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Abstract

This thesis presents an initial application of the Evolving Transformation System

(ETS) formalism to the structural representation of Russian fairy tales. This work

was motivated by the needs of information retrieval (IR) in general, but specifically

concentrates on proposing a new type of document representation. The new repre-

sentation is based on the temporal or constructive process of events that occur in the

mind of the “generic” fairy tale listener/reader.

Representing documents in this way yields several advantages to using ETS over

traditional IR techniques, such as being able to retrieve partial information from a

document (i.e. a single sentence or paragraph), fast searching by traversing the multi-

level hierarchial class structure generated by the ETS intelligent process, and locating

similar documents based on structural similarity rather than key words. Moreover, the

ETS formalism suggests an explanation for the mechanism behind plot anticipation

by an experienced reader as well as various levels of fairy tale conceptualization.

Using the ETS formalism and in-depth analysis of many fairy tales, we propose ap-

proximately 40 ETS primitives that make up the underlying structure of events for
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any Russian fairy tale. Using these primitive events, we develop the structural rep-

resentation of several story segments belonging to the same class, which we then use

to identify ETS transformations. Using these transformations, we develop the class

representation and demonstrate the ETS multi-level representation for this class of

fairy tale segments.
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Chapter 1

Introduction

Since the mass introduction of computers to the public, people have been waiting

for the day when a computer will “know” enough, so that it becomes easy to use.

Specifically, in information retrieval (IR), we want a smart computer to be able to

really know what it is searching for when it searches its memory [39]. It should be able

to search its memory using natural language, that is, the language we use in everyday

conversations. It should be able to understand the difference, based on context, when

we are searching for apple the fruit versus Apple the company. Finally, and perhaps

most importantly, it should be able to understand our search criteria well enough so

that it can retrieve what we want, rather than just what we say. However, after many

years of research, we still have not been able to fully address these issues or answer

many fundamental questions about language: How do we represent language? How

did language evolve? What parts of language are innate? How do children acquire

language? and How do we represent real world knowledge?

Most researchers in IR have concentrated on document retrieval, rather than the
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problems mentioned above [39]. This is somewhat understandable, as questions about

the nature of language representation are some of the most challenging questions

facing IR and language researchers today. Because of this difficulty, most researchers

have avoided addressing the issue by using ready-made statistical approaches based

on key word schemes. The emphasis of their work is on the classification of queries to

retrieve relevant documents, rather than on the representation of the data they are

searching, therefore, information is stored independent of meaning. However, without

a meaningful representation of the data a user wishes to search, it is not possible to

intelligently address the query. Moreover, Mandler states that [29, p. 20] “. . .meaning

does not exist until some structure is achieved and the case can be made that the

deeper the understanding of a domain the more abstract the structure that has been

uncovered or imposed.” It is this point that sets this thesis work apart from much of

the work currently being done in IR. In this thesis we are concerned with the data

representation, that is, how can we best organize and represent our data such that

the meaning of the data is structured in such a way that we can easily communicate

with it?

1.1 Motivation

This thesis introduces a preliminary IR application based on the Evolving Trans-

formation System (ETS) formalism [16]. For this preliminary application we used

Russian fairy tales as our data set. We attempted to address all issues surrounding

the problem of how one retrieves all relevant fairy tale segments based on input as

some query; however, as ETS is a new formalism, and as we are attempting to address
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the fundamental issue of data representation in IR, the concentration of the thesis is

on the representation of the fairy tales.

We chose the domain of fairy tales because it appears that both the structure and

semantics of fairy tales as “documents”1 are more pristine than those of many modern

documents (e.g. newspaper articles, web pages, and other documents). One of the

reasons why fairy tales are more enduring and more universal than many present

day documents is that their structure is less contaminated by various non-essential

expository elements so prevalent in modern documents. For example, a typical North

American newspaper article is full of insignificant details appearing almost randomly

in the text. In fairy tales, every event, character, and object is important to the

development of the plot. For instance, if the hero of the story picks up a rock while

travelling, the hero will participate in an event involving that rock later in the story.

Since all structural elements of fairy tales are semantically meaningful, they provide a

very good database for the investigation of various formalisms for information retrieval

(IR). Similar observations have been made by other researchers [18, 29].

1.2 Background

Currently, by far the dominant representational formalism in IR is the vector-space-

based formalism, that is, it is the choice formalism when it comes to the classification

of documents. What are the main deficiencies of this classification formalism? They

have to do with the inability of the vector-space formalism to deal with the fluent

nature of most documents. Most documents can only be understood if the sequence of

1The term “document” is used in this paper as a generic name for a record in a generic information
retrieval database.
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interconnected (often implicit) “events”—which are encoded in these documents—is

properly perceived: e.g. for a typical professor’s webpage, these events could be the

awarding of a PhD, courses taught, grants received, paper’s published, conferences

chaired, etc. The fluent nature of interconnected events in documents manifests the

following two facts.

The first fact has to do with one’s inability to enumerate, in advance, all possible in-

terrelationships that could exist between various events or features. This fact implies,

in particular, that one cannot deal reliably with the classification of new documents

involving new interrelationships between the events. This results in the brittleness

of the classification system: new interrelationships present in the document to be

classified often lead to misclassification of this document.

The second fact is related to the first one and has to do with the resulting necessity

to deal with very high dimensional space (which still cannot “capture” all possible

interrelationships). The implication of this fact is that one must now deal with

enormous computational complexity of the algorithms involved.

ETS is the first formalism specifically designed to address structural representation

in a more universal setting and with emphasis on classes of objects/events as the

main underlying concepts 2. As was mentioned in [16], “[o]ne can develop an initial

intuitive understanding of the proposed [ETS] representations by simply generaliz-

ing the process of construction/generation of natural numbers: replace the identical

structureless ‘primitives’ out of which numbers are build by various structural ones.”

Also,

2In what follows below, we will be using terminology introduced in [16].
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[t]he concept of class representation—which inspired and directed the de-

velopment of this formalism—differs radically from the known concepts

of class. Indeed, the evolving transformation system . . . is the first one

developed to support that concept; a class representation is a finite set of

weighted and interrelated transformations (“structural segments”), out of

which class elements are built.

The formalism [also] allows for a very natural introduction of represen-

tational levels: a next-level unit [i.e. primitive] corresponds to a class

representation at the previous level. [16]

In this thesis, we demonstrate that the ETS representational levels correspond and

clarify the levels of comprehension of the fairy tale reader.

In contrast to the vector-space-based formalism, the combinatorial explosion of var-

ious structural relationships is handled within ETS in a natural way: it is the class

description, i.e. class supertransform 3, that absorbs the combinatorial explosion of

the corresponding vector-space “features”. The class supertransform is composed of

constituent transforms, which are, roughly speaking, closely related structural seg-

ments in the object representation. In other words, the constituent transformations

encapsulate all inductive structural variation that one encounters in the document

segments.

One of the most important features of the ETS formalism is that it erases the differ-

ences between the syntax and semantics of the objects representation. Thus, for each

primitive, its syntax and semantics are indistinguishable and in view of the structure

3The class supertransform is constructed on the basis of the supertransform (see Chapter 3,
section 4) by abstracting away the supertransform’s site labels.
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of the formalism, this feature carries over to all of its concepts, i.e. to structs, trans-

forms, and other levels of representation. We believe this to be the first formalism

that possesses this feature.

1.3 Organization of the thesis

In Chapter 2, I discuss previous work done in IR and language representation. I

begin by discussing language representation in general (section 2.1), then I review

work done on story understanding systems and story representation (section 2.2),

and finally discuss the most popular approach to IR and representation, the vector-

based-space formalism (section 2.3). In each of the above mentioned sections, I review

the current work, and critically evaluate each approach.

The previous work section leads into Chapter 3 where I discuss the basics of the

ETS formalism. I first discuss some of the philosphical and motivational issues of

the formalism (section 3.1). Then, using non-formal language, I introduce all the

fundamental concepts of ETS, i.e. primitives, structs, transformations, supertrans-

formations, and class supertransformations. I discuss the multi-level structure of

ETS (section 3.5). Finally, I end the discussion by briefly introducing the intelligent

process (section 3.6), which is an unsupervised inductive learning algorithm.

After the introduction of the basic principles of ETS in Chapter 3, I introduce, in

Chapter 4, the ETS concepts in the context of this application, that is the repre-

sentation of fairy tales. First, I discuss some general ideas about story structure,

then introduce the initial level ETS fairy tale primitives (section 4.2). I then give
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example ETS structs (section 4.3) for several fairy tale segments. Based on the ex-

ample structs, I extract several transformations and demonstrate their corresponding

supertransformations (section 4.4). Then, using the supertransformations, I intro-

duce second level primitives (section 4.5) and give an example of a second level struct

representation of a fairy tale segment (section 4.6). I show two example second level

transformations based on the second level representations of the fairy tale segments

(section 4.7). I then discuss the validity of the proposed document representation

(section 4.8). I then compare this representation with previously introduced ideas

about story representation from Chapter 2 (section 4.9). Finally, I discuss some

limitations of the proposed representation, and how this could possibly be improved.

In Chapter 5, I discuss the fairy tale retrieval system. First, I discuss the preprocessing

system to automatically extract the ETS primitives from the fairy tale segments

(section 5.1). I begin this discussion by introducing the area of information extraction,

then I discuss current tools in this area, and finally discuss an experiment where I

use one of these tools to extract some primitives from a data set of fairy tales. After

this, I discuss the construction of the IR system based on the preprocessor and ETS

representation (section 5.2). Finally, I discuss some advantages that this system

provides over traditional IR techniques (section 5.3).

Finally, in Chapter 6, I end the thesis with conclusions and a discussion about future

directions and work. I also briefly discuss why learning is not covered in the thesis,

and what deficiencies of the current working version of ETS were discovered through

this application.
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Chapter 2

Previous work

2.1 Language representation

Generally, there are two philosophical approaches to linguistics, the rationalist ap-

proach and empiricist approach. Between 1960 to 1985, linguistics was mostly domi-

nated by the rationalist, where a rationalist believes that a significant part of knowl-

edge in the mind is not derived by the senses but is fixed in advance [28, p. 4]. The

reason for this dominance was partly due to the acceptance of Chomsky’s arguments

about an innate language faculty. An Natural Language Processing (NLP) researcher

may apply this philosophy by hard coding various knowledge and rules into their

system, and defend this by claiming that humans are born with similar knowledge

and rules.

Conversely, the empiricist does not believe that humans are born with such knowledge

coming hardwired; instead, they believe that we are born with general operations for
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association, pattern recognition, and generalization, and that these can be applied

to the sensory input available to the child to learn the detailed structure of natural

language [28, p. 5]. The empiricist philosophy was most popular from the 1920s to

1960 and is now gaining popularity again. In NLP, the empiricist approach would be

to specify a general language model, and then, based on that model and some pattern

recognition learning model, the complicated structure of language could be learned.

Linguistics, as a science, has primarily been concerned with the formal syntax of

language rather than with the semantics. This is because some linguists felt that

semantics or meaning could not be studied with scientific rigour in the same way as

linguistic sounds and forms [42, p. 3]. However, today, many linguists are attempting

to shift the field of linguistics back towards dealing with semantic issues. These par-

ticular linguists feel that “. . .meaning underlies language, not the other way around.”

[42, p. 21], therefore, in order to understand language, we must begin with meaning.

One such approach to dealing with meaning is the theory of semantic primitives.

These semantic primitives correspond to the basic elements in any language that

cannot be defined, and all complex meanings can be represented by these primitives.

Linguist Anna Wierzbicka and her group have been studying various languages over

the past 30 plus years in order to discover these primitives. They have been able to

locate, through in-depth analysis, around 55 semantic primitives that they believe

match across all human languages. Their hypothesis is that the semantic primitives

for each language are just one language-specific manifestation of a universal set of

fundamental human concepts [42, p. 13]. This hypothesis is based on the assumption

or belief that fundamental human concepts are innate, i.e. we are born with some

abstract representation of certain concepts, which we eventually map to labels/words
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as we acquire language.

