Π∗i ’s as shown on the top left; FRi’s are not included.

To the right are two sets of structs, σ1 and σ2 that satisfy the constraint (the two

light-shaded ellipses correspond to the dashed ellipse at bottom left, and σ3 and σ4

do not. A primitive, π3l in struct σ3 , is attached to the wrong terminal of π1a , and

in σ4 , a pivot primitive π6v is not an ancestor of pivot primitive π2f , according to

the corresponding unit-constraint shown on the left.

4Note that the graph, whose vertices correspond to the pivot primitives and edges to the unit-
constraints, must be connected, i.e. all pivot primitives are connected to one another via one or
more unit-constraints.
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For example, given a struct α and some arbitrary structural constraint, the noise

primitives specified within each unit-constraint of that constraint, describe incidental

events5 that may be attached to the specified substructures of α, such that α will

still satisfy the constraint, e.g. σ1 and σ2 in cf. Fig. Ibid. In other words, α may

contain other primitives so long as the “structural backbone” is maintained, thus

facilitating a reasonable degree of (localized) variation.

2.2.1.3 Active structural constraints

An extension of the structural constraint is the active (level 0) structural con-

straint, such that in addition to the set of pivot primitives and UT , the active

structural constraint appends two additional sets: a set of anchor primitives and

a set of open primitives. This extension to the concept of constraint enables the

designer to “mark” the pivot primitives of active constraints, both as open and/or

as an anchor, which affords a greater degree of control over the generating system

via their restrictive roles in the active extensions of (level 0) working structs6.

2.2.2 Specifying class generating systems

A (level 0) class representation, R, consists of a set of constituent pivot primitives

Π, a set of constituent noise primitives Π∗, and a (partial) class generating system

specification GR:

R = 〈Π,Π∗,GR〉 .

The class generating system specification is a step-wise description for assembling

(level 0) structs, where each step consists of a non-empty set of active (level 0)

5Incidental events are considered to be “noise” produced by other classes in the environment.
6See [2, Def. 12] for a formal definition.
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Figure 2.6: An example of a structural constraint.
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constraints:

GR =

°¨
ACon1,i(Π1,i,UT 1,i,Π

anc
1,i ,Π

opn
1,i )

«
i∈I1

,¨
ACon2,i(Π2,i,UT 2,i,Π

anc
2,i ,Π

opn
2,i )

«
i∈I2

, . . .

. . . ,

¨
ACont,i(Πt,i,UT t,i,Π

anc

t,i ,Π
opn

t,i )

«
i∈It

º
.

2.3 Generating class elements

2.3.1 Class generating system operations

To help with the following discussion three additional concepts are required upfront:

the concept of current working struct; the concept of working class element; and

the concept of active extension. A current working struct is the struct being

produced by a particular class generating system process operating in an environment

with other class generating system processes, such that the struct being produced

may contain primitives not contributed by the class generating system producing

the working struct. These extra primitives are referred to as noise primitives, which

reflect environmental influences, and are contributed by external class generating

system processes. A working class element, γj−1, is a substruct of some current

working struct σk2j−1,

γj−1 b σ2j−1 ,

and is formed only by the primitives that have been contributed so far by a generating

process following some given class generating system specification GR, cf. Fig. 2.7.

An active extension

Ext
�
σwj−1,AConj,i(Πj,i,UT j,i,Π

anc
j,i ,Π

opn
j,i )

�
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of working struct σwj−1 with respect to some given active structural constraint AConj,i

is defined as a set of active7 structs α, such that (i) each struct α satisfies the given

constraint; (ii) the assembly A(σw, α) exists, (iii) the primitives marked as “anchors”

on α have corresponding primitives marked as “open” on σwj−1,8 and (iv) α contributes

at least one additional primitive to the working struct.

Figure 2.7: A pictorial illustration of a class element struct as a substruct of a final
working struct.

The actions of a GR–generating system consist of the following two operations.

• First, a struct βj is (nondeterministically) selected from one of the non-empty

7The reader is referred to [2, Def. 12, p. 43] for more details about active extensions, such as
active structs.

8These markings together specify how two structs must overlap.
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sets of active extensions,

βj ∈
¨

Ext
�
σwj−1,AConj,i(Πj,i,UT j,i,Π

anc
j,i ,Π

opn
j,i )

�«
i∈Ij

.

• Second, the active extension, βj, is assembled to the current working struct,

σ2j−1, in order to produce the next working struct, σ2j. Incidently, this assem-

bly accomplishes another assembly

γj = γj−1 /
Ext

βj ,

since γj−1 b σ2j−1, where γj is the next working class element. The latter

assembly appropriately modifies and allocates the “open” markings. Such that

the primitives previously marked as open remain open, if so specified in the

constraint, and new markings are inherited from βj.

A visual example of the above two operations performed by a class generating system

is shown in Fig. 2.8, also the reader is referred to [2, pp. 43–45] for a more in depth

discussion.

In Fig. 2.8, a two-step generative unit, comprised of a step by the environment and

a corresponding step by the class generating system, attaches a piece of substructure

to a working class element. The dark shaded primitives are those added by the

environment and the dotted lines delineate the selected active struct βj assembled

to σ2j−1. Primitives that remain dark shaded at the end of the generative process

are not part of the working class element, e.g. γ2j. Note that the lightly shaded

primitives are incidental primitives that happened to be in βj and were subsequently

absorbed into the γ2j.
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Figure 2.8: A pictorial illustration of a two-step generative unit executed by a class
generating system process involved in the construction of a class element.
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2.3.2 Active role of the (event) environment

ETS includes definitions for multi-level class representation and their class generating

systems, however for the purposes of this paper, higher-level classes are not discussed.

Instead attention is focused on single-level (or level 0) object and class representation.

Also notice that the following discussion on the role of environment, is confined to

the event environment (first introduced in Sec. 1.4).

The environmental role in the generation of class elements is understood as follows:

• A (level 0) environment E is comprised of all (level 0) class generating

systems, i.e. a system of class generating systems.

• A step by any instance of these class generating systems is understood to follow,

first, a step by E.

• Each step, by the environment is understood to be specified by sets of active

constraints.

• Time-homogeneity for the duration of time a generating system remains in

some step j may not presumed.

• Each step of the environment, relative to some class generating system process,

“manifests” itself in the environmental structs being assembled to the current

working class element struct.

For example, relative to a given class generating system, at some step 2(j − 1)

the environment E may assemble several structs (each selected by another genera-

tive process) to the previous working struct σ2(j−1), producing the current working

struct σ2j−1, whose pivot primitive markings are unchanged. Such a step by E, is

likely to consist of several “actual steps” depending on the state of the environment,

e.g. some classes involved may have faster running generating systems (spend less

26



time in each step), while some may have slower running generating processes and

not contribute any primitives at all by remaining in a particular step/state for long

periods of time.

Class generating systems act independently from the structure of E, i.e., the class

generating systems in E cannot interfere with another generative process directly.

However, via the concept of environment, external class generating systems in E

may interfere with an internal generative process indirectly, if the class elements

being produced by both processes overlap, which involves assembling structs to one

another’s working struct.
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Chapter 3

Application

3.1 Bubble Man object representation

3.1.1 A single primal class and its sub-classes

The Bubble Man example contains a single primal class, called a Bubble Man Basic

Cell. These cells are oval-like, and we used them to draw an analogy with biological

cells, such that over time our oval-like cells become more “specialized”, i.e. “[w]e

have “cells” at the beginning, and we have (many more specialized) “cells” at the

end, but the representational language is the same for all stages”. [2, p. 61]

3.1.2 Primitive-classes

As mentioned in Sec. 2.1.1.2 and specified in [2, Appendix], primitive-classes are

a family of structurally similar abstract primitives. Such that the initial and ter-

minal primal classes of each abstract primitive, in such a family, are subclasses of

those specified on the primitive-class. This notion of sub-classing primal classes not

only promotes careful specification of primitives but decreases the size of the set of
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primitives one needs to work with when building class representations.

|{[π∗,1], [π∗,1], . . . , [π∗,r]}| ≤ |Π| � Π

In Fig. 3.1, the set of primitive classes used in this application are shown. Notices

that all the primal processes (except the initials for germination) belong to the Basic

Cell class of oval-like “cells”, i.e., there is only one primal class where its “sub-classes”

are shown in Fig. 3.2 and listed in Table 3.1.