This innate representation corresponds to what they term as a natural semantic met-

alanguage. This metalanguage is universal and language-independent. She states,

“the shared core of all languages can be seen as a set of isomorphic minilanguages,

which can be used as language-specific versions of the same, universal Natural Se-

mantic Metalanguage (NSM)” [42, p. 22]. Moreover, she believes that these semantic

primitives can be combined to express meaning:

. . . to say anything meaningful we need more than words: we need sen-

tences in which words are meaningfully put together. Similarly, to think

something we need more than “concepts”: we need meaningful combina-

tions of concepts. [42, p. 19]

Similarly, Roger Schank believed that the mental representation of language is made

up of interconnected concepts, where each concept is dependent on some other concept

[35]. Moreover, in order to learn language it is necessary to learn the model of

the world that underlies language [36]. He developed Conceptual Dependency (CD)

theory based on this philosophy. The goal of CD theory was to enable a computer

program to interact with a human in natural language.

Furthermore, CD theory was based on Schank’s belief that it is possible to represent

a great part of the meanings underlying natural language by use of a conceptual

representation schema that includes only fourteen basic actions, an infinite set of

objects, and a small number of states, in addition to about sixteen rules governing

the combination of these items [36]. These 14 actions made up the CD theory’s set

of primitives. Schank described his notion of an action as an actual action that can
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be performed on some object by an actor. As an example, consider his three primi-

tives based on the abstract notion of transfer: ATRANS, MTRANS, and PTRANS.

ATRANS represents an abstract transfer such as possession of an object. MTRANS

is mental transfer such as the flow of information from one individual to another.

PTRANS is a physical transfer such as an individual changing location. A sentence’s

representation would then be constructed based on the action primitives and on a

semantic network representation (see Figure 2.1).John doMary PTRANS book Ro JohnMary
Figure 2.1: Example of CD representation of the sentence “John gave Mary the

book.” [36] The arrows or “causal arrows”, as Schank refers to them, represent two-

way dependencies. Different types of arrows represent different types of relationships,

such as between actor and action, actor and object, and object-state complexes.

The “do” represents an unknown action, and the arrows indicate that this action

involves the two actors John and Mary. This action is unknown as we don’t know

how Mary received the book. The PTRANS primitive represents the physical transfer

of the book to Mary. Finally, the complex symbol on the right involving John, Mary,

and book represent a change in the object-state of book, that is Mary becomes the

recipient of the book.

Schank produced a lot of work in the 1970s based on this theory. He even performed

experiments with young children in order to show evidence that humans are born

with knowledge of these fourteen basic actions. Also, he and his colleagues developed

several computer systems that used the CD theory.
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2.2 Story understanding

Story understanding is a classic problem in Artificial Intelligence (AI). This is because

it involves several components: parsing, representation, cognitive-modelling, search-

ing, and classification. From an IR perspective, we are primarily concerned with

representation, searching, and classification. Ideally, all of these components would

be unified by a single model; however, for most of the history of this problem, each

component is handled somewhat independently, and there has been no general model

introduced. Various structural models such as story schemas, story grammars, and

affect states exist for story representation and use in story understanding systems,

while the classification of stories or documents has been dominated by statistical

vector-based approaches.

Below, I begin by discussing work done by Vladimir Propp on the analysis and clas-

sification of fairy tales. His work, primarily done during the early 1900s, is important

as it was the inspiration for many researcher’s story understanding models. Also,

his philosophies about representation and classification coincide with ETS. After this

brief introduction to his work, I discuss some of the approaches story understanding

systems have used for the representation of stories.

2.2.1 Vladimir Propp

Propp believed that the study and classification of fairy tales could be carried out

with the same type of scientific rigor as biological taxonomy. He made several in-

teresting observations and suggestions about fairy tale representation. Firstly, he

proposed to view a fairy tale via a sequence of events, where the structure of each
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event should be independent as much as possible of a particular actor or the details

involved. Second, he insisted on structural classification via structural similarity of

fairy tales (and their segments) as the main framework in which one should think

about the “representation” 1 of fairy tales. Third, in modern terminology, he in-

sisted on structural “representation” as compared to other forms of representation

and strongly criticized non-structural approaches and their classification. He also

insisted on structural “composition” as the basis for classification, i.e. “[d]ifferent

plots can have the same composition” [32, p. 41]. In other words, the structural

composition can be used as the description of the class of related fairy tales.

Propp, in an effort to approach the classification of fairy tales using the above men-

tioned guidelines, performed an in-depth study of 100 Russian fairy tales. Based on

this study he proposed 31 functions, each denoting “the action of the character from

the point of view of its significance for the progress of the narrative” [32, p. 74].2. He

imposed an order on his 31 functions, meaning that although certain functions may

be missing from a particular story, the functions always appeared in a specified order.

Propp’s work also inspired work by Claude Levi-Strauss in his study of the structure

of myth [27].

It is interesting to note two points about Propp’s functions and ideas. Firstly, I

believe most of his 31 functions are too generic to be used for classification purposes,

i.e. the identification of one of his functions appearing in a story can be ambiguous.

I think each function can be decomposed into smaller more concrete actions and I

believe that the primitives I introduce in Chapter 4 can be combined to represent

1Here, we are interpreting him in IR language.
2“The content of the task varies, but the presence of a task is something stable. I called such

stable elements the functions of the characters.” [32, p. 73]
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any of Propp’s functions. Secondly, although Propp criticized many people’s work

on classification of fairy tales, he himself was never able to propose classes in which

he was satisfied with. I think this is partly due to Propp’s lack of formal training;

he was not able to properly formulate his ideas about structure and classes into a

mathematical model that would guide his selection and representation of classes.

2.2.2 Schema-based approach

The beginning of psychological and computational study of story understanding is

generally credited with Bartlett [40]. He conducted a study to show how schemas are

used during the recall of a story. The term schema comes from psychologists, where

many use the term to refer to the basic building block of cognition [29, p. 2]. Many

AI researchers have used the schema-based approach as a basis for their own models

of representation, for instance, Minsky’s frames and Schank and Abelson’s scripts.

Minsky introduced frames in [30] as a psychologically valid data structure for storing

information about ‘things’ in the world [40]. For example, a particular frame may

represent the situation of going to a convenience store. A frame consists of nodes

called “slots”, which represent certain default information about the frame; for in-

stance, in our example a slot may be that the convenience store sells gas. However, for

a particular instance of the convenience store frame, it could be the case that this de-

fault information is overridden because this particular store does not sell gas. Minsky

introduced this idea of a frame by hypothesizing it was a general and unified model

for intelligence. He was criticizing current attempts in AI and psychology as “too
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minute, local, and unstructured to account–either practically or phenomenologically–

for the effectiveness of common-sense thought.” [30] His paper, “A Framework for

Representing Knowledge”, raises more questions than answers and attacks existing

models of thought representation.

Similar to frames, scripts were introduced by Schank and Abelson to characterize

knowledge about a familiar event or sequence; thus, scripts are actually an elabo-

ration of the concept of frame [29, p. 75]. Scripts were introduced specifically for

dealing with story understanding, and Schank and Abelson developed several story

understanding systems in the 1970s based on this idea, along with the CD theory

previously discussed.

The first such system Schank and his students developed was called MARGIE (Mem-

ory, Analysis, and Response Generation in English) [37]. MARGIE was mostly a

toy developed to test some of their theories about language and it was based on

the following two assumptions. The first is the Primitive Decomposition Hypothe-

sis, which states that for any two sentences of identical meaning, in any language,

a single underlying symbolic representation can be assigned, composed of structures

encoded in terms of a relatively small set of “primitive elements.” The second is the

Understanding as Spontaneous Inference Hypothesis, which states that the process

of understanding is at least partly that of computing the inferences that follow, in

an asynchronous, forward-chaining manner, from a conceptual form representing the

meaning of a sentence [10, p. 6].

Later, Schank and his students created SAM (Script Applier Mechanism) [38]. Also,

around the same time several other story understanding systems based on the schema

approach were developed: Ms. Malaprop [7], PAM [43], IPP [25], and CADHELP [9].
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Although there have been some interesting attempts at developing story understand-

ing systems based on story schemas, there are several limitations intrinsic in any of

the variations of schemas, i.e. frames and scripts. Firstly, story schemas have very

little hierarchial level organization. Most schema-based approaches store all informa-

tion about a story on a single level. However, this contrasts psychological evidence

as well as common sense which suggests that stories consist of many sub-structures,

where one sub-structure may be subordinate to others [40]. Secondly, schemas are a

very general idea about the organization of information that comes from psychology;

there is no formal schema model. This is a limitation because there is no model

that constrains one’s interpretation about how to use a schema, there is no formal

language for representing something as a schema, and there are no guiding principles

about how to classify information represented as a schema. Moreover, schemas are

so general that one could use them in any arbitrary fashion.

Finally, all schema-based approaches suffer from a well-known issue called “The Frame

Problem” [19]. The Frame Problem is the challenge of representing the effects of ac-

tions without explicitly representing a large number of intuitively obvious non-effects.

This problem is present in many forms of representation, but specifically, all frame-

based approaches assume certain default information being known before-hand, which

leads to this problem. How can any frame-based approach fully represent the dynamic

and fluent nature of the world? This is related to the Quantification Problem, which

is, how can anyone choose the right number of things without formalizing everything?

Finally, there is the Ramification Problem, which states that often formalized models

leave out the unexpected, that is, unexpected interactions can take place, and the

model cannot represent them. These are all very serious and well studied problems.
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Moreover, due to these deficiencies, which have been, for the most part, intrinsic in

all symbolic models, many people see statistical models as a way to avoid these issues.

2.2.3 Story grammars

Story grammars are related to story schemas, however, schemas represent mental

constructs in a story while story grammars describe structure. “The contention of all

story grammars is that stories have an underlying, or base, structure that remains

relatively invariant in spite of gross differences in content from story to story.” [29,

p. 20]

Story grammars were inspired by Propp’s work on fairy tales. They use Propp’s notion

of structure along with traditional grammar notation to encapsulate the structure of

a story. For instance, a simple example grammar is shown below:

S ← NP VP
VP ← VERB NP
NP ← NAME
NP ← ARTICLE NOUN

Figure 2.2: An example grammar [3].

Each line from Figure 2.2.3 represents a rule. The first rule, S ← NP VP, means

that S may consist of an NP (noun phrase) followed by a VP (verb phrase); a VP

consists of a VERB followed by an NP; an NP can consist of a NAME or an ARTICLE

followed by a NOUN. Symbols on the right-hand side of a rule that can be further

decomposed (e.g. S, VP, and NP), are called non-terminals. Symbols that cannot
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be further decomposed (e.g. VERB, NAME, ARTICLE, and NOUN), are called

terminals or more accurately pre-terminals [3].

In a story grammar, the terminals are equivalent to story statements and the non-

terminals describe the structure of the story, such as events and states, which are

sub-structures of episodes and settings [40].

Story grammars have not been implemented as widely in computer understanding

systems as schema-based approaches, and have been for the most part largely theo-

retical. However, there have been many experiments conducted to test the validity of

story grammars. Black and Bower demonstrated the validity of episode constituents.

Episodes are generally considered to consist of a sequence of events that lead the

episode to a conclusion. An event is considered to be an atomic unit or level in the

story; episodes are higher level constituents that contain one or more atomic level

event [40]. Black and Bower showed that reading rate is affected by such episode con-

stituents [5]. For instance, around the boundaries of an episode, i.e the most critical

part of the episode, reading rate slows down.

The second validity for story grammars concerns the “levels effect”. Mandler describes

the levels effect as “people are more likely to remember high-level propositions than

low-level ones.” [29, p. 62] That means that when someone reads a story, they are

more likely to remember high-level information about the plot rather than low-level

details. This idea comes from psychologists, and is most often credited with work

that Kintsch and his colleagues did in the 1970s [24]. Since story grammars describe

the structure of a story in a hierarchial fashion, one can say that they encapsulate

the levels effect.
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Wilensky and others have criticized story grammars, saying that you cannot describe

stories with grammatical structures in the same way as sentences [44]. I agree with this

due to the following criticism. Since the rules governing the structure of the story must

be specified before any processing can be done, I do not believe one can specify all the

rules necessary to encapsulate all possible structural variations for all possible stories

beforehand. There must be a way to learn new rules as the understanding system

reads/processes new stories. However, there is no formal machinery for learning new

rules within the grammar model.

2.3 Vector-based representation and classification

As mentioned, the vector-space-based formalism is by far the most popularly used

formalism in the area of text categorization/classification. This area is concerned

with automatically assigning predefined categories to free text documents [31]. This

process typically consists of extracting a set of features from a particular document,

i.e. keywords, and applying a machine learning model to determine the text category.

A large number of machine learning techniques have been applied in this area, in-

cluding nearest neighbor classification, Bayes probabilistic approaches, decision trees,

neural networks, symbolic rule learning, and inductive learning algorithms [34]. All

of these models rely on input data that has been transformed into a feature vec-

tor. Within the vector space, the models attempt to separate the data points by a

surface or cluster them in some way. The clusters or surfaces indicate where a par-

ticular category’s boundaries lie and any data point within that boundary belongs to

that particular category. The labels of the categories are assigned by the individual
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applying the model or possibly by a domain expert.

Although this approach ignores many fundamental issues about language representa-

tion, and many issues in NLP such as generation and summarization, it is very widely

used. Why is this technique so widely used? There are several reasons.

Firstly, the approaches used to extract “important” features for a training set of text

documents are based on statistical methodologies that have existed for a long time.

Relying on these existing methodologies allows one to produce a text categorization

application in a reasonably short period of time. This has been important, espe-

cially with the introduction of the Internet. The Internet forced the requirement for

a ready-made model for searching information efficiently, and statistical based ap-

proaches were the logical choice to fulfill this need. Secondly, given a new document,

a feature vector representation of the document can be generated quickly and catego-

rized efficiently. In practically all applied scenarios of text categorization, efficiency

is a critical factor for the success of the model. Finally, as mentioned in Chapter 1,

language representation is an extremely difficult area; by relying on feature vectors

and statistical analysis, one can avoid many fundamental issues about language rep-

resentation. This is because these models generally rely only on the keywords within

the documents to classify, thus, both semantic and conceptual modelling are avoided.

Supporters of probabilistic techniques argue that language and cognition can be best

explained probabilistically. In [28], Manning and Schütze state that the reason re-

searchers have been skeptic of probabilistic models is because many of the well-known

early approaches at applying statistics to language were extremely simple. The sim-

plicity could not adequately explain the complexities of language. Manning and

Schütze believe that more complex probabilistic models are needed to adequately
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explain the uncertainty found in cognition and language.

2.3.1 Feature selection

The goal of feature selection is to drastically reduce the feature space of a given

set of text documents without losing categorization accuracy. Without this selection

process, the feature space consists of all unique terms, which can be tens of thousands

of terms for a moderate-sized text collection [31]. Many classical machine learning

algorithms cannot handle this many features within a reasonable amount of time, so

reducing the feature space is essential.

Feature selection methods typically attempt to remove terms deemed to be non-

informative (stop-words) according to some statistical measurement. Typical tech-

niques to accomplish this are: document frequency thresholding (DF), information

gain (IG), mutual information (MI), χ2 statistic (CHI), and term strength (TS).

Pederson and Yang conducted an empirical study to determine which of these meth-

ods, when combined with a given text categorization algorithm, yielded the best

results [31]. They found that there is a correlation between IG, DF, and CHI in

how each method scores a term’s goodness. Also, they found that IG and CHI have

similar performances, and DF has comparable performance with up to 90% term re-

moval. Thus, in this case, the simplest feature selection method (DF) yielded similar

performance levels to the most complicated methods (IG and CHI).

Moreover, all of these term-weighting feature selection methods are very similar, that

is, they each attempt to reduce the feature space by evaluating the goodness of a term

and removing those terms which are below some set threshold. How they accomplish
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this task varies from technique to technique, but the end result is the same, a feature

vector representing a given textual document. Regardless of the technique used,

the problem of estimating a huge number of parameters needed for such a model is

statistically problematic, and it has been found that choosing the right attribute set or

the right set of weights is critical to the success of your classification model [4, 14, 22].

Furthermore, Steven Finch found that when various term-weighting models were used,

they all evaluated within 5 points of each other on both precision and recall [14].

As stated, the attributes (i.e. words) selected are the differentiating criteria for any

text categorization model based on a vector-space representation. There have been

many selection algorithms experimented with, some employing complex statistical

methods, while others use extremely simple techniques, and each method appears to

only receive marginal gains over its counterparts. There have been some attempts

to analyze text in a way that takes into account the semantics, however, most of

these techniques still rely on vector-based representation and often perform worse

than straight-forward keyword based approaches.
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Chapter 3

ETS Model

In this chapter I introduce, non-formally, the central concepts of the ETS model (see

[16] for the formal definitions). I begin by discussing the motivation, inspiration, and

philosophy of the formalism.

3.1 What is ETS and where did it come from?

ETS began as an attempt to develop a formalism to deal effectively with structural

representation. Currently, in natural science, we usually have one basic formalism,

which is the numeric or vector-space-based formalism. All science relies on this for-

malism to describe phenomenon that exists in the universe. AI researchers have been

attempting to apply classical mathematical models to the study of the mind and

learning with varying degrees of success, however, these classical models appear to

be inadequate for talking about the mind [16, 17]. This inadequacy stems from the
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inability for a numeric formalism to represent a formative history of an object. We

need a representation of objects directly related to the manner in which the object

evolved or was constructed. Moreover,

[i]nformation processing relies on the concept of class. Subsequently, areas

of information processing (i.e. data mining, information retrieval, pattern

recognition, etc.) must depend on a formalism to deal effectively with

this concept. However, traditionally, these areas depend on conventional

formalisms, and these formalisms were not developed to deal with the con-

cept of class description. One has to adapt these conventional formalisms

to deal with this concept, which is generally inadequate, as the formalism

does not have language for describing a class. [16]

For instance, as mentioned in the last chapter, the vector-space formalism is able to

classify objects by decision surfaces. However, these surfaces do not describe anything

about what types of objects fit into the class, and they do not describe the class itself;

we must name the class, which in itself, can be ambiguous.

The ETS model is a model for object/event representation and was motivated by

two considerations: “the fundamental inadequacies of existing formalisms for class

description and by the vision of the class description as a set of structural transfor-

mations; these transformations are supposed to play the role of structural units, out

of which class objects are assembled” [16]. Each object can be represented by the

assembly of these structural units where this assembly is known as the object’s con-

structive history. Moreover, we can think of the constructive history as the sequence
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of events that took place to construct the present object (see Figure 3.1). For in-

stance, consider a water molecule, H2O. Before the water molecule was formed, there

existed, in the universe, two hydrogen atoms and an oxygen atom. Due to some event

at some given time in the universe, the two hydrogen atoms and the oxygen atom

bonded to form the water molecule. This bond event is part of the constructive or

generative history of the molecule.a
aa b a aa b

(a) (b)

Figure 3.1: Two different constructive histories for the insertion string “aaba”. In

Figure 3.1a, the string is formed by attaching each character one after the other. In

Figure 3.1b, the string is formed by inserting ‘a’, then attaching ‘b’, then attaching

‘a’, and finally inserting ‘a’ before ‘b’.

Viewing objects and classes in this manner, i.e. dynamic and changing, means that

“one needs an evolving set of transformations that captures the class description and
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also modifies the corresponding (evolving) mathematical structure on the represen-

tation ‘space’.” [17] Moreover, ETS supports dynamic structures, that is, structures

being modified on the basis of the inductive experience. The evolving nature of

these structures creates the need to introduce temporal information into the struc-

tural representation of an object. The temporal information is encapsulated by the

constructive history, and it is this feature that sets ETS apart from many known

mathematical formalisms. The advantage of encapsulating this temporal information

is that we now know exactly how the object was constructed, which helps us under-

stand the future of the object, i.e. we can inductively predict what type of events the

object may participate in.

ETS proposes a multi-levelled view of reality, where several primitive transformations

can be combined in some particular way, and at a higher level of representation, be

considered as a single primitive. For instance, a water molecule consists of three more

primitive objects, two hydrogen atoms and an oxygen atom. The molecule itself is a

more complex object than the atoms, but the entire molecule can be considered to

be one object at the molecular level, which can then participate in various molecular

level events possibly spawning higher-level processes. The “discovery” of these higher-

level processes forms the multi-levelled view, where the discovery takes place as the

intelligent process evolves. The intelligent process is “an actual non-deterministic

process operating on structured actual entities by assembling them into larger entities,

guided by some ‘abstract description’.” [16] (see Figure 3.2).
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t 0t 1t 2t 3t 4t 5
t'2 t'1 t'0The correspondingprimitive transformation

The "body" part ofa transformation
Figure 3.2: Simplified multi-level ETS representation with different time scales for

each level. (Two consecutive levels are shown. The time scale for the higher level is

measured in coarser units, i.e. t
′
0 corresponds to t0, t

′
1 corresponds to t2, etc.) The

shown supertransforms consist of single transformations, and the context parts of the

transformations are not identified [16].

Finally, ETS proposes two perspectives of the universe, that is, an observation view

and an event view. The observation view is the common scientific view of reality,
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which is related to observations in the object environment. The event view corre-

sponds to the generating process view, where transforming events are the focus of

study (see Figure 3.3).State 1State 2Object Environment (real / physical) Event Environment (ideal / ETS)changeevent 1 OBOA
r-events

idealizationrealizationState 3 changeevent 2State 4 changeevent 3OA OB OCOA OB OCOA OB OC
OA OB OC

State 5 changeevent 4OA OB OC i-events
OC

OBOA OC
OA OBOBOB OC

Figure 3.3: Event environment versus object environment. In State 1, three unbonded

oxygen atoms are shown. After the first real event has occurred, OA and OB become

bonded. The corresponding ideal event (primitive π1) is depicted on the right. Three

subsequent state changes are also depicted. [16]

3.2 ETS primitive transformations

Primitives are the basic constructive elements of the ETS model. A primitive is

an elementary process that transforms the initial objects into terminal ones [17] (see
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Figure 3.4). The initial objects and terminal objects are represented by sites. Roughly

speaking, a site is some entity involved in the primitive event, which could be thought

of as a reference point in the flow of the events.11 2 3 45 6initial sitesterminal sites
Figure 3.4: Pictorial illustration of two primitives. The solid circle, empty circle,

and empty square denote three different site types. The site labels are named using

natural numbers; this is for convenience only.

The primitives in Figure 3.4 are particular instances of primitives, however, the site

labels may change due to different circumstances in which the primitive event appears.

Therefore, we can think of a particular instance of a primitive as belonging to a class

of structurally identical primitives, that is, the structure of the primitive remains the

same, but the site labels are different. The equivalence class of structurally identical

primitives is called the class primitive transformation or class primitive (see

Figure 3.5). ] ]aa b c de f
Figure 3.5: Pictorial illustration of two class primitives. {a, b}, {c, e}, and {d, f} are

names for the variables that are allowed to vary over non-overlapping sets of numeric

labels.
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Finally, it is important to note that the name of a primitive (π1 and π2 above) should

be chosen in such a way as to specify explicitly what the primitive event represents.

In ETS, the syntax and semantics are inseparable, therefore, a good primitive is one

that supports this. It supports this by having its structure and name chosen in such

a way that it does not need much extra explanation, i.e. one can look at the primitive

and understand the “gist” of how it would be used.

3.3 ETS structs (segments of formative history)

An ETS struct represents a particular instance of structural history, where the struc-

tural history can be thought of as recording the sequence of elementary or primitive

events that appear during the running of some process. In Figure 3.6 we see an ex-

ample struct. The vertical positioning of the primitives corresponds to the actual

order in which the events take place (time flows downwards), thus, parallel primi-

tives signify simultaneous events. A primitive event can be attached to an existing

primitive if at least one initial site of the new primitive matches a terminal site of

the existing primitive. The initial sites of a struct are the initial sites from primitives

within the struct that are not attached to any primitives (e.g. the initial site with

label 4 in the example). Similarly, the terminal sites of a struct are the terminal sites

from primitives within the struct that are not attached to any primitives (e.g. the

terminal sites with label 1 and 4 in the example).
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1 2 3 44411
Figure 3.6: Pictorial illustration of a struct.

Analogous to primitives, structs also form classes, where a particular struct is an in-

stance from a class of structurally identical structs. The class of a particular struct can

be represented by changing the concrete labels to generic labels, thus, the structure

remains the same for all instances of the class, but the labels vary.

3.4 ETS transformations and supertransformations

Transformations, supertransformations, and class supertransformations are the cen-

tral concepts in the ETS formalism. A transformation (or transform) consists of

two parts: a context and a body. As the term suggests, the context of a transform

consists of those primitives that embody the “preconditions”, i.e. events, necessary

(but not sufficient) for the appearance of a body in a struct. The body of a transform

captures a segment of the struct that can now be thought of as segmented into such

bodies, where each body corresponds to a next level event and becomes a next level
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primitive [16].