The external, hand and foot growth primitives are structured, in such a way, to

illustrate how complexity may be modeled (even within such a simple example),

e.g. the left initial is associated with a particular single cell and the right initial

is associated with another particular single cell. These three primitives represent a

growth in the first cell that induces a simultaneous growth in the second cell, thus,

the left and right terminals correspond to larger cells. Obviously, one could have

introduced similar primitives with more initial and terminal sites, responsible for

the modification of several neighboring cells, and in general, one could have split

each of these primitives into two.

3.1.3 Primal subclasses

In Fig. 3.2, a pictorial illustration showing how corresponding equivalence relations

are used to partition Π. Note that the germination primitive class is not specified

because it is not considered to be critical, however, we do specify that the terminal

class of this primitive is a subclass named germ cell, denoted g.

Listed in Table 3.1, are the twenty-nine subclasses of the “Basic Cell” primal class.

In this application, where the “Basic Cell” is an exaggeration of the “stem cell”, it

is not difficult to make a case for each of the listed sub-classes. Note that, in the
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Figure 3.1: The primitive-classes used in this application (Left) and the correspond-
ing “Geometric” encapsulations, i.e. 2D spatial representations (Right).
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Figure 3.2: Primitive-classes and their elements, except for the germination
primitive-class.
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abbreviations, capitals may be interpreted as: L for “limb”, LG for “leg”, and A for

“arm”.

g – germ cell Lur – upper right Limb cell Lul – upper left Limb cell
ub – upper body cell Llr – lower right Limb cell Lll – lower left Limb cell
lb – lower body cell LGur – upper right Leg cell LGul – upper left Leg cell
hn – head-neck cell LGlr – lower right Leg cell LGll – lower left Leg cell
t – torso cell Aur – upper right Arm cell Aul – upper left Arm cell
h – head cell Alr – lower right Arm cell All – lower left Arm cell
n – neck cell flr – right foreleg cell fll – left foreleg cell
Lu – upper Limb cell far – right forearm cell fll – left forearm cell
Ll – lower Limb cell fr – right foot cell fl – left foot cell

hr – right hand cell hl – left hand cell

Table 3.1: All postulated primal “sub-classes” of the single primal class that we call
Basic Cell.

3.2 Bubble Man class representation

In this section two class representations from level 0, two class representations from

level 1 and the level 2 Bubble Man class representation are presented, starting with

the single-level (level 0) class representations and ending with the three-level Bubble

Man class representation. The remaining class representations not discussed in this

chapter and shown in Fig. 3.3, may be found in Appendix A.

As mentioned in Sec. 1.4, no attempt is made to portray the “Bubble Man” example

in such a way as to avoid discussion of higher-level classes. Rather, the “Bubble Man”

example is presented in its entirety between this chapter and Appendix A. However,

when referring to the “Bubble Man” as a system of classes, the classes that are being

referred to are those shown in the right-most column of Fig. 3.3. (With regard to

Fig. 3.3, lines point to the constituent classes.)
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Figure 3.3: Names of various classes in this example (at three levels).
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3.2.1 Level 0 classes

The following two figures depict class representations, R4 and R7, of the “Final

Torso” and the “Final Leg” level 0 classes. In general, they contain the following

main elements: an initial (first) step by the level 0 environment E; a set of noise

primitives, a set of pivot primitives, and a class generating system specification.

These class generating system specifications are comprised of several steps, each a

set containing one or more (level 0) active constraints (and Θ denotes the level 0 null

active constraint [2, Def. 11]). The set of pivot primitives, denoted Π, is specified

implicitly within the constraints of the n-step specification, which are all illustrated

in the figures. The set of noise primitives, denoted Π∗, is also specified implicitly

within the non-empty unit-constraints, also illustrated using primitive-classes at the

top of the figures

Π∗ =
[
p

Π∗p .

In general, the class generation system specifications are specified using primitive-

classes, denoted as primitives with no distinguishing labels on the primal processes.

However, some primitives have labels on all of their primal processes, this singles out

a particular (admissible) abstract primitive from the corresponding primitive-class.

3.2.2 Level 1 classes

The next two figures depict level 1 class representations, R1
2 and R1

4, of the “Torso”

and “Leg” level 1 classes. In general, they contain the following main elements: an

initial (first) step by the level 1 environment E1; a set of pivot class elements, and

a class generating system specification. The class generating system specification is

comprised of a number of steps, each containing a single (level 1) active constraint.

Note that because the level 1 class specifications are comprised of such simple steps,
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Figure 3.4: Pictorial description of R4, the level 0 class representation of Final
Torso, also denoted C4.
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Figure 3.5: Pictorial description of R7, the level 0 class representation of Final Leg,
also denoted C7.
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variation is subsequently limited to the initial level only. The set of pivot class

elements, denoted CR1
k
, is specified implicitly within the constraints of the n-step

specification, which are all illustrated in the figures.

In Fig.’s 3.6 and 3.7, the dots are contracted constituent primitives, and their differ-

ence in number (between γ1
1 and γ1

2) is a reflection of variation in the corresponding

previous level structures. Since our set of primitive transformations models growth

events in general, the structural elements shown to the right of each figure correspond

to temporally and spatially larger elements/objects. However, the set of constituent

noise classes C∗R1
k

is empty.

3.2.3 The Bubble Man class

Finally, the Bubble Man level 2 class representation shown below, Fig. 3.8, contains

the following main components: the initial step by the environment, E2; a set of

pivot class elements, and a partial step-wise generating system specification (note

that the solid squares are contracted constituent classes). This class generating

specification is comprised of a single step, which contains a single constraint. The

set of noise primitives is empty, and the set of pivot primitives are illustrated in the

single constraint of the Bubble Man’s only step. Given the simplistic nature of the

level 1 and 2 class generating systems, the only variation obtained in the generation

of Bubble Man elements is found at level 0. Also note that several level 1 and level

0 classes have been left out and are presented in Appendix A only.
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Figure 3.6: Pictorial description of R1
2, the level 1 class representation of Torso,

also denoted C1
2, and two example class element structural representations.
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Figure 3.7: Pictorial description of R1
4, the level 1 class representation of Leg, also

denoted C1
4, and two example class element structural representations.
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Figure 3.8: Pictorial description of R2
1, the level 2 class representation of Bubble

Man, also denoted C2
1.
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Chapter 4

Implementation

The following discussion concerning the development of several abstract data types

(ADT) and data structures, for the basic concepts of ETS, rely upon and specify

operations, some of whose algorithmic implementation and rationale may be found

in Appendix B.

4.1 Single-level structs

4.1.1 Primitive ADT

Since ETS structural representations are built out of primitive transformations, the

development of a primitive ADT is the (most obvious) first step towards further

development of ADT’s and algorithms for the other more complex ETS concepts.

The ETS primitive transformations, in Fig. 4.1, form the data set underlying the

development of the primitive ADT and data structure.
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Figure 4.1: A pictorial illustration of four concrete primitives.

A concrete primitive transformation is defined as the following four-tuple

π = 〈bπ, Init(π),Term(π), a〉 ,

where bπ is a given name of the primitive, Init(π) and Term(π) are tuples of primal

classes, and a is a tuple of primal class elements, according to [2, Def. 1 and pp.

26–28]. Several properties and at least one operation on primitive transformations

have been identified, and the properties are listed as follows:.

• Name(π) is a given name of an abstract primitive.

• Init(π) is a tuple of primal classes called the tuple of initial classes, or initials.

〈Cj1 , Cj2 , . . . , Cjp(i)
〉0 < p(i)

• Term(π) is a tuple of primal classes called the tuple of terminal classes, or

terminals.

〈Ck1 , Ck2 , . . . , Ckq(i)
〉0 < q(i)

• Label(π) is a tuple of primal class elements (such that no two constituent

elements are equal).

〈cj1 , cj2 , . . . , cjp(i)
〉0 < p(i) .

The single operation on the primitive transformation identified is called Relabel and

it represents the substitution of one label for another.
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4.1.2 Primitive data structure

Primitives are stored in (computer) memory using a structure called the primitive

data structure, and consists of four arrays, cf. Fig. 4.2.

Figure 4.2: A pictorial illustration of a primitive (left) stored in memory (right).

• Init is an array of primal class enumerated types, for example

Init[ ] = { �, •, � }

(the primal class enumerated type may be specified as:

enum primalClass { N, •, �, ♠, �, etc, . . . })

• Label is an array of characters, e.g. a[ ] = { ‘n’ }.

• Name is an array of characters, e.g. char[ ] = { ‘p’, ‘i’, ‘3’ }.

• Term is also an array of primal class enumerated types,

e.g. Term[ ] = { • ,� , • }.
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Finally, the single identified operation on concrete primitives, Relabel, is specified

algorithmically as follows:

Relabel(PrimitiveADT P, char[ ] Label’):char[ ]

for i ⇐ 1 to Length(Label) do

Label[i] ⇐ ‘’

for j ⇐ 1 to Length(Label’) do

Label[j] ⇐ Label’[j]

4.1.3 Linked primitive ADT

A class link between a terminal primal process of one primitive and the initial primal

process of another primitive is considered to be a concrete class element connecting

the two primitives, cf. Fig. 4.3.

Figure 4.3: A class element c ∈ Ck connecting (concrete) primitives πia and πjb.

It may be helpful to think of the class link between two concrete primitives, as

an object (or structural process) produced by the first primitive, which eventually

became an input to the second primitive. This notion of input and output, moti-

vated an extension of the primitive ADT referred to as the Linked Primitive ADT.

Linked Primitives specify an additional operation over concrete primitives, called

class link (or CL), such that given the four-tuple 〈πia, ui, πjb, vj〉 a class link is cre-

ated if class(πi, ui) = class(πj, vj), ui ≤ |Term(πia)| and vj ≤ |Init(πjb)|.
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4.1.4 Linked primitive data structure

The extension of the primitive data structure, is called the Linked Primitive data

structure and it is used to implement the Linked Primitive ADT. It consists of a

primitive, and two tables,

Input : NInit → LinkedPrimitiveADT× N

and

Output : NTerm → LinkedPrimitiveADT× N

such that for each row of the table is a pair consisting of:

• a reference to another Linked Primitive (in memory);

• and an index used to select primal processes out of the other primitive data

structure’s Init (or Term) array.

The Linked Primitive data structure is designed in such a way that the onus of storing

of a class link, e.g. 〈πia, ui, πjb, vj〉, is split between the two primitives involved, e.g.

the pair 〈πjb, vj〉 is stored in Output[ ui] and the other pair 〈πia, ui〉 is stored in

Output[ vj], cf. Fig. 4.4.

The operation on Linked Primitives, Class Link, stores a class link connection in

the primitives involved only if it is valid to do so, which is specified algorithmically

as follows:

CL(LinkedPrimitiveADT P, int i, LinkedPrimitiveADT Q, j)

if P.Term[i] ≡ Q.Init[j], i ≤ Length(P.Term) and j ≤ Length(Q.Init)

then

P.Output[i] ⇐ { Ref(Q), j }

Q.Input[j] ⇐ { Ref(P), i }
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Figure 4.4: Pictorial illustration of two Linked Primitive data structures and how
the data (left) is stored.
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4.1.5 Struct ADT

The (single-level) struct is a temporal sequence of primitive transformations, see Fig.

4.5, as such, the temporality, i.e. the order in which the events are “sensed/observed”

must be preserved.

Figure 4.5: Two level 0 concrete structs, α and β.

There are four operations that have been be specified over structs (their formal

definitions may be found in [2, Def.’s 3–4, 8]) and are listed as follows:

• Struct Link, or SL, may be thought of as an extension of CL that further

restricts the creation of class links between primitives. When drawing two

primitives with a struct link between them: the first primitive, in the four-

tuple, should be drawn on-top so that its terminal primal process(es) connects
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downward to the initial primal process(es) of the other primitive. Additionally,

any terminal primal process may only connect to at most one initial process,

and vice-versa.

• Primitive attachment is a simple mechanism involving the generation of struct

links between an ordered pair of primitives, if a valid struct link exists between

two primitives, then the link is added to the struct along with the pair of

primitives.

• Substruct, given two structs σ1 and σ2 (σi = 〈Πσi
, SLσi

〉), if

Πσ1 ⊆ Πσ2 and SLσ1 ⊆ SLσ2 ,

then σ1 is a substruct of σ2.

• Given a set of structs, struct assembly is accomplished if the superimposition

of each struct onto one another results in a valid struct. Primitives may only

be superimposed onto one another if they share the same label1.

4.1.6 Single-level struct data structure

The data structure designed for storing level 0 structs, is composed of a queue whose

elements are lists, which are used to store Linked Primitives. The position types of

these lists are of type char[], cf. Fig. 4.6. When adding primitives to these lists,

the primitive label is used as a key.

Tentative algorithms implementing the Struct ADT operations listed above have

been included in Appendix B. Note that these algorithms are only initial implemen-

tations of the Struct ADT, and are subject to change and modification.

1Two primitives are structurally similar if they share the same “main” shape, as well as the
same initial and terminal shapes (including the same ordering along the top and bottom of the
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Figure 4.6: Pictorial illustration of how a struct α undergoing attachment of a fifth
primitive π6q to another primitive π2h, already an element of the struct, is imple-
mented using a (tentative) struct data structure.
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4.2 Single-level structural constraints

4.2.1 Unit-constraint ADT

The unit-constraint is a very useful concept in ETS for specifying simple admissible

structure between to primitives called pivots and it is formally specified in [2, Def.

9], cf. Fig. 4.7.

Figure 4.7: Pictorial illustration of a unit constraint (left) and a struct satisfying it
(right).

Unit-constraints are used to constrain structure, so that when given a simple struct,

e.g. σ in Fig. Ibid., the struct is said to satisfy the unit-constraint if the extra struc-

primitive “main” shape). Labels are used to ensure structural similarity of primitives.

50



ture (outlined with a shaded ellipse in the Fig. Ibid.) lying between the two given

pivot primitives connects to the specified terminal and initial primal processes. With

respect to generativity, the concept of unit-constraint is a useful one for specifying

a family of (level 0) structs sharing a particular structural backbone.

The Unit-Constraint ADT is simple and consists of a single unit-constraint operation,

FR, which is an application-specific set of rules for specifying various admissible sets

of Π∗’s, where each Π∗ consists of a set of concrete primitives from Π∗.

4.2.2 Primary primitive data structure

The Primary Primitive data structure was designed as an extension of the Primitive

data structure. Primary Primitives are similar to the design of the Linked Primitive

data structure, in their use of tables, however, instead of adding two tables, only a

single table is used:

UCon : NTerm → FR× N|Π∗| × N|Π∗| × . . .× N|Π∗| × PrimaryPrimitive× N .