The context of a transformation is specified by an extruct, while the body is specified

by a struct. An extruct can be thought of as a fragment of recent history, where

this fragment identifies where the transform may originate [16]. Figure 3.7 shows

three example exstructs. The ×’s at the end of some site lines signify that these are

detached sites. The term detached sites comes from the procedure that constructs

the context by excising/detaching it from the enveloping struct (at these sites). The

bold lines are the interface sites (Iface) that connect the context to the body.

d5 6
1a c

d
ef b 23 41 22 5 654 1 71b d5514 62b eb 222 51b4 11 14 4Iface Iface Iface
Figure 3.7: Pictorial illustration of an exstruct [16]

.

A transformation can be thought of as a “representational module”, where a struct is

“formed” by a series of transformations (see Figure 3.8). The transformation embod-

ies a sequence of recurring events, where the context specifies the preconditions for

such events, and the body is what is recurring. If we consider the body as a whole,
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we should be able to think of it as a single, semantically and structurally meaningful

unit.

deb 222 51b4 1 5 614 a f b11 59 8deb 222 51b4 1 5 614 Iface a f b1 511 59 8Init
Figure 3.8: Pictorial illustration of a transformation [16]. The left-hand side

represents the transform as a pair: context and body. The right-hand side de-

picts the “assembled” transform corresponding to a more appropriate interpreta-

tion/understanding of the transform.

The concept of supertransformation (supertransform) is a generalization of the con-

cept of a transformation; it can be thought of as an abstraction of the set of several

closely related transforms acquired during one’s inductive experience. This concept is

the central one in the ETS formalism since it encapsulates the concept of class descrip-

tion. A supertransform is defined, basically, as a set of (related) transformations,

called constituent transformations, with similar bodies and common interface sites

[16]. The contexts are suppose to capture all the necessary “preconditions” for the

appearances of the corresponding bodies and are typically more varied than the bod-

ies themselves. The supertransform’s bodies are suppose to capture various instances
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of the corresponding next level event, including those events that include “noise” (see

Figure 3.9). bodies 522 99 510 11 52 22 510 11 2 2 510 1110 112 523 2 4 5 162 99 510 11 2 523 2 4 5 1622 510 11 2 523 2 4 5 162 10 1110 112 58 52 52 75 72 99 510 112 58 52 52 75 72 523 2 4 5 16
2 58 52 52 75 72 10 1110 112 58 52 52 75 722 510 11

Figure 3.9: Pictorial illustration of a supertransformation [16]. All the contexts have

the same interface sites and all the bodies have the same initial and terminal sites.

Finally, as with primitives and structs, a particular supertransformation belongs to

a class of structural identical supertransformations, where the labels can vary. This

class of structural identical supertransformations is called the class supertransform,

where the class supertransform is obtained on the basis of the supertransforms, by

abstracting away the supertransform’s labels (see Figure 3.10).
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bodies caa ii c m  n ca aa c m  n a a c m  n m  na cab a d c fea ii c m  n a cab a d c feaa c m  n a cab a d c fea m  n m  na ch ca ca gc ga ii c m  na ch ca ca gc ga cab a d c fe
a ch ca ca gc ga m  n m  na ch ca ca gc gaa c m  n

Figure 3.10: Pictorial illustration of a class supertransform induced by the super-

transform depicted in Figure 3.9. Each letter is the name of a variable that is allowed

to vary over numeric labels of the same type. [16]

3.5 The next level representation

ETS moves to the next level of representation through a form of “chunking”. This

chunking allows us to deal more effectively with the complexity of event representa-

tion, i.e. noise is absorbed by moving to higher-levels and the size of the representation
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is reduced [16]. How is a new level of representation introduced in the ETS formal-

ism? Figure 3.11 explains the basic idea behind the ETS level ascension postulate,

which shows how to convert a supertransform into the next level primitive transform

[16]. Thus, the supertransform’s interface sites (i.e. sites connecting the context to

the body) become the primitive’s initial sites while the body’s terminal sites become

the primitive’s terminal sites.2 523 2 4 5 162 99 510 11 2 523 2 4 5 1622 510 11 2 523 2 4 5 162 10 1110 112 5852 52 75 72 99 510 11 2 5852 52 75 72 10 1110 112 5852 52 75 722 510 11 2 52 1110i'ii
Figure 3.11: A canonical supertransform and the corresponding next level original

primitive [16].

The next level primitives can be used similarly as the initial level primitives (i.e. in

structs, extructs, transformation, supertransformations, etc.). Each level is induc-

tively constructed based on the construction of the previous level (see Figure 3.12).

36



a ba dc [ (k)] class primitive at level  k
[ (k-1)] supertransform at level  k-1

supertransforms at level  k-2[ (k-2)][ s[ (k-2)][
Figure 3.12: Pyramid view (partial) of a k-th level class supertransform: the pyramid

should be thought of as being formed by the subordinate class supertransforms [16].
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3.6 The intelligent process

An intelligent process is a process which “optimally” captures/represents the devel-

opment of some universe by expanding and refining (in a discrete mode) its multi-level

inductive structure, including the number of its levels. It accomplishes this mainly by

the creation and modification (but never deletion) of relevant class supertransforms

at the appropriate levels [16]. That is, as the process evolves, it creates new levels by

discovering new supertransforms and climbing levels as shown in Figure 3.11 of the

previous section. The discovery of new supertransforms subsequently expands the set

of primitive transforms at the next level. The only input required of the process is

the initial level primitives as they appear in the working struct.

In Part III of [16], a provisional algorithmic sketch of this process is introduced. The

algorithm introduced is an unsupervised (could be supervised) inductive learning

algorithm for the ETS formalism. It is important to note that this is an area of

ongoing research, and the algorithm is still considered to be much more tentative

than the rest of the model. Here, I provide a very high level overview of the steps

involved in the algorithm. I encourage the reader to look to [16] for implementation

details.

The intelligent process algorithm consists of three steps: learning, recognition, and

facilitation. The learning step involves the modification or the possible discovery of

class supertransforms. The sub-step chooses a transform from those available and

identifies that either it has already learned the transform (in this case it is done) or

that part or all of the transform has not been learned yet. If the context is known,

then it adds the body to the appropriate class supertransform. If the body is known,
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then it adds the context to the appropriate class supertransform. Otherwise a new

class supertransform is created along with a corresponding next level primitive.

The recognition sub-step identifies the set of all available transforms based on the

latest primitive added to the working struct. Then it randomly chooses a transform

from the available set, and finally performs various updates to the working memory

and association memory (auxiliary weight matrices used by the algorithm).

Finally, the facilitation sub-step increases the status of learned transforms in order to

increase the likelihood of their reappearance. This is so that learned transforms are

easier to recall or recognize later as the working struct progresses.

Figure 3.13 shows an example of the expected behavior of the process. Transforms

are identified, beginning at the initial level, and the results are propagated to the

next level. The initial level process is operating at a much faster time scale as there

are continually small changes at this level, and as we climb levels, these small changes

have less effect, thus, the time between salient events becomes longer.
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Level 0 "Sensory" datatime (order of processing)
Level 1
Level 2 direct information flowindirect correspondence

Figure 3.13: A multi-level representational tower with a single-level sensor at level 0.

[16]

Finally, it is interesting to note that the intelligent process is continually evolving

and continually guiding the process of learning. Of course, in an implementation,

the algorithm can always be stopped by some termination flag once it has reached a

desired level of learning. I feel that this intelligent process goes beyond traditional

machine learning algorithms by attempting to explain the fundamental process of

inductive learning in the universe.
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Chapter 4

ETS fairy tale representation

In this chapter we propose a small number of primitive events based on the atomic

cognitive events that should occur in the mind of the “generic” ten-year old fairy tale

listener/reader. For example, as one reads a story, certain events take place that we

“recognize”, such as an actor picking up an object, we are then able to associate or

connect each of these events with other events in the story. As mentioned in Chapter

1, fairy tales make a particulary interesting domain as every event, character, object,

etc. is important to the development of the plot. Therefore, it appears that one can

characterize or classify fairy tale plots based on story structure. This observation has

also been noted by several other researchers [29, 32].

Below, I give a condensed version of the fairy tale “Salt” from [1]. This is a typical

Russian fairy tale involving three brothers, a princess, and a quest. I give this example

in order to “aid” with your understanding of the primitives introduced in section 4.2.

In a certain city there lived a merchant who had three sons; Fyoder, Vasily, and
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Ivan the Fool. The merchant sent the two older sons out on ships. He didn’t

trust Ivan because Ivan was a drunk. Ivan convinced his father to give him a

ship, but his father filled it with cheap cargo so that Ivan wouldn’t spend it all

on drink.

Ivan sailed away and arrived at an island. On the island he found pure Russian

salt. He had his crew remove the cheap cargo and replace it with the salt.

Later, he arrived at a wealthy city and showed the King the salt. At first the

King did not want the salt, but Ivan convinced him and received gold and silver

in exchange.

The King’s daughter wanted to see Ivan’s ship, so she came down to the harbor

to take a look. While Ivan was showing her the ship, he had his crew cast

away. At first the Princess was upset, but since Ivan was handsome, she was

soon smiling and ceased grieving.

While at sea, Ivans brothers found him, learned of what he had done and

came onto his ship, threw him into the sea and took the princess and loot for

themselves.

Ivan, with the help of a Giant, was able to return to his father’s land before

his eldest brother married the Princess. The Princess and Ivan told his father

what had happened, and the two older brothers were driven out. After this,

they celebrated with a feast.

It is important to note that as this is one of the first applications of the ETS model,

and as the model is very new, much of the representation, ideas, and conclusions

should be considered tentative. Moreover, many of the following sections are based

on work proposed in [13].
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4.1 Fairy tale structure

Before introducing my initial level primitives, it is important to understand some

basic ideas about fairy tale and story structure. It appears that all stories have an

underlying generic structure, with certain types of structure being more common to

certain cultures than others [18]. For instance, in North America, a typical story

consists of a setting, several episodes, each having a beginning and end, and finally

a resolution. This is a very high-level view of the structure of a story, but generally

speaking, this high-level structure is common to most North American stories. As one

investigates specific genres of stories within specific cultures, such as Russian fairy

tales, the structure becomes less general and more rigid in its structure.

For instance, within the genre of fairy tales, there’s generally a hero, and he is assigned

to complete an impossible task. The impossible task is usually only completed at the

last moment or barely completed. Characters are usually extreme or caricatures, and

they generally do not exist outside their function in the story. For example, the hero

is simply the hero of the story because he’s supposed to be the hero, just as the

villain is the villain for no particular reason other than that’s how the story is told.

Furthermore, there’s a commitment to the plot, and the story doesn’t waver from

that commitment [1, 2].

If we localize a particular genre to a particular culture, the structures become even

more specific and apparent. For example, most eastern European fairy tales have pat-

terns of threes, i.e. three brothers, three tries to complete task, etc., while Asian fairy

tales have patterns of four [1, 2]. In European tales, the hero is always the underdog,

and the villains are always the rich or privileged. A lot of the cultural variation has
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to do with the social conditions of where and when the story was generated. For

instance, in Europe, the listeners of the stories were generally commoners, and they

wanted to hear stories about unlikely heroes prevailing over the rich and powerful.

Finally, moving beyond than genre and culture, we can look at classes of stories.

It appears that different classes of stories have different underlying structure. The

structure of a story where an unlikely hero performs a task to win the princess is

different than the structure of a story where the hero completes a task to win the

princess but is then betrayed by his brothers. This variation on the first story is a

sub-class of a larger class of stories where the unlikely hero wins the princess. Since

the second story belongs to a sub-class, it should share some structural similarities to

the first story, and having a representation that is able to capture all this information

is essential to differentiate the classes. It is this consideration that makes ETS such

an appropriate formalism for the representation of fairy tales.

4.2 Initial level primitives

In this section we present our initial level primitive events/transformations. As was

mentioned above, we tried to select as primitives those events that are “atomic” men-

tal events of the listener/reader of fairy tales. In other words, a primitive transfor-

mation encapsulates the structure of the corresponding mental event. When an ETS

primitive models/stands for an atomic mental event, it means that the corresponding

event transforms input (or “initial”) sites into output (or “terminal”) sites. Within

the fairy tale domain, a site is some conceptual entity involved in the perception of

the story, which participates as a reference point in the flow of the events.
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In Figure 4.1, we show the site types used, including a generic site type that is used

for convenience to denote any site.- actor - object - idea - mark - idealized act- generic site type, can be an actor, object, idea, mark, idealized act, or unit act - unit act
Figure 4.1: Pictorial representation of the site types used.