Essentially, each row of UCon is a vector storing the following elements:

• a memory reference to given set of formation rules, FR;

• an ordered sequence of indices used by FR to index into a set of abstract

primitives, e.g. πi is the ith abstract primitive in Π∗;

• a memory reference to the other pivot component of the unit constraint;

• the sequence ends with an index into the other primitive’s Init array, see Fig.

4.8.
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The reason for naming this data structure, “primary primitive” is because the first

primitive specified in the unit-constraint, or “primary primitive”, is the only pivot

primitive stored along with the unit-constraint specification. This is done since the

unit-constraint is not an explicit connection between pivot primitives, but rather it

represents an implicit connection. Since the ETS model incorporates environmental

influences into is representations, the unit constraint provides a natural mechanism

for handling the presence of ”noise” (primitives contributed by other generating

systems).

The sequence of abstract primitive indices stored in UCON, after the memory ref-

erence to FR, are used by FR and their ordering is meant to serve as a mechanism

for specifying of formation rules. FR is tentatively implemented as a “hardwired

mapping” from an index to a set of concrete primitives stored in memory, see Fig.

4.8. Notice the shaded ellipses emphasizing the correspondence between the data

set, used to model the unit-constraint ADT (c.f. Fig. 4.7), and the data structure.

Also, shown in Ibid. is an example of how FR may be specified via explicit ordering

of abstract primitive indices and a “hardwired mapping”.

FR : N|Π| → Π× Π× . . .× Π .

4.2.3 Active structural constraint ADT

The concepts of structural constraint and active structural constraint are very sim-

ilar, and differ only with regard to markings on primitives (active constraints mark

primitives as anchors or open, whereas the former concept does not). Implementation

of the active structural constraint will be discussed here, since the implementation

of the “inactive” structural constraint can be deduced (simply disregard discussion
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Figure 4.8: Pictorial illustration of the Primary Primitive data structure, as an ex-
tension of the Primitive data structure with the addition of a single two-dimensional
array called UCon.
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related to primitive markings).

An active structural constraint may be thought of as a tuple of unit-constraints, cf.

[2, Def. 10]. In addition to the tuple of unit-constraints are two relations over the

set of pivot primitives, denoted Π. The pivot primitives may be derived from the

constraint’s tuple of unit-constraints or their diagrams (being the only primitives

shown), cf. Fig. 4.9 and [2, Def. 11]. One subset is called the set of anchor

primitives, denoted Π
anc

where Π
anc ⊂ Π, and the other is called the set of open

primitives, denoted Π
opn

such that Π
opn ⊂ Π.

Since structural constraints are more or less a tuple of unit-constraints, it is important

to recognized that the connections between the given pivot primitives of a constraint

are also implicit, and so do not represent structs explicitly. Instead the structural

constraint specifies a family of structs sharing a structural “backbone”.

The active structural constraint ADT is also simple and consists of a single operation,

called active extension,

Ext(σw, ACon) ,

and is defined in the following way. An active extension, produces a struct that

satisfies the given constraint, assembles to the given working struct and adds at

least one additional primitive to the working struct.

4.2.4 Active structural constraint data structure

Like the Struct data structure, the Active (Structural) Constraint data structure is

implemented using a queue whose elements are lists of Primary Primitive’s. Also,

like the Struct data structure, the lists’ position types are char[ ]’s such that each

Primary Primitive is positioned by its own uniquely identifying label.

The implementation of the active structural constraint data structure, also consists
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Figure 4.9: Pictorial illustration of a single active structural constraint (left) and an
active struct (right), which satisfies it.
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of a table called Marks

Marks : char[ ] → {0, 1} × {0, 1} ,

such that, given some Primary Primitive label, Marks returns one of the following

pairs: 〈0, 0〉, 〈1, 0〉, 〈0, 1〉 and 〈1, 1〉. The first pair signifies that the primitive is not

marked, the second that the primitive is marked as an anchor, the third that the

primitive is marked as open, and the last signifies that the primitive is marked as both

an anchor and open. Note that since the implementation of non-active structural

constraint is accomplished minus the table Marks, the Active Constraint is defined

as a pair of data structures:

ActiveConstraintADT ACon = 〈 ConstraintADT Con, char[][] Marks 〉 ,

where the non-active structural constraint, Con, is the queue of lists, cf. Fig. 4.10

(notice that a dashed ellipse is used to emphasize that a particular unit-constraint

is being stored within a Primary Primitive, pi3k, data structure.)

4.3 Single-level class generating machines

The previous two sections introduced tentative abstract data types and data struc-

tures developed to store and manipulate ETS structs and structural constraints.

Introduced next is an abstract data type for class representation and a finite state

machine used to implement the ETS concept of class generating system.
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Figure 4.10: Pictorial illustration of an implementation of the Active Structural
Constraint ADT, using a queue and lists of Primary Primitive’s, where the lists
position their elements according to the Primary Primitive’s label.

57



4.3.1 Class representation ADT

A (level 0) Class Representation, R, consists of three components, c.f. [2, Def. 13],

two sets of constituent primitives (referred to as pivot and noise primitives), and a

step-wise generating system specification, denoted GR. Each step of GR consists

of a set of active structural constraints, cf. Fig. 4.11 (notice that all the concrete

primitive labels are included, along with all the primal subclass labels).

Figure 4.11: Pictorial illustration of the “Final Leg” level 0 class representation.

At least one operation on class representations may be identified, that of class
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element generation. A class element is not generated per se, but rather an ETS

struct is produced. The generation of ETS structs is accomplished via the previously

described Active Extension operation over Active Constraints and a given (Active)

Struct. The idea is that an entire class element, or Struct, may be generated by

actively extending the working struct with Active Constraints from the given class

generating system specification.

4.3.2 Struct generating machines

Finite State Machines are abstract machines that may be described as defining a

regular language, such that a string of symbols called a word is written on the

machines tape, which is then read, symbol-by-symbol, until the end of the tape is

reached. If the machine is in an accept state, when the end of the tape is reached

then the language defined by the machine contains the word, otherwise the language

does not contain the word and is rejected.

On the other hand if the machine’s tape is viewed as an “output” tape, we can say

the automaton generates a regular language (a set of words). It is along this line of

thinking that it was decided to use automata as a model for describing the behavior

of the class generating system.

Since, the sets of constituent primitives mentioned above are implicit in the speci-

fication of unit-constraints, a single data structure is needed to store the (partial)

generating system specification needs. The structure used to implement the concept

of class representation the nondeterministic finite state machine (NFSM) with an

output tape (instead of an input tape). The NFSM model of a class generating

system is defined as the following tuple

〈Λ, Q, q0, δ, F 〉

59



and referred to as Struct Generating Machines for Level 0 Classes cf. Fig. 4.12, such

that:

• The union of the initial working struct σw and ε with the cartesian product

of the Active Extension operator /
Ext

and the union of the sets of Active Con-

straints, in GR, defines the “output” alphabet, denoted Λ

Λ = {σw, ε} ∪ { /
Ext
} ×

8<:[
j

§
AConj,i(Πj,i,UT j,i,Π

anc
j,i ,Π

opn
j,i )

ª
i∈Ij

9=; .

• For each element of Q there is a set of Active Constraints associated with it

that may be written to the output tape, as e.g. /
Ext

AConi, this relationship

represents a surjection of states over actions, denoted ω, ω : Q → Λ, similar

to that of the generating system specification, i.e.:

GR(j) →
¨

AConj,i(Πj,i,UT j,i,Π
anc
j,i ,Π

opn
j,i )

«
i∈Ij

.

• The state transition relation δ, δ : Q × (ω(Q) ∪ {ε}) → Q may be visualized

as a directed graph or table, see Fig. 4.12.

• The automata starting state in class generating machines corresponds to the

initial environmental step whose action results in the formation of the “initial

piece” of the working struct σw.

• The automata accept states in class generating machines corresponds to a

tentative terminating condition. Since, formally the terminating conditions for

class generating systems are not specified, it seems natural to assume that when

each step of the generating system specification has been taken, the generating

system has since completed the structure it was generating.
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Figure 4.12: Pictorial illustration of the “Final Leg” Level 0 Struct Generating Ma-
chine.
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4.3.3 Class element generation

A single operation is specified over Class Representations called class element gener-

ation, or Gen. The operation Gen takes a Struct Generating Machine M and generates

a string like the following:

Gen(SGM M) = σw /
Ext

ACon4 /
Ext

ACon5 /
Ext

ACon8 /
Ext

ACon11 ,

which represents a series of active extension operations (note that these extension

operators are associative but not commutative). The result of these active extensions

is a class element struct, γ:

γ = Gen(SGM M) = σw /
Ext

ACon4 /
Ext

ACon5 /
Ext

ACon8 /
Ext

ACon11

⇒ Ext( Ext( Ext( Ext(σw, ACon4), ACon5), ACon8), ACon11)

⇒ A(T1, T2, T3, T4)

Moreover, the environmental actions are incorporated into the implementation of

struct generating machines, and it is accomplished by having each machine share the

same “output” tape, e.g.

Gen(SGM M) = σw /
Ext

ACon4 /
Ext

AConE /
Ext

ACon5 /
Ext

ACon8 /
Ext

ACon11 .

4.4 Spatial instantiation

In [2, p. 12], the process of spatial instantiation is described as follows:

What is the relation between a “physical” object and its event-based

representation? We hypothesize that a “physical” object is a physical
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instantiation of its event-based (informational) representation, i.e., as

each event is being played out, the physical “flesh” is automatically being

put on the informational “bone”.

The following implementation of the spatial instantiation process, takes the phrase

“as each event is being played out, the physical ‘flesh’ is automatically being put on

the informational ‘bone”’, literally.

To implement a process that fleshes out the informational “bone” a deterministic

system was envisioned, such that for each primitive read in a struct one or more

3D models are transformed. In contrast to the single-tape NFSM’s used to model

struct generation, a dual-tape deterministic finite state automata is used such that

one tape serves as input and the other as output for the automata. These machines

are called transducers, and are considered to compute relations between two formal

languages [5]. However, instead of computing relations between formal languages, a

computation of the relationship between an ETS struct and a physical object is de-

sired. Remember that the Bubble Man informational structure is a struct generated

from class description, and so is composed of many primal processes, which appear,

disappear, grow and interact with each other. For each primal process a finite state

transducer is defined. (Examples of finite state transducers and their run-times are

shown in Fig.’s 4.13–4.16.)

The interface between the Bubble Man struct and the system of “Bubbles”, is mod-

eled as a system of transducers, independently translating a single struct into the

various series of rendering and growth instructions that create and transform each

primal process. These instructions form an implementable interface that is imple-

mented by each “Bubble” using “Microsoft’s XNA content pipline”. Also note that,

the transducers forming the Event-Object interface are made to share a single in-
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put tape, which yields an interesting one-to-many relationship2 between temporal

representation and the process of spatial instantiation.

4.4.1 Finite state transducers

Given a particular primal process, e.g. Head, a finite state transducer may be

defined as the tuple

〈Q, q,Π,Λ, F, δ, ω〉

• The set of states Q correspond to the several states of deformation for Head,

cf. Fig. A.4.

• The set q, a subset of Q are the initial states and correspond to the primitive(s),

which instantiate the primal process, e.g. those primitives that represent a

division of the single Head-Neck primal process into the two primal processes

Head and Neck.

• The input alphabet, Π, is the set of applicable concrete primitives, such that

they may instantiate or deform the Head.

• The output alphabet, Λ, may be thought of as an interface or “instruction set”

for Bubble Man primal process simulators, consisting of three operations/in-

structions: Grow, Render, and a null/no-op operation, denoted φ, such that

further action by the simulator is suspended, e.g. when a primal process di-

vides simulation of that process is no longer required, but rather another two

simulators are needed to simulate the resulting two processes.

• The set F is a subset of Q, called the final states, which correspond to either the

indefinite suspension of primal process simulation or its indefinite rendering,

2This sort of relationship has exciting implications in biology, with regard to DNA and gene
expression cf. [6].
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i.e. the primal process can no longer change, but will continue to exist, or

continue to be simulated in its current state of deformation.

• The transition relation, mapping a given state and a primitive to another state,

is defined as

δ : Q× Π→ Q

• The output function, mapping a given state to a particular output symbol, is

defined as

ω : Q→ Γ

4.4.2 Spatial instantiation example

The following figures illustrate the transduction of the Bubble Man Final Arm struct

γ. The first figure, Fig. 4.13, is a pictorial illustration of four transducers used to im-

plement the event-object interface used to spatially instantiate structs. Surrounding

each transducer are shapes that are spatially representative of each primal process.

Note that the shapes appearing before and after short arrows represent a deformation

process, i.e. growth.

In the following example, a struct γ is given and it is spatially instantiated by the

system of transducers, which invoke operations specified in Γ and implemented by

each of the three “bubbles” shown in the “Object Environment” of Fig.’s 4.14–4.16.

These three figures, illustrate four transductions of the final three primitives in γ.

The results of each transduction are realized by the various “bubbles” comprising

the “Bubble Man’s” right arm.
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Figure 4.13: Pictorial illustration of four level 0 time-space transducers corresponding
to four primal processes: All, Aul, hl and fal.
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Figure 4.14: Pictorial illustration of four transducers simultaneously transducing the
third primitive of the level 0 struct γ, V2.
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Figure 4.15: Pictorial illustration of four transducers simultaneously transducing the
fourth primitive of the level 0 struct γ, GE2.

68



Figure 4.16: Pictorial illustration of four transducers simultaneously transducing the
fifth primitive of the level 0 struct γ, GH1.
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Chapter 5

Conclusion

5.1 Summary

An implementation of a system of ETS class generating systems was accomplished

by modeling each class generating system and its specification as a nondeterministic

finite state machine, which shares the same output tape as the other machines in the

system. Implementation of the process of spatially instantiating an ETS struct was

accomplished by modeling the interface between the concepts of object environment

and event environment as a system of finite state transducers that share the same

input tape. Essentially, the shared output tape of the class generating systems is

spliced to the shared input tape of the finite state transducers, so that the struct

produced by the system of class generating systems is transformed into many se-

quences of instructions (i.e. programs). The output tape alphabet defined by the

transducers, may be thought of as an “instruction set” for the “programs” produced

by the transducer. Finally, the “instruction set” defined by the transducers is im-

plemented by several programmable objects, each representing a particular primal

process. The result is a system of programmable objects that execute the programs
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produced by the transducers.

In order to apply these developments, I have modified a simple illustrative example

of an ETS (multi-level) class, developed for [2] and referred to as the “Bubble Man”

class. Essentially, a system of the single-level class generating systems, from which,

higher-level Bubble Man class generating system is recursively defined, systematically

generated structs representing various Bubble man class instances. These structural

representations were then spatially instantiated via a system of finite state transduc-

ers (whose output tapes consisted of “instructions” such as “grow”, “render” and

“no-op”), such that the result of each transducer, given a structural representation

of the Bubble Man, is a sequence of growth and render instructions. Each such

growth-render sequence, is executed by an object that manipulates a 3D computer

model of a sphere. The result is a system of “bubbles” that combine to form a 3D

representation of the Bubble Man instance.

In conclusion, it appears that ETS temporal representation is more basic than spatial

representation, since such temporal representation records nothing more than the

interactions between a system of objects. Also, in terms of “spatial instantiation”,

ETS temporal representation encodes sufficient information to reconstruct an entire

system of objects, from which, a spatial representation may be generated via the

process of spatial instantiation.