Similar to Propp’s functions (discussed in section 2.2.2), our primitive events were

chosen through in-depth analysis of many Russian fairy tales. However, due to the

ETS methodology, we were able to discover a better set of primitives (in my opinion)

in a short amount of time. In contrast to Propp’s functions, our primitives are much

more implementable since they are more consistent with the initial level of processing.

The problem with Propp’s functions is that they assume a certain “knowledge” about

fairy tales and about the fairy tale one is reading. For instance, consider Propp’s

function “Hero and villain join in direct combat”. In order to know that this particular

event takes place, one must know who the “hero” and “villain” are, but without first

reading the story, one can only know who to associate with these terms through

induction. Therefore, we must begin at a lower level of representation, and at a

higher level, through transformations, perform the induction necessary to identify

who the “hero” is.

The information about our initial primitives is summarized in Figure 4.2 and 4.3.

They were chosen on the basis of the fairy tales contained in [1, 2].
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Actors/Objects: their uses as tools and their possession statusActor uses an object/another actor Actor/object possession statusActors: meet, convey personal intentions, and exchange informationActs of meeting and departure Actor(s) convey(s) personal intentions
Actor conveys information to another actorDeeds: performance of a unit actActors: their emotional and physical statusActor’s emotional state Actor’s death and resurrectionActors: their metamorphoses and their identification markingsThe actor/object’s metamorphose About marked actorOther primitivesThe narrator’s announcement The actor’s conceptualization

Die Resurrect
Passage oftimeNarratorintroduces theactor

Meet Part The actorreachesanother actorPut actor tousePut object touse Relinquish(possessionof) actorGain(possessionof) object Gain(possessionof) actor Relinquish(possessionof) object

Actormetamorph. Objectmetamorph. The actorcreates anidea Perceive (viathe senses)Conc. of thesomething byan actor

Requestinformation Shareinformation Givemisleadinginformation Correctmisleadinginformation
The actormarksanother actor Actor revealsmark Actorconcealsmark

Actor wantssomeone’sobjectTo experiencesadnessTo experiencehappiness Actor wantssomeone’s“actor”

MakeagreementMake request ProclaimOrder actor toperform anidealized actOffer toperform anidealized act
Carry out unitact: actor toactorCarry out unitact Carry out badunit act: actorto actor Successfullycomplete act Fail tocomplete actCarry outgood unit act:actor to actor

Figure 4.2: Initial level primitives subdivided into their related groups.
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Actor a  uses object b.Prince Ivan first let his mother downon the linen cloth Actor  a  attains (geographic)proximity of actor  b.Then his elder brothers overtookhim...Actor a  asks actor b  to performpreviously not mentioned act c.She wanted to go down to the Russianship and asked her father’s permission. Actor a  asks actor b  informationabout actor/object/idea/act/mark d.“What do you want here?” asked theGiant.Actor  a  shares information with actorb  about actor/object/idea/act/mark  d.“Very well, boys,” cried Ivan to crew,make for shore!” Actor a  carries out unit act  f  (realact version of  c) for actor  b.The king gave her permission.Actor  a  metamorphoses into actor b.And lo! he turned into a youth as fairas the sky at dawn.Actor  a  brands actor b with adistinguishing mark f.And the Tsarevna struck his brow withher signet-ring and left her seal on him.Idea  i  is the result of an actor’s  acreative process.He went on farther, saw a snake,pierced it with his spear, and thought:“Here is another riddle!”
Actor  a  conceptualizes/abstracts inhis mind actor/object/idea/act/markb.“This is my seal!” she cried, “Here ismy betrothed!”

Actor  a finds out actor  e’s  possessionstatus (possessed by  b) and conceives adesire for  e.“I shall take Elena the Fair for myself”,said Prince Piotr. Conc. of thesomething byan actora da d
Actormetamorph.a ba b

a b ca b cCarry outgood unit act:actor to actor fbRequestinformationa b da d
The actorreachesanother actora ba bPut object tousea ba bMake requesta ba b cbShareinformationa b da d

The actormarksanother actora ba b fa ia iThe actorcreates anidea
ba ea b eActor wantssomeone’s“actor”

Figure 4.3: A more detailed description of some initial level primitives with examples.
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4.3 Examples of (initial level) structs

In this section, we show how the segments of the fairy tales are represented, i.e. we

show the structs corresponding to such segments. Thus, such structs represent the

sequence of the basic mental events generated during the reading/listening of the

original fairy tale segments.

Figure 4.4 demonstrates a simple example of how to construct an ETS struct for a

fairy tale segment. The segment consists of three sentences from the fairy tale “Salt”.

Figure 4.4a is the struct representation of sentence one, Figure 4.4b is the struct

representation of sentence one and two, and Figure 4.4c is the struct representation

of the entire segment.1. The king had a daughter, a beautiful princess.2. She wanted to see the Russian ship and asked her father’s permission.3. The king gave her permission.Narratorintroduces theactorprincess Narratorintroduces theactor Make requestprincess king Narratorintroduces theactor Make requestprincess king
Carry goodout unit act:actor to actor(a) (b) (c)

Figure 4.4: ETS representation of a small fairy tale segment from the story “Salt”.

Figure 4.4a corresponds to sentence one, Figure 4.4b corresponds to sentence one and

two, and Figure 4.4c corresponds to sentences one, two, and three.
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The structs shown in Figures 4.5, 4.6, 4.7, and 4.8 represent segments from four

typical Russian fairy tales taken from [1, 2], “Salt”, “The Three Kingdoms, Copper,

Silver, and Golden”, “The Three Kingdoms”, and “Tsarevich Ivan and the Grey

Wolf”, respectively. These segments were chosen as belonging to the same class of

segments. At a high level, this class could be described as follows: a hero is returning

from the main quest and is intercepted by his brothers, who rob him of all the spoils

that he has obtained during the quest.

The sites of the structs acquire now the names of the concrete actors/objects/ideas/idealized

act/unit act/marks mentioned in the corresponding fairy tale segment. The “through”

sites, i.e. when the initial and terminal sites coincide, are not always labelled to im-

prove the readability. The vertical positioning of the primitives corresponds to the

actual order of the events in the fairy tale, thus, the parallel primitives signify simul-

taneous events. The thick vertical lines are used as space saving devices: the struct

on the right is the continuation of the struct on the left. The lines at the top of each

figure depict the initial sites of the struct [16]. They “lead” to other primitives/events

that are not part of the corresponding segment. The same applies to the bottom lines,

which depict the terminal sites of the struct.

Note that the size of the structs directly correlates with the size of original story

segments. Moreover, it is important to observe the explicitness/transparency of the

ETS representation: “what you see is what you get”. This is a critical feature of

the ETS representation, since it captures completely and faithfully the content of the

fairy tale.

It is important to note the similarity of the structs. Certain patterns of events occur in

each struct. This is most apparent in the fairy tales “The Three Kingdoms, Copper,
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Silver, and Golden” and “The Three Kingdoms”, which are almost identical even

though the overall stories are quite different.
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Passage oftime Passage oftimeThe actorreachesanother actor The actorreachesanother actorConc. of theactor by anactor Conc. of theactor by anactor
princess son2son1 IvanIvan Ivanprincess princess son2son1 son2Conc. of theobject by anactor Conc. of theobject by anactorActor wantssomeone’sobjectActor wantssomeone’sobject

Silver & gold

Relinquish(possessionof) actorGain(possessionof) actor
Part PartMeet MeetThrow Ivanoff the ship

Relinquish(possessionof) object Gain(possessionof) object

son1 Silver & gold son2
Silver & goldIvan Ivan

son2
son2

princess
son1

son1

For some time, a long time or a short time, Ivan sailed on the sea with the princess.  Then his elder brothers overtook him, learnedof his audacity and good fortune, and greatly envied him.  They came on board his ship, seized him by his arms, and threw himinto the sea; then they cast lots between them and divided the booty: the eldest brother took the princess, and the second brothertook the ship full of silver and gold.

son1 son2 IvanIvan
Carry out badunit act: actorto actorSuccessfullycomplete act Carry out badunit act: actorto actor Successfullycomplete act

Silver & gold

Actor wantssomeone’s“actor” Actor wantssomeone’s“actor”princess

Figure 4.5: ETS representation of a fairy tale segment from the story “Salt” shown

at the beginning of this figure.



Ivan Nastasya
PartPut object touse linencloth let downmountain

Part
Part

Elena the FairQueen SilverKingdom

Part

Queen CopperKingdom MakeagreementConc. of theactor by anactor MakeagreementMakeagreement Conc. of theactor by anactor

Prince Piotr Prince VasilyIvan Elena the FairQueen SilverKingdomQueen CopperKingdom

To experiencesadness
Part Part

climb downmountain
Ivan

Ivan
IvanIvan

Ivan let downmountain
Ivan

Ivan
PrincePiotr Leave IvanPrince Vasily

... and in a short time they [Prince Ivan, Nastasya (Ivan’s mother), Elena the Fair, and her two sisters] came to the place where theyhad to climb down the mountain.  Prince Ivan let his mother down first on a linen cloth, then Elena the Fair and her two sisters.  The[Ivan’s] brothers stood below waiting and thought to themselves: ``We will leave Prince Ivan up there, and will take our mother andthe queens to our father and tell him that we found them.''  ``I shall take Elena the Fair for myself,'' said Prince Piotr.  ``You, Vasily,will take the queen of the silver kingdom, and the queen of the copper kingdom we will marry to some general.''When Prince Ivan's turn came to descend the mountain, the older brothers seized the cloth, pulled it, and ripped it off.  PrinceIvan remained on the mountain.  What could he do?  He wept bitterly and turned back ...
Successfullycomplete act

Carry outgood unit act:actor to actor
Carry outgood unit act:actor to actor

Carry outgood unit act:actor to actorSuccessfullycomplete act
Successfullycomplete act

Successfullycomplete act
Ivan

Successfullycomplete actCarry outgood unit act:actor to actor Carry out badunit act: actorto actor Carry out badunit act: actorto actor Successfullycomplete act
Carry out unitact

Conc. of theactor by an“actor”Conc. of theactor by anactor

Figure 4.6: ETS representation of the fairy tale segment from the story “The Three

Kingdoms, Copper, Silver, and Golden” shown at the beginning of this figure.



Then all of them [Ivashko, maiden from copper kingdom, maiden from silver kingdom, and maiden from golden kingdom] came to the hole fromwhich they climbed out, and they found the thongs hanging there.  And the elder brothers [Ivashko’s] were already standing by the hole, about to climbinto it to find Ivashko.Now Ivashko seated the maiden from the copper kingdom on the thongs and shook them; the brothers pulled and lifted out the maiden, andlowered the thongs again.  Then Ivashko seated the maiden from the silver kingdom, and the brothers pulled her out, and sent down the thongs.  Finallyhe seated the maiden from the golden kingdom, and the brothers pulled her out too, and dropped back the thongs.  Ivashko now seated himself on them;his brothers pulled him too, pulled and pulled, but when they saw that it was Ivashko they thought: “If we pull him out he might refuse to give us amaiden.”  And they cut the thongs, and Ivashko fell down.  Well, there was nothing he could do; he wept and wept, and then went on.Ivashko CopperMaiden
PartPut object touse thongs Seatedmaiden

To experiencesadnessPart Part

Ivashko

Ivashko

Successfullycomplete act
Carry outgood unit act:actor to actor

Successfullycomplete actCarry out badunit act: actorto actor Carry out badunit act: actorto actor Successfullycomplete act

Carry outgood unit act:actor to actor Carry outgood unit act:actor to actorMishka Egorushkopull
Ivashko SilverMaiden

Part
Seatedmaiden

Successfullycomplete act
Carry outgood unit act:actor to actor Carry outgood unit act:actor to actor Carry outgood unit act:actor to actorMishka Egorushkopull

Ivashko GoldenMaiden SeatedmaidenCarry outgood unit act:actor to actor Carry outgood unit act:actor to actor Carry outgood unit act:actor to actorMishka pull

Carry out unitact Carry outgood unit act:actor to actor Carry outgood unit act:actor to actorpullPerceiveactor (via thesenses) Perceiveactor (via thesenses)Actor wantssomeone’sactor Conc. of theactor by anactor Conc. of theactor by anactorActor wantssomeone’sactorCut thongs
Mishka EgorushkoSit onthongsCopperMaiden

SilverMaiden
GoldenMaidenIvashko

Egorushko
EgorushkoMishka

Ivashko IvashkoMishkaMishkaMishka EgorushkoEgorushko

PartSuccessfullycomplete actIvashko

Seatedmaiden Act ofseatingmaiden

Ivashko GoldenMaidenSeatedmaiden Act ofseatingmaiden

Figure 4.7: ETS representation of the fairy tale segment from the story “The Three

Kingdoms” shown at the beginning of this figure.