5.2 Contribution

The main contribution of this thesis work is a conceptual illustration of two difficult

to understand concepts, such that, ETS structs in relation to spatial representation

are more basic. Secondly, ETS temporal representation may be “spatially instanti-

ated” into a more familiar form of representation.
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In more concrete terms, this thesis work extended the 2D illustrative examples of

class representation, in [2, Sec. 8], referred to as the class of “2-dimensional bubble

men”, to set of class representations more suitable for implementation. More specif-

ically, the class representations taken from [2] were incomplete, since they were not

intended for implementation. This required a significant amount of effort to correct

and modify some of the class representations in order to obtain class generating sys-

tem specifications that would ultimately generate structs correctly and also interact

with each other appropriately. Also, rather than reproduce the 2D shapes of “bubble

men” given in [2, Sec. 8], 3D models were generated. The 3D models were gener-

ated systematically by implementing a system of 3D models called “bubbles” using

the “XNA framework content pipeline” and a system of finite state transducers for

spatially instantiating the ETS structs.

In order to obtain structs of bubble men, an initial set of ADT’s and data structures

for primal classes, primitives, structs, and constraints were implemented. The “bub-

ble man” class generating system specifications obtained by extending the original

set in [2, Sec. 8], were also implemented, as struct generating machines. Then, using

a sequence of queues, a bubble man structural representations were generated for

spatial instantiation. Two structs generated by the software system and their spa-

tial instantiation into 3D models are shown in the following figures, Fig.’s 5.1 and

5.2.

Notice the significant difference in complexity of the structs generated between these

figures. The first figure shows that the struct represents a “smaller” Bubble Man

instance, and the second struct represents a “bigger” Bubble Man instance, also see

Fig. 5.3 for a closer comparision. (The second “Bubble Man” has a larger torso,

longer arms, longer feet and larger and longer legs.) The reason the second “Bubble

Man” is bigger is apparent from the struct, there are more growth events encoded

in the second struct than in the first.
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Figure 5.1: Pictorial illustration of a “Bubble Man” struct and its spatial instantia-
tion
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Figure 5.2: Pictorial illustration of another (larger) “Bubble Man” struct and its
spatial instantiation.
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Figure 5.3: Pictorial illustration of the two “Bubble Men” spatial instantiations.

5.3 Future work

In this thesis, the “Bubble Man” class is referred to as a “system of classes”, however,

the ETS formalism contains a concept referred to as “higher-level classes” (or k-

level classes, k >= 2). These classes are recursively defined in terms of lower-level

classes, such that, a two-level (level 1) class is defined in terms of single-level (level

0) classes, a three-level (level 2) class is defined in terms of two-level (level 1) classes,

and so on. For each level, e.g. k, of class representation there are level k structs,

structural constraints, class generating systems and other related level k concepts

defined. Future work is required in this area of ETS, and should not only involve

the design and implementation of ADTs and data structures but should also involve

a study into how and what it means to spatially instantiate higher-level (level k)

structs.

Besides further refinement and implementation of the ETS formalism, the area for fu-

75



ture work most critical to the dissemination of the ETS framework is (of course) con-

crete applications. The list of potential application areas contains a broad spectrum

of exciting areas in science. More specifically, the application areas for ETS range

from machine learning and pattern recognition [7, 8] to decision and risk analysis[9]

to developmental biology [6].
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Appendix A

Appendix: Other class

representations

Figure A.1: Pictorial description of R1, the level 0 class representation of Initial
Division, also denoted C1.
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Figure A.2: Pictorial description of R2, the level 0 class representation of Upper
Part, also denoted C2.

Figure A.3: Pictorial description of R3, the level 0 class representation of Lower
Part, also denoted C3.
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Figure A.4: Pictorial description of R8, the level 0 class representation of Head,
also denoted C8.

Figure A.5: Pictorial description of R9, the level 0 class representation of Neck, also
denoted C9.
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Figure A.6: Pictorial description of R5, the level 0 class representation of Proto
Limb, also denoted C5.

Figure A.7: Pictorial description of R6, the level 0 class representation of Final
Arm, also denoted C6.
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Figure A.8: Pictorial description of R1
1, the level 1 class representation of Proto

Body, also denoted C1
1.

Figure A.9: Pictorial description of R1
3, the level 1 class representation of Arm, also

denoted C1
3.

Figure A.10: Pictorial description of R1
6, the level 1 class representation of Head-

Neck, also denoted C1
6.
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Appendix B

Appendix: Algorithms

B.1 Struct Link algorithm

The first operation Struct Link, or SL, is a modification of CL, such that given

the same four-tuple, e.g. 〈πia, ui, πjb, vj〉, SL will only store a class link between

the primitives if it does not invalidate the struct, see ADT and Alg. B.1. In this

algorithm Ibid., besides disallowing the multiple connections from a single primal

process, temporal order is considered, such that if the second primitive, of the four-

tuple, is an event which occurred earlier (or in parallel to) the first primitive, then

the struct link is invalid. Note that labels are assumed to be unique1 in a given

struct (each primitive in the struct has a unique label), also the operation SL does

not add primitives to a struct rather it states their interconnections.

SL(LinkedPrimitiveADT P, int u, LinkedPrimitiveADT Q, int v,

StructADT S)

LinkedPrimitiveADT p, q ⇐ Null

for i ⇐ 1 to Size(S.Queue) do

1This is a reasonable assumption since labeling is accomplished during the sensing process, if
the same (exact) event is observed at two different times then there is a problem with the sensor.
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List list ⇐ Front(S.Queue)

Dequeue(S.Queue)

Enqueue(list, S.Queue) //S.Queue is never emptied!

bool ll ⇐ false // flag for parallel events

if p = Null then

p ⇐ Retrieve(P.Label, list)

if p 6= Null then

ll ⇐ true

if p 6= Null, ll = true, and q = Null then

q ⇐ Retrieve(Q.Label, list)

if p 6= Null, and q 6= Null then

if p.Output[u][1] = Null and q.Input[v][1] = Null then

CL(p, u, q, v)

B.2 Primitive attachment algorithm

The second operation, also shown in Fig. 4.6, is the attachment of primitives to a

struct. The following algorithm, given two primitives, e.g. P and Q, first generates

the struct links2 between the given primitives:

int[ ][ ] links

int indx ⇐ 1

for u ⇐ 1 to Length(P.Term) do

for v ⇐ 1 to Length(Q.Init) do

if P.Term[u] ≡ Q.Init[v] then

2Plurality of struct links is used here, but it ultimately depends on the specification of the
“sensor” (software system) applying this operation, one sensor might be designed to observe all
possible connections between two primitives, or it may be restricted to observing particular kinds
of “connections” (i.e. primal class elements).
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links[indx] ⇐ { u, v }

indx++

Then, if the queue is empty the first primitive is added to a list and pushed onto the

queue, followed by the second primitive:

for i ⇐ 0 to Length(links) do

SL(P, links[i][1], Q, links[i][2])

List l, ll ⇐ new lists

Insert(P, P.Label, l) //Insert P at position P.Label

Insert(Q, Q.Label, ll) //Insert Q at position Q.Label

Enqueue(l, S.Queue)

Enqueue(ll, S.Queue)

In the case where the first primitive is already present in the structure, then this prim-

itive is located. The struct links generated3 between the first and the second primi-

tive, still apply for the primitive already present in the struct.

LinkedPrimitiveCDT p, q ⇐ Null

for i ⇐ 1 to Size(S.Queue) do

List list ⇐ Front(S.Queue)

Dequeue(S.Queue)

Enqueue(list, S.Queue) //S.Queue is never emptied!

if p = Null then

p ⇐ Retrieve(P.Label, list)

if q = Null then

q ⇐ Retrieve(Q.Label, list)

if p 6= Null and q = Null then

3It is not necessary to check if a struct link may be added between two primitives since the design
of (relevant) sensors should specify when and where connections are added between primitives. In
other words, struct links are not incidental, but appear by specification of the sensor.
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for j ⇐ 1 to Length(links) do

SL(p, links[j][1], Q, links[j][2])

List l ⇐ new list

Insert(Q, Q.Label, l) //Insert Q at position Q.Label

Enqueue(l, S.Queue)

In the case where both primitives are already present in the structure, then attach-

ment is reduced to a series of SL operations.

for j ⇐ 1 to Length(links) do

SL(p, links[j][1], q, links[j][2])

In the case where both primitives are not present in the struct and the struct is not

a null struct, then the primitives are not attached, since the result of the operation

would lead to an inconsistent view of reality.

B.3 Single-level substruct algorithm

Given two structs σ1 and σ2, implementation of the substruct operation between

these to structs, e.g. σ1 b σ2, involves iteration of the first struct data structure at

most once and of the other at least once, such that each primitive of the “substruct”

(σ1) is checked against those of “superstruct” (σ2). If a matching primitive is found in

σ2, then the struct links stored in the primitive of the first struct are tested against

those stored in that primitive of the second struct (see Alg. B.3.) If there is at

most one primitive or one struct link, from the first struct, not found in the second

struct, then σ1 is not a substruct of σ2 and the algorithm immediately terminates

and returns false. Otherwise the first struct is a substruct of the second struct, and

the substruct operation returns true.

Substruct(StructADT S, StructADT T):bool
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for i ⇐ 1 to Size(S.Queue) do

List list1 ⇐ Front(S.Queue)

Dequeue(S.Queue)

Enqueue(list1, S.Queue) //S.Queue is never emptied!

for all LinkedPrimitiveADT p ∈ list do

for j ⇐ 1 to Size(T.Queue) do

List list2 ⇐ Front(S.Queue)

Dequeue(S.Queue)

Enqueue(list2, S.Queue) //S.Queue is never emptied!

LinkedPrimitiveADT q ⇐ Retrieve(p.Label, list2)

if q 6= Null then

for k ⇐ 1 to Length(p.Input) do

if p.Input[k][1] 6= Null and (p.Input[k][1] 6= q.Input[k][1]

or p.Input[k][2] 6= q.Input[k][2] ) then

return false

for k′ ⇐ 1 to Length(p.Output) do

if p.Output[k′][1] 6= Null and (p.Output[k′][1] 6=

q.Output[k′][1] or p.Output[k′][2] 6= q.Output[k′][2] ) then

return false

if q = Null then

return false

return true

B.4 Single-level assembly algorithm

Finally, the last operation identified over structs is that of struct assembly. Struct

assembly is an important operation as it is how class elements are built from class
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representation, i.e. class elements are, generally, not built from a series of simple

attachments. The idea for this algorithm originated in using an analog watch, or

wall clock, as a guiding metaphor for the struct data structure, see Fig. B.1. The

reason for such a metaphor, is that the time intervals, especially on analog watches,

are not the same for all such watches, e.g. some watches represent intervals4 of five

minutes, some minutes, and some may only have a single marking for the twelfth

hour for representing intervals of an hour.

Figure B.1: Pictorial illustration of three (analog) clock faces.

Visually, the assembly of, say, two structs is accomplished by superimposing one

onto another usually requiring a slight adjusting of a few primitives to make the

whole thing fit, see Fig. B.2. Notice how the primitive π2a in the first struct is

represented in parallel to π3n, and in the second struct, β is represented as a later

event. To assemble these two structs, visually, is to superimpose one on top of the

other, in order to do this π2a must be adjusted slightly (according to the temporal

information implicit in struct β). Interestingly, such adjustments do not invalidate

the struct but rather increase its informational content. Technically assembly is the

unions of both the sets of primitives and the sets of struct links, so long as the result

of such unions is a valid struct, however, there is another sort of union achieved as a

result, and it is the union of temporal content (or the partial orderings of primitives

in both structs).

4Intervals are evaluated relative to the minute hand.
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Figure B.2: Pictorial illustration of two structs α and β and their assembly.
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Thus, like the face of an analog watch, a struct represents time intervals5. The

relevance of the watch metaphor, now, has to do with the reconciliation of temporal

information between structs before they can be assembled, i.e. the intervals in which

primitives are located relative to one another is important. This reconciliation can

be understood by example: given two watches, they both represent intervals of

fifteen minutes, however, the second watch has special purpose such that the second

fifteen minute interval is divided further into five minute intervals. This refinement

clearly represents those fifteen minutes of an hour more precisely, this is the same

situation with structs. Structs with more primitives in parallel have less temporal

information then the struct composed of the same primitives but represents them in

sequence implying a partial order not present in the first. Reconciling the differences

between the watches only requires the same interval to also be divided into five

minute intervals, with the important benefit of not interfering with the rest of the

watch, i.e. time can still be read consistently. The same goes for the structs such

that if one struct contains a pair of primitives in parallel and another contains the

same primitives but has recorded one before another, then the primitives may be

adjusted like-wise, resulting in a refinement of time representation, i.e. where the

was only one interval now there is two and the struct remains consistent with reality

(cf. Fig. B.2).

B.4.1 Reconciling partial orders between two structs

Reconcile(StructADT S, StructADT T)

Enqueue(Null, S), Enqueue(Null, T)

while Front(S.Queue) 6= Null do

List list ⇐ Front(S.Queue)

5Of course, the time intervals represented in a struct are not necessarily uniform like those of
a watch.
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Queue q ← new queue

while Front(T.Queue) 6= Null do

List list’ ⇐ new list

for all LinkedPrimitiveADT p ∈ Front(S.Queue) do

LinkedPrimitiveADT p’ ⇐ Retrieve(p.Label, Front(T.Queue))

if p’ 6= Null then

Insert(p, p.Label, list’)

Delete(p.Label, list

Enqueue(list’, q)

Enqueue(Front(T.Queue), T.Queue) //‘‘spinning the queue’’

Dequeue(T.Queue)

for all LinkedPrimitiveADT p ∈ list do

Insert(p, p.Label, Front(q)) //maintain temporal order

of ‘‘other’’ primitives

Dequeue(S.Queue)

while Front(q) 6= Null do

Enqueue(Front(q), S.Queue) //‘‘slight adjustments’’

Dequeue(q)

B.4.2 Assembly of two structs

Assembly(StructADT S, StructADT T):StructADT

StructADT S’ ⇐ S, StructADT T’ ⇐ T

StructADT U ⇐ new struct

while Front(S’.Queue) 6= Null do

List list1 ⇐ Front(S’.Queue)

Queue q1 ← new queue

while Front(T’.Queue) 6= Null do
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Queue q2 ← new queue

bool sync ⇐ false

for all LinkedPrimitiveADT p ∈ list1 do

LinkedPrimitiveADT p’ ⇐ Retrieve(p.Label, Front(T’.Queue))

if p’ 6= Null and Superimpose(p, p’) 6= false then

Delete(p.Label, Front(T’.Queue))

sync ⇐ true

Enqueue(Front(T’.Queue))

Dequeue(T’.Queue)

if sync = false then

Enqueue(list1, q1)

while Front(q2) 6= Null do

Enqueue(Front(q2), T.Queue)

Dequeue(q2)

else

Reverse(q1), Reverse(q2)

q3 ⇐ new queue

while Front(q1) 6= Null or Front(q2) 6= Null do

list ⇐ new list

if Front(q1) 6= Null then

for all LinkedPrimitiveADT p ∈ Front(q1) do

Insert(p, p.Label, list)

Dequeue(q1)

if Front(q2) 6= Null then

for all LinkedPrimitiveADT p ∈ Front(q2) do

Insert(p, p.Label, list)

Dequeue(q2)

93



Enqueue(list, q3)

Reverse(q3)

while Front(q3) 6= Null do

Enqueue(Front(q3), U.Queue)

Dequeue(q3)

return U

B.5 Active extension algorithm: generating struc-

ture to specification

The algorithm for generating an active extension, given an active struct and an

active constraint, e.g. Ext(ActiveStructADT S, ActiveConstraintADT ACon), is

described as follows.