Passage oftime Passage oftimeYelena the Faireat & drinksleepThe actorreachesanother actor The actorreachesanother actor
son2son1

Conc. of theactor by anactorConc. of theactor by anactorConc. of theactor by anactor Conc. of theactor by anactorConc. of theactor by anactorConc. of theactor by anactor
Fire-bird

Ivan

horse
Carry out baddeed: actor toactor Carry out baddeed: actor toactorDie

Makeagreement
Ivan

Ivan

IvanIvan
son1 son2

Relinquish(possessionof) actorRelinquish(possessionof) actorRelinquish(possessionof) actor
Gain(possessionof) actor Gain(possessionof) actorGain(possessionof) actor Gain(possessionof) actorGain(possessionof) actor Gain(possessionof) actor

horseIvan

Make order Make order

son2son1 Fire-bird Yelena the Fair
son1 son1

son2son2
son2

son2
son1

son1 Yelena theFair Yelena theFair
Ivan
Ivan

By and by they [Tsarevich Ivan and Yelena the Fair] reached his native land, and Tsarevich Ivan decided to stop for a bite to eat.  Hehad a little bread with him, so they ate the bread and drank fresh water from the spring, and then lay down to rest.    No sooner had Tsarevich Ivan fallen asleep than his brothers came riding up.  They had been to other lands in search of the Fire-Bird, and were now coming home empty-handed.    When they saw that Tsarevich Ivan had got everything, they said:    ``Let us kill our brother Ivan, for then all his spoils will be ours.''    And with that they killed Tsarevich Ivan.  Then they got on the horse with the golden mane, took the Fire-Bird, seated Yelena theFair on another horse and said:    ``See that you say not a word about this at home!''Carry out unitact Carry out unitactCarry out unitact Successfullycomplete act Successfullycomplete act

Kill Ivan Kill Ivan

Kill Ivan Kill Ivan

Figure 4.8: ETS representation of the fairy tale segment from the story “Tsarevich

Ivan and the Grey Wolf” shown at the beginning of this figure.



4.4 Examples of (initial level) transformations

In this central section, we show several examples of the initial level transformations,

or simply transforms, common to several stories. Each of these transforms consists

of two parts, the context and the body, where the context are those primitives that

embody the preconditions for the appearance of the body. Obviously, a context of a

transform must be contained in the struct segments preceding its body. Thus, it is

quite natural to associate with the transform the same “name” as that of its body.

It is important to note that single primitives allow me to represent low level plot

details, but combinations of primitives allow me to represent larger plot units. The

primitives correspond to the basic building blocks that can be combined in a particu-

lar way to construct a more complex plot representation. These meaningful combina-

tions of primitives are represented as ETS transformations, where a transformation

encapsulates the representation of a commonly occurring plot pattern in the story.

In Figure 4.9, we show a single transformation, whose body is a particular instantia-

tion of a typical (for the chosen fairy tales) small story segment that can be described

at a higher level as “good act and its immediate consequences”. Note that the speci-

fication of this transformation corresponds to the discussion of transformations in the

previous chapter, except for the concept of a “sub-context”. This concept has not

been formalized, but in this application it is used to reduce the number of transfor-

mations that must be specified for the supertransformations. The sub-context allows

for variability of the context, where the sub-context corresponds to a list of valid

existing contexts (specified by other transformations) that may exist between this
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particular transform’s context and its corresponding body. For instance, if we con-

sider the transform below, once the “Make offer” event has taken place, the context

has appeared, however there could be an instance of a different transformation before

the appearance of the corresponding body. Only certain transformations after the

“Make offer” event are applicable..

Make offerMeeta c a ca ca c dInterface sites dc caa c dParta
Initial sitesof the bodyeCarry outgood unit act:actor to actorSuccessfullycomplete actd ed e

Meeta c Make offera ca ca c d
dc caa c dParta Successfullycomplete act

Carry outgood unit act:actor to actored e
Sub-context 2

d e
Sub-context 2

Figure 4.9: An example of a transform. The right hand side of the figure de-

picts the “assembled” transform corresponding to a more appropriate interpreta-

tion/understanding of the transform.

It is interesting to note that Propp, in his “Transformations of the Wondertale”,

speaks of “reduction” and “expansion” as associated with the corresponding modi-

fications that could occur in various retelling of the same sequence of events [32, p.

86]. In other words, he allows for a certain variability range for a particular fairy tale
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segment. The concept of the supertransform formally accounts for such, as well as

other, inductively encountered variability. It does this by allowing for a great deal of

variability in the constituent transform’s contexts and bodies, where one context or

body may consist of more details about the sequence of events than another, but still

have the same semantic meaning.

The supertransforms shown in Figures 4.10, 4.11, 4.12, and 4.13 encapsulate the

following four events: “discovery of an actor, its possession status, and the desire

to get that actor”, “good act and its immediate consequences”, “premeditated bad

act and its immediate consequences”, and “premeditated taking away an object”.

They were constructed on the basis of the four example structs from the previous

section. Upon closer examination of the corresponding structs, it is easy to see that

the constituent transforms indeed appear more or less regularly in the structs. Note

that to improve the readability of the above mentioned figures not all constituent

transforms are depicted for each supertransform.
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The actorreachesanother actorMeet Perceiveactor (via thesenses)a ba c
Actor wantssomeone’sactorConc. of theactor by anactora a aac c

a bb bb
Meet Perceiveactor (via thesenses)a ba ca c ba

c Request info.about anactorShare info.about anactora bc a ba c b Perceiveactor (via thesenses)bcaa a
Actor wantssomeone’sactorConc. of theactor by anactora aa cb bb ca bc The actorreachesanother actorPerceiveactor (via thesenses)b caaaa b cRequest info.about anactorShare info.about anactora bc a bc

Actor wantssomeone’sactorc a b Actor wantssomeone’sactorc a b
Figure 4.10: Some of the constituent transforms from the supertransform named

“discovery of an actor, its possession status, and the desire to get that actor”.

58



Meeta c a ca ca c ddc caa c d
Meeta c a ca ca c ddccaa c dParta

Meeta caa c
dcaa cda d

c
Meeta caa c

dcaa cda d
cPartac cTo experiencehappiness

Make offer
Parta Parta To experiencehappinessSuccessfullycomplete actCarry outgood unit act:actor to actored e Carry outgood unit act:actor to actor

Successfullycomplete acte d ec
Sub-context 3Sub-context 2Sub-context 2 Carry outgood unit act:actor to actorSuccessfullycomplete acte ed

Sub-context 3Carry outgood unit act:actor to actor
Successfullycomplete act
e ed

Make offer
Figure 4.11: Some of the constituent transforms from the supertransform named

“good act and its immediate consequences”.
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Meeta c a ba ba
Die

c ddc caa c d
Meeta c Makeagreementa ba ba c ddccaa c dParta

Meeta caa
Die

c
dcaa cda d

c
Meeta caa c

dcaa cda d
cPartaTo experiencesadnessc To experiencesadnessce e e eCarry out badunit act: actorto actor Successfullycomplete act

Sub-context 2 Sub-context 3
d ec e

Sub-context 2 Carry out badunit act: actorto actor Successfullycomplete actc e
Carry out badunit act: actorto actor Successfullycomplete actc ed e

Sub-context 3Carry out badunit act: actorto actor
Successfullycomplete actd ec e

Makeagreement
Figure 4.12: Some of the constituent transforms from the supertransform named

“premeditated bad act and its immediate consequences”.
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Relinquish(possessionof) objectGain(possessionof) objectaa bbbcc
Diecc aaa dd Conc. of theobject by anactorc bSub-context 1c

c b
Relinquish(possessionof) objectGain(possessionof) objectaa bcc

cc a d d Conc. of theobject by anactorc bSub-context 1c aPartc a b
c b

b a Relinquish(possessionof) objectGain(possessionof) object a bbbee
c a ddMakeagreement Conc. of theobject by anactore bec

Dieac Sub-context 1e e
c b

aRelinquish(possessionof) object Gain(possessionof) objecta b bbee
c a ddMakeagreement Conc. of theobject by anactore bec ac Sub-context 1e ec b
Partc

Relinquish(possessionof) objectGain(possessionof) objectaa bbbcc
Diecc aaa dd c bc

c b
Relinquish(possessionof) objectGain(possessionof) objectaa bcc

c b
c b

c b
b

Actor wantssomeone’sobject Actor wantssomeone’sobject
a Relinquish(possessionof) objectGain(possessionof) object a bbbee

c a ddMakeagreement e bec
Dieac e e

c b
Relinquish(possessionof) object Gain(possessionof) objecta b bbee

e bc bActor wantssomeone’sobject Actor wantssomeone’sobject
To experiencesadness To experiencesadnessa

cc a ddaPartc aTo experiencesadness ac a d dMakeagreementec ac e ePartc To experiencesadness

Carry out badunit act: actorto actor e Carry out badunit act: actorto actor e Carry out badunit act: actorto actor f Carry out badunit act: actorto actor f
Carry out badunit act: actorto actor e Carry out badunit act: actorto actor e Carry out badunit act: actorto actor f Carry out badunit act: actorto actor fSub-context 1 Sub-context 1 Sub-context 1 Sub-context 1

Figure 4.13: Some of the constituent transforms from the supertransform named

“premeditated taking away an object”.
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We believe that any reader of fairy tales accumulates his/her cognitive experience in

the form of (inductively learned) supertransforms. In particular, the appearance of a

context (from some previously learned supertransform) in a new fairy tale may trig-

ger the anticipation of the corresponding body, thus, transforms become a “working

memory” for anticipation in a story. Certain transforms get associated with spe-

cific character types, such as a hero, villain, or magical helper. Moreover, as readers

become more and more experienced with fairy tales, they build up more relevant su-

pertransforms, and are able to “recognize” the appearance of various contexts more

regularly, consequently, allowing them to predict the stories with greater accuracy.

Finally, one should note the fundamental differences between Chomky’s formal gram-

mar model and the ETS formalism. The differences are manifold and it is sufficient

to mention here just the most obvious but important one. It is related to the way in

which the ETS representation is constructed. In ETS, transformations are directly

present in the corresponding structs, while in the formal grammar model, the pro-

duction rules that were used to construct a given string representation are not stored

within the representation. This leads to the problem of having a combinatorial ex-

plosion of possible histories for a given string.

4.5 The second level primitives

We believe that the formalism’s capability to address effectively various levels of fairy

tale comprehension is decisive feature in favor of the formalism. Moreover, the levels

effect (as mentioned in section 2.2.2) can be explained by the ETS multi-level repre-

sentation. At higher levels, the details of the story are hidden while generalizations
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about the story’s plot become more transparent.

The next level primitives corresponding to the chosen initial level supertransforms

are shown in Figure 4.14. Good act andits con-sequences Bad act andits con-sequencesActors/Objects: premeditatedtaking away Actors/Objects: actor discovers them,their possession status, and conceives thedesire for them Actors: good/bad act and theirconsequencesDisc.and desire forthe (last site)actorDisc.and desire forthe objectPremeditatedtaking awayof an object Premeditatedtaking awayof an actor
Figure 4.14: Next level primitives corresponding to the above initial level transforms

obtained in the manner shown in Figure 3.11.

In light of the above, it is not difficult to see how the compression of information in

ETS is accomplished. For example, the primitive “bad act and its consequences” now

encapsulates several events that include the bad act itself as well as its immediate

consequences, e.g. carrying out a bad unit act, parting of the main actors, and

the experience of sadness by the actor on the receiving end. The concept of the

supertransform allows one to realize this compression by accumulating the transform’s

variations encountered in the read fairy tales.

It is important to note that the quality of a fairy tale’s comprehension by a reader

is directly affected by his/her reading experience and ability to generalize from this

experience. According to the ETS formalism, the latter ability is directly related to

one’s aptitude to form the relevant supertransforms or, the next level primitives.
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4.6 An example of a second level struct

In Figure 4.15, we show the next level struct for the first fairy tale segment from

section 4.3. Observe that there are less details present but, at the same time, the

higher level plot becomes more recognizable.

Disc.and desire forthe (last site)actor Disc.and desire forthe (last site)actor
princessIvanson1 son2Silver & gold

Throw Ivanoff the ship
Ivan Ivan

Ivanson1son1 son2
son2 Silver & gold

Passage oftime Passage oftimeThe actorreachesanother actor The actorreachesanother actor
Disc.and desire forthe object Disc.and desire forthe object

Premeditatedtaking awayof an objectPremeditatedtaking awayof an actorBad act andits con-sequences Bad act andits con-sequences
Figure 4.15: Second level representation of a segment from the fairy tale Salt given

in Figure 4.5.
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4.7 Examples of two second level transformations

Figure 4.16 shows two related second level transforms/events: “premeditated bad act

followed by its goal of taking possession of the desired object” and “premeditated

bad act followed by its goal of taking possession of the desired actor”. They were

constructed on the basis of the corresponding four second level structs: one of them

is shown in Figure 4.15 and the other two (not shown) are the representations of the

remaining above two story segments. Again, as was mentioned in section 4.4, these

constituent transforms indeed appear more or less regularly in the four structs. It

is also easy to see that, indeed, at this higher level, the overall plot becomes more

transparent as compared to the previous level, and this should precisely be the goal

of a good representational formalism for document classification and retrieval, since,

ideally, one wants to allow the document query to relate to any semantic level.
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Premeditatedtaking awayof an object
a b cda b
aa bb cc

a b cda b
aa bb ccPremeditatedtaking awayof an actor

Disc.and desire forthe object Disc.and desire forthe (last site)actor
e e

Bad act andits con-sequences Bad act andits con-sequences
Figure 4.16: Examples of just two (of several) constituent transforms belonging to

different supertransforms: “premeditated bad act, followed by its goal of taking pos-

session of the desired object” and “premeditated bad act, followed by its goal of taking

possession of the desired actor”.

Finally, Figure 4.17 summarizes the hierarchial ETS representation of the correspond-

ing third level primitive.
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Premeditated badact followed by itsgoal - act

supertransforms at the initial level
supertransform at the second level
class primitive at level 3

Figure 4.17: Pyramid view of a third level primitive: the pyramid should be thought

of as being formed by the subordinate class supertransforms.
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4.8 Psychological validity

As a validation criteria for the proposed document representation, we chose psy-

chological validity, which has been used by various other researchers to guide the

development of their models at the pre-implementation stage (see [26, 40]).

4.8.1 Levels effect

The levels effect has already been briefly discussed in section 4.5 and in Chapter 2.

The levels effect is the observed phenomenon that people are more likely to remember

high-level information about a story rather than specific details [29]. In ETS, this

is modelled by the multi-level class hierarchy, where higher level classes encapsulate

more general ideas about the story, and lower-level classes correspond to specific

chains of events. At the lower levels, changes are continually occurring, but at a

higher level, such as the class of Russian fairy tales, the time between salient events

or structurally meaningful changes, is much greater.

4.8.2 Anticipation

Within this representation, ETS models anticipation through the inductively learned

supertransformations [13]. The context corresponds to certain preconditions that one

recognizes in the story; once these preconditions have been recognized, the reader

anticipates the corresponding event bodies. As readers read more stories, they learn

more of these supertransformations, and become more accurate in their anticipation

or predictions about what will happen further in the story.
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4.8.3 Generation

The inductively learned supertransformations allow a story reader to generate new

stories corresponding to particular classes. Since, in ETS, the class representation is

a set of structurally similar supertransformations, in order to create a new element of

this class, a particular person must simply apply the events for the context and body

of a transform. This element (some sequence of sentences), now becomes a specific

instance of a transform within the supertransformation.

4.8.4 Summarization

The multi-level class hierarchy models the process of summarization. Since the hier-

archy corresponds to different levels of representation for the story, a reader is able

to jump to a specific level and generate information about the story corresponding

to that level. This allows the learner to generate a summary about the story with

varying degrees of detailed information.

4.8.5 Memory retrieval

Remembering a story involves a compression of the information or details of the story

[26]. Generally, humans do not have perfect recall of a story, they only remember

higher-level information (corresponding to the levels-effect), therefore we need a rep-

resentation that models this compression [13, 26, 29, 40]. In ETS, the multi-level

hierarchy corresponds to this compression of information. With each level climb, the

representation for a specific story becomes smaller and more condensed, lower-level
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details are lost, but higher-level information about the plot becomes more transpar-

ent.

4.8.6 Reminding

Reminding is closely related to memory retrieval as well as anticipation. Schank

explored how different experiences may remind us about other experiences, and how

one story may remind us of another story. He suggested that it’s the story’s structure

that is responsible for this reminding effect, where, once we recognize a pattern, other

stories that also used that pattern or structure will be brought to mind [26].

In ETS, reminding is modelled through the inductively learned supertransformations.

Once a new transformation is learned from a particular fairy tale, a story reader may

see the appearance of that transformation’s context in a similar story. This may

trigger a reminder about the story where that context first appeared, bringing to

mind the stories or experiences where that context appeared before.

4.8.7 The Frame Problem

In Chapter 2, I briefly discussed the Frame Problem and some related problems

intrinsic to symbolic models. One of the reasons traditional symbolic models suffer

from these issues is because they need to assume a large amount of default information

about given situations [19]. By assuming this default information, they are unable to

accurately represent the unexpected, which is a very common feature of fairy tales.

However, in ETS, the only assumptions that are made are with respect to the initial
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level primitives. Provided the initial level primitives are chosen well, meaning that

they are general enough to represent most underlying events that may take place, the

unexpected can be inductively learned through supertransformations provided the

unexpected is regularly occurring and not noise.

4.9 Comparison to other representations

It is interesting to note some similarities between ideas about fairy tale representation

based on the ETS methodology and other, previously discussed, story representations.

As mentioned in Chapter 2, Schank believed that one could discover and define sets

of primitives that would form the basis for language representation. Also, he believed

that the representation of similar sentences, regardless of the language, should be

the same. These ideas are very similar to the ones proposed by the ETS formalism.

Specifically, using the representation of fairy tales discussed in this chapter, simi-

lar fairy tales should have a similar representation and the representation does not

depend on the language of the story. The main difference between this work and

Schank’s is that Schank was not working from a general and formal model of object

representation. He chose to localize his ideas specifically to language. Without a

formal model, it was difficult for researchers to apply his ideas to other areas out-

side of language or to evaluate his work on language. Moreover, his representations

were not multi-levelled and although he represented concepts through the semantic

interconnections of more primitive concepts, he did not formally introduce any ideas

about capturing temporal information.

Secondly, Propp also believed that stories, specifically fairy tales, had an underlying
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structure that could be characterized through a set of primitives or functions (as he

called them). His work, even more so than Schank’s, is similar to the ideas within

this thesis. However, as mentioned in section 4.2, his functions relied on a fairy tale

understanding too high level for the initial level of representation and he was never

able to formalize his ideas about representation in order to apply them to fairy tale

classification.

Thirdly, story grammars, which were partly based on Propp’s work, share similar ideas

to this thesis and ETS. Story grammars describe structure, and the hypothesis of its

practitioners is that all stories have an underlying structure that is relatively invariant.

Also, story grammars support a multi-level view of stories, which is also supported in

the ETS framework. Again, the main difference between story grammars and ETS is

that ETS is a general model for object representation, specifically designed to handle

the fundamental issues of representation and class description. Conversely, story

grammars apply Propp’s ideas about structure with traditional grammar notation.

Thus, they are constrained by the limitations of the formal grammar model, meaning

that they must hard-code all “transformation” information in the form of production

rules, which means there is no discovery or learning of new features of a class.

In Chapter 2 I mentioned that some researchers see statistical approaches, which rely

on vector-based representation, as a way around issues such as the Frame Problem.

This maybe true, however, vector-based approaches introduce their own problems

with respect to text or story representation. For instance, in stories the sequence of

events, i.e. the causal or temporal order of events, is very important to the under-

standing and plot representation of a story. In [19], Haplin attempted to use statistical

approaches to analyze how accurately students were able to rewrite a story they had
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read. He found that the lack of a temporal order in the vector-based representation

led to inaccurate evaluation of the student’s recall. For instance, in his original story,

the main character turns himself into an elf in order to be small enough to ride on the

back of a goose. Recalling this particular order is critical to the understanding of the

plot, however, if a student rewrote this as the main character getting on the back of

the goose, and then turning himself into an elf, a vector-based approach would treat

this the same as the original story.

Finally, I should mention a few important benefits of the ETS representation. Firstly,

an ETS struct provides a “snapshot” of the real object, and with this snapshot we

can see everything about the object, i.e. the events that took place to construct it.

Secondly, the ETS notion of class representation allows one to see how object’s within

a class are constructed. With a class representation we should be able to generate

new objects belonging to this class. This is a very powerful feature of ETS, one which

is not possible within the vector-space-based formalism.

4.10 Limitations of current representation

There are several limitations of the current set of primitives, which lead to limitations

in the representation for fairy tales. Firstly, most fairy tales begin by explaining the

setting of the story and some of the main characters. For instance, the fairy tale Salt

begins with: “In a certain city there lived a merchant who had three sons: the first

was Fyodor, the second Vasily, and the third Ivan the Fool.” The first paragraph

then goes on to explain that the merchant lives richly, and that he does not trust

his youngest son. The current set of initial level primitives are not designed well
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for handling this setting information; this is partly due to the first paragraph of a

story consisting of so much condensed information. Also, the setting is a narration,

which sometimes explains information from the past, which is also currently difficult

to represent.

Secondly, there appear to be two issues with the sites of the primitives. The first one

is that we may be loading too much information into a site. That is, a site currently

corresponds to a conceptual entity involved in particular events, and the site itself is

unstructured. If we depend on loading too much information into a site, we’ll lose

some structural meaning in the story. The second issue is that sites remain the same

throughout all levels. This could lead to strange representations as we ascend higher

and higher levels, creating more and more abstract primitives. The same sites used at

the initial level, will still be the same conceptual entities used in these very abstract

levels, however, it may not make sense to “think” about these abstract primitives

involving very concrete sites such as an actor.

The final issue is with the initial level primitives. We chose to keep the primitives as

simple as possible, however, it may be interesting or even necessary to expand the set

of primitives. For instance, we chose to only represent two changes in emotion, that is,

“Experience sadness” and “Experience happiness”, however, the plot representation

may benefit from expanding this set to include a larger range of emotional changes,

such as envy and fear. Moreover, in this initial application, we tried to represent

various actions, such as fight, steal, and insult as classes, which decompose to initial

level primitives, typically involving the primitives “Carry out unit act”, “Carry out

good unit act”, and “Carry out bad unit act”. However, there appears to only be a

small set of low level actions that occur in fairy tales, therefore, it is worth exploring
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using these low level actions directly as primitives and eliminating the three classes

of unit act primitives.
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Chapter 5

Fairy tale retrieval

The focus of this thesis has been primarily on data representation, specifically, the

representation of fairy tale segments. In this chapter, I tie together the representation

construction procedure (preprocessing step) with the classification of an IR query to

a database of fairy tales.

5.1 Preprocessing fairy tale segments

In the previous chapter the ETS structs were constructed assuming that a preproces-

sor had already performed the event recognition in order to identify the appearance

of the fairy tale primitives. In this section I give a brief overview of what this pre-

processor needs to do in order to perform this event recognition and discuss some of

the current techniques and tools in NLP that can be used in order to accomplish this

recognition step. Finally, I discuss and show the results of an experiment using an
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information extraction tool called AutoSlog-TS [33]. This experiment was conducted

to demonstrate how to use these existing tools, and to also give a starting point for

the future preprocessor development.

5.1.1 Information Extraction

Information extraction (IE) is the process of automatically extracting pre-specified

sorts of information from short, natural language text [48]. IE is distinctly different

than IR, however, they are complementary. IR is concerned with locating relevant

documents based on a query, while IE is concerned with analyzing text to recover pre-

specified information that the user may be interested in. Moreover, IE is interested

in the structure of the texts, whereas, traditionally in IR, texts are treated as bags

of words [45]. Very recently, some NLP research groups have been interested in

improving the performance of traditional IR techniques by coupling them with IE in

order to achieve more meaningful representations of the searched documents. With

the ETS representation, I need an IE layer to extract the primitives as they appear

in the text, allowing me to construct the struct representation of the story. Provided

the ETS primitives are simple enough, existing approaches to IE should be able to

preprocess the documents in this way. Similar work is discussed in [20], where Haplin

et. al used existing NLP components to build a preprocessor to extract events from

stories. The event sequences were compared to student’s rewritten versions of the

story, in order to evaluate their understanding of the plot (measured by their recall

about the flow of events).

It is very important that the primitives are chosen so as to minimize ambiguity as
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much as possible, meaning that they must be sufficiently low-level enough for current

IE techniques to preprocess effectively. Original IE systems were constructed using

finite state machines (FSM) and hand-crafted pattern extraction rules. These systems

required the developer to not only be an expert in NLP, but also be a domain expert,

as the rules had to be specifically tailored based on the document domain. This type

of IE system performed very well, but could not be used on more general document

corpuses or recognize complex events. Provided my initial level primitives are simple

enough, a FSM may be a sophisticated enough approach for the preprocessor.

Since the original FSM approaches, there has been a lot of work in NLP in the

area of information extraction. IE is now considered to consist of five tasks, named

entity recognition, coreference resolution, template element construction, and scenario

template production [11].

Named entity recognition (NE) identifies different entities that appear in the text,

such as “Ivan” or an “axe”, and classifies them as corresponding to a specific class,

such as an actor or an object. Coreference resolution (CO) attempts to discover

which references should be associated with a named entity, such as “him” referring

to “Ivan” and “it” referring to “Ivan’s axe”. This type of recognition is essential to

identifying the site types involved with each appearance of a primitive event in the

story. NE is much simpler than CO and NE systems perform comparable to human

level accuracy, while CO is still domain dependent; and the best systems perform

around 51% recall and 71% precision [11].

Template element construction (TE) and template relation construction (TR) have a

similar relations as NE and CO. TE adds descriptive information to NE results, and

TR finds relations between TE entities. For instance, TE may discover that Ivan is
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short and wears a red hat, while TR may discover that Ivan works as a mason. The

best IE systems are able to perform these tasks at 80% accuracy, while humans have

a performance level of around 93% [11].

Finally, the most important and difficult task is scenario template production (ST).

ST recognizes when events take place, and what entities participate in the events.

Thus, this part of the preprocessor would recognize when the event “Gain (possession

of) an object” has taken place, and associate with that event the actor and object

participating in the gain. The best IE systems perform at 56% accuracy while human

level accuracy is around 81% [11].

It is important to note that the levels of accuracy for each IE task given above are

based on results from MUC-7 (Message Understanding Conference). Both the type

of events and documents were much more complex than the ETS primitives given in

Chapter 4 and the fairy tales making up our document domain. Thus, it is difficult

to gage the performance of the hypothetical preprocessor at this time. However, one

of the advantages of ETS is that as the preprocessor is developed, the primitives can

be modified or re-worked by the application designer to correspond to an appropriate

level in which the preprocessor can perform the event recognition accurately.

5.1.2 Existing tools

NLP researchers have been working towards developing IE tools that are not domain

specific, or can be trained for a particular domain. The training data sometimes

consists of manually tagged text, annotated text, or pre-classification of the relevant

sentences in which you wish the IE tool to extract a pattern from. There are many
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existing IE tools; here I only briefly discuss some of the most important ones.

AutoSlog [33] builds a dictionary of extraction patterns, each extraction pattern con-

sisting of a conceptual anchor that activates it and a linguistic pattern. The conceptual

anchor is chosen from the training set based on a set of heuristics, and the linguistic

pattern represents a phrase or a set of phrases that are likely to be good for concept

activation. The original AutoSlog system needed as training data a set of annotated

and tagged text, however, a new system has now been developed called AutoSlog-TS.

The AutoSlog-TS system extracts patterns from free text, without any annotation

or tagging. The training data consists of a set of sentences representing the same

event, then the AutoSlog-TS system creates a large set of extraction patterns based

on the training data. The original AutoSlog system performed at 98% accuracy as

compared to hand-crafted rules, and it has been shown that AutoSlog-TS has similar

performance.

PALKA [23] learns extraction rules that are similar in form to the AutoSlog system.

Instead of the conceptual nodes that AutoSlog uses, PALKA learns extraction rules

that are expressed as frame-phrasal pattern structures (FP-structures). Also, instead

of using a set of linguistic patterns in order to extract the patterns, PALKA uses a

concept hierarchy, which is a set of predefined keywords that can be used to trigger

a pattern. Moreover, PALKA can use its concept hierarchy to match FP-structures

via relationships within the hierarchy, thus allowing it to extract events that are not

necessarily exact matches.

Finally, CRYSTAL [41], generates multi-slot concept nodes. CRYSTAL’s extraction

patterns are considerably more sophisticated than both AutoSlog and PALKA. CRYS-

TAL begins by creating very specific extraction rules or concept nodes based on the
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phrases in the training data. Afterwards, it traverses each concept node; and for

each node it finds the most similar existing node, and relaxes the constraints of each

such that both rules become merged into one rule. The new rule is tested against

the training data, and provided its error rate is less than some set threshold, the new

rule is added to the set of concept nodes, and the original two rules are removed.

This process continues for every concept node until all rules are made as general as

possible without significant error.

5.1.3 The experiment

The following experiment was conducted using the AutoSlog-TS system. These exper-

iments were conducted to demonstrate that existing tools can be used to recognize

the base level primitives. A full preprocessor could use these existing tools, with

modification, to build the fairy tale representations. Also, these existing tools could

be used to validate the selection of base primitives, as easier to recognize primitives

generally make better base level events.

In the first experiment, I trained AutoSlog-TS to extract the event “Meet” from a

set of unseen fairy tale paragraphs. To train the system, I used 69 relevant pieces of

text and 63 irrelevant pieces of text that I collected from 11 different stories found in

[1, 2]. Based on this training data, AutoSlog-TS created 687 case frames (see Figure

5.1 below). Most of the generated case frames are not very useful as they only occur

occasionally or are not appropriate, thus, it was necessary to filter the case frames so

that only the best are kept. A small C++ program (see Appendix A) was then used

to filter the case frames based on the statistics AutoSlog-TS generated for each case
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frame. After the filter program was run, only 31 case frames remained.

Figure 5.1: Example case frame generated by AutoSlog-TS, which represents an ex-

traction pattern corresponding the event “Meet”.

Using these 31 case frames, the AutoSlog-TS information extraction tool was used on

20 different paragraphs coming from four different fairy tales (5 from each) that were

not part of the training data. The results are shown below in Table 5.1. The first

column represents the story number, the second column represents the total number

of “Meet” events existing in that story’s test data 1, the third column represents the

correctly identified “Meet” events by AutoSlog-TS, the fourth column is the total

number of “Meet” events found by AutoSlog-TS, the fifth column is the percentage

of correctly identified events by AutoSlog-TS (CI/ME), and finally, the last column

represents the percentage of events recognized by AutoSlog-TS that were correct

(CI/TI).

1These “Meet” events were counted by hand, for each of the 20 paragraphs, before the test was
run.
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Table 5.1: Meet event extraction results.

Story ME CI TI CI/ME (%) CI/TI (%)

1 5 4 9 80.0 44.4

2 5 5 11 100 45.5

3 6 5 11 83.3 45.5

4 10 7 16 70.0 43.8

Total 26 21 44 80.8 47.7

ME - Number of Meet Events

CI - Correctly Identified Events

TI - Total Events Identified

We see that AutoSlog-TS correctly identified 80.8% of the “Meet” events, which is

very promising. However, AutoSlog-TS incorrectly recognized some “Meet” events,

that is, it “thought” some “Meet” events occurred in some places of the text where in

fact there was no such event occurring. Thus, out of all the “Meet” events recognized,

only 47.7% actually corresponded to correctly identified events. There are several

reasons why AutoSlog-TS performed badly in this respect, however the main reason

was due to confusion over sentences similar to the following: “Ivan arrived in the

forest.” The system recognized this as a “Meet” event, because structurally it is

very similar to sentences such as: “Ivan arrived in front of the King.” To deal with

this issue, the full preprocessor could potentially use a more sophisticated approach

to verifying event instances. For instance, a “Meet” event must involve two actors,

however, the first sentence given above only involves Ivan and an object, which is the
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forest. Due to this, no “Meet” event should occur, and this would be easy to filter

for using named entity recognition and coreference resolution.

In the first experiment, a reasonably small set of relevant and irrelevant text was used

to train the data. According to Dr. Ellen Riloff, one of the creators of AutoSlog-TS,

typically the training set consists of several hundred examples. A second experiment

was conducted, using the “Meet” event again, but this time with a slightly larger

training set (89 relevant, 84 irrelevant). Also, the new training data was added with

the consideration of attempting to improve the results from the first experiment, that

is, cut down on the number of misidentified events. Since the training data was

modified based on the learned information from experiment one, the test data had

to be expanded to include data from four new stories in order to not bias the result.

This time, AutoSlog-TS generated 793 case frames, which was then filtered to only

36, based on the same filtering program as before. The results are displayed below in

Table 5.2. The columns represent the same results as the previous experiment.
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Table 5.2: Meet event extraction results based on second training data.

Story ME CI TI CI/ME (%) CI/TI (%)

1 5 4 8 80.0 50.0

2 5 5 7 100 71.4

3 6 5 9 83.3 55.6

4 10 9 14 90.0 64.3

5 9 9 15 100.0 60.0

6 10 9 17 100.0 52.9

7 6 6 10 100.0 60.0

8 3 3 10 100.0 30.0

Total (1 to 4) 26 23 38 88.5 60.5

Total (5 to 8) 28 27 52 96.4 51.1

Total (1 to 8) 54 50 90 92.6 55.6

ME - Number of Meet Events

CI - Correctly Identified Events

TI - Total Events Identified

Once again we see that AutoSlog-TS performed very well in correctly identifying

existing “Meet” events. The original test data, stories 1 through 4, had an increased

accuracy, and overall, all 8 stories had an accuracy of 92.6%. Also, not surprisingly,

the percentage of events recognized to be correct versus the total number of events

recognized in the original training data improved as well. Overall, the proportion of

correctly identified events to total events recognized is 55.6%.
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The final experiment conducted was to use AutoSlog-TS to extract a different primi-

tive from the fairy tale data set. In this experiment, the event “Metamorphose” was

used. This event was chosen as it is a reasonably rare event compared to “Meet”,

and should provide further indication of whether AutoSlog-TS can correctly identify

the primitive events. Results are given below in Table 5.3. AutoSlog-TS was trained

using 37 relevant and 103 irrelevant examples. The system generated 673 case frames

based on this data, and using the same filter program as before, plus hand removing

some case frames, a total of 13 case frames were used against a data set consisting of

44 fairy tale paragraphs taken from 15 different stories. Within these 44 paragraphs,

there were 18 instances of the event “Metamorphose”. In the table below, the first

column represents the total number of “Metamorphose” events that actually existed

in the data set. The second column represents the total number of correctly identified

events. The third, represents the total number of events AutoSlog-TS thought were

real events. The fourth column is the percentage of correctly identified events by

AutoSlog-TS, and finally, the last column represents the percentage of events recog-

nized by AutoSlog-TS that were actually correct.

Table 5.3: Metamorphose event extraction results.

MME CI TI CI/MME (%) CI/TI (%)

18 14 22 77.8 63.6

MME - Number of Metamorphose Events

CI - Correctly Identified Events

TI - Total Events Identified
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All three experiments give encouraging results that a preprocessor can be developed

in the future, using existing NLP tools and methodologies, to extract the ETS fairy

tale primitives. Results for AutoSlog-TS could be improved by hand-crafting some

case frames, as well as using a fairy tale dictionary rather than a generic dictionary.

Finally, results may also be improved by increasing the size of the training sets and

also by gaining more experience with the AutoSlog-TS system.

5.2 Retrieving relevant fairy tales

Now that the preprocessing step has been discussed, we can discuss the process of

receiving a query from a user, and retrieving the relevant fairy tale segments. The first

step in this process is to preprocess all fairy tale segments (offline), storing their ETS

struct representation in a database. Once the struct representations are available, a

user can query the system by typing in a natural language query. The preprocessor

will convert this query into an ETS struct (online) and retrieve all relevant documents

based on the structure of the set of classes present in the database (see Figure 5.2).

In other words, the retrieval should be class based: the system should display ordered

class elements from the relevant classes. Although the details of such ETS algorithms

have not been developed yet, a preliminary outline is presented in Part III of [16]

(also discussed briefly in Chapter 3), and