B.5.1 Iterating through the constraint data structure

To generate an active extension of the given struct satisfying a particular constraint,

is simply a matter of generating simpler structs satisfying each unit-constraint while

incorporating the given struct’s primitives as noise.

while Front(ACon.Queue) 6= Null do

for all UConPrimitiveADT p ∈ Front(ACon.Queue) do

...

Remember that the unit-constraints are not stored individually, but in an array of

unit-constraints which, itself is stored within the shared primary primitive. Thus,

to access each unit constraint, one must iterate through the unit-constraint array,

p.UCon:
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for i ⇐ 1 to Length(p.UCon) do

...

Then, one must iterate through each unit-constraint p.UCon[i], to first find the

reference to FR in memory, then to find the sets of admissible noise primitives and

then (at the second last step of iteration) the secondary primitive in tandem with

its index.

LinkedPrimitiveADT[ ][ ] p.FRi ⇐ p.UCon[i][1]

...

for j ⇐ 2 to Length(p.UCon[i])−2 do

...

B.5.2 Assembling pivots to existing structure

Before generating structure, there are two special cases in the assembly of the sub-

structures, specified by p.UCon[i], to (active) struct T. Unit-constraints specify

which terminal and initial primal process of its pivot elements the resulting struc-

ture is connected to, as can be seen in Fig. 4.7, this is handled next. More specifically,

the primary primitive must superimpose with an equivalent primitive from the given

active struct S if it is marked as an anchor, furthermore the equivalent primitive

found in S must have an open marking for superimposition to be possible. If the

primary pivot is not an anchor, it may still be superimposed on the given active

struct (only if the equivalent primitive is marked open) or on a pivot primitive from

the extension (also only if the equivalent primitive is marked open), otherwise the

algorithm is flagged to fail since the pivot primitive can not be assembled to the

existing structures.

LinkedPrimitiveADT p’ ⇐ new linked primitive 〈 p.Name, p.Init, p.Term,

p.Label 〉

95



LinkedPrimitiveADT a ⇐ Find(p’, S)

LinkedPrimitiveADT b ⇐ Find(p’, T)

if p.Marks[p.Label][1] = 1 then

if a 6= Null and S.Marks[a.Label][2] = 1 then

FAIL ⇐ Superimpose(p’, a)

T.Marks[p’.Label][2] ⇐ p.Marks[p.Label][2]

else

FAIL ⇐ true //anchor not found, or open for superimposition

else

if a 6= Null then

FAIL ⇐ Superimpose(p’, a)

T.Marks[p’.Label][2] ⇐ p.Marks[p.Label][2]

else if b 6= Null then

FAIL ⇐ Superimpose(p’, b)

T.Marks[p’.Label][2] ⇐ p.Marks[p.Label][2]

else

FAIL ⇐ true //pivot not assembled to existing structure

It is a similar situation for the secondary pivot, while the first pivot primitive from

the unit-constraint primitive must either superimpose with equivalent primitives

from the given struct or the extension under construction, the secondary pivot

may be assembled to existing structure or be attached. Therefore, the algorithm

is not flagged to fail, if the secondary element is not present in the existing struc-

ture.

UConPrimitiveADT q ⇐ p.UCon[i][Length(p.UCon[i])−1]

int v ⇐ p.UCon[i][Length(p.UCon[i])]

...

q’ ⇐ new linked primitive 〈 q.Name, q.Init, q.Term, p.Label 〉
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LinkedPrimitiveADT a ⇐ Find(q’, S)

LinkedPrimitiveADT b ⇐ Find(q’, T)

if p.Marks[q.Label][1] = 1 then

if a 6= Null and S.Marks[a.Label][2] = 1 then

FAIL ⇐ Superimpose(q’, a)

T.Marks[q’.Label][2] ⇐ p.Marks[q.Label][2]

else

FAIL ⇐ true //anchor not found, or open for superimposition

else

if a 6= Null then

FAIL ⇐ Superimpose(q’, a)

T.Marks[q’.Label][2] ⇐ p.Marks[q.Label][2]

else if b 6= Null then

FAIL ⇐ Superimpose(q’, b)

T.Marks[q’.Label][2] ⇐ p.Marks[q.Label][2]

B.5.3 Connecting primary pivot primitives to FR-specified

substructure

With regard to regular structural constraints and extension, the above discussion

regarding primitive markings can be ignored. However, in both cases structural

constraint pivot primitives must have specific connections to the structures being

constructed per each unit-constraint.

for i ⇐ 1 to Length(p.UCon) do

for j ⇐ 2 to Length(p.UCon[i])−2 do

...
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LinkedPrimitiveADT p’ ⇐ new linked primitive

〈 p.Name, p.Init, p.Term, p.Label 〉

...

indx ⇐ 1

if p’.Label 6= p.Label then

repeat

r ⇐ p.FRi(p.UCon[i][j])[indx]

r’ ⇐ Find(r, S)

if r’ 6= Null then

int[ ][ ] links ⇐ Links(p’, r’)

if Length(links) > 0 then

u ⇐ −1

for all int[ ] link ∈ links do

if link[1] = i then

SL(p, i, r’, link[2])

else

FAIL ⇐ true

else

FAIL ⇐ true

Attach(p’, r’, T) //Build active extension T

p’ ⇐ r’

indx+ +

until p’.Label 6= p.Label

else

... //General algorithm specified above

...
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B.5.4 Generating substructure according to formation rules

For each step of iteration, j(2 ≤ j < Length(p.UCon[i])−2), a set of admissible

concrete (noise) primitives may be generated using FRi. These must also be iterated

and matched against the given active struct S, since if any of these concrete noise

primitives are found in S, then they will compose (with possibly other noise primi-

tives) the simple structure formed between two pivot primitives—such structures are

implied by the shaded ellipses shown in Fig.’s 4.7 and 4.9.

In general, the structures specified between each pivot primitive of a constraint, is

generated as follows:

for i ⇐ 1 to Length(p.UCon) do

for j ⇐ 2 to Length(p.UCon[i])−2 do

...

for all LinkedPrimitiveADT r ∈ p.FRi(p.UCon[i][j]) do

LinkedPrimitiveADT r’ ⇐ Find(r, S)

if r’ 6= Null then

Attach(p’, r’, T) //Build active extension T

p’ ⇐ r’

...

B.5.5 Connecting secondary pivot primitives to FR-specified

substructure

Finally, the unit-constraint structure is completed when the secondary pivot primi-

tive LinkedPrimitiveADT q is attached:

for i ⇐ 1 to Length(p.UCon) do

for j ⇐ 2 to Length(p.UCon[i])−2 do

99



...

UConPrimitiveADT q ⇐ p.UCon[i][Length(p.UCon[i])−1]

int v ⇐ p.UCon[i][Length(p.UCon[i])]

...

q’ ⇐ new linked primitive 〈 q.Name, q.Init, q.Term, p.Label 〉

FAIL ⇐ Superimpose(q’, Find(q’, S))

FAIL ⇐ Superimpose(q’, Find(q’, T))

if p’.Label = p.Label then

SL(p’, i, q’, v)

if p’.Output[i][2] 6= v then

FAIL ⇐ true

else

Attach(p’, q’, T)

else

int[ ][ ] links ⇐ Links(p’, q’)

if Length(links) > 0 then

u ⇐ −1

for all int[ ] link ∈ links do

if link[1] = i then

SL(p, i, r’, link[2])

else

FAIL ⇐ true

else

FAIL ⇐ true

Attach(p’, r’, T)
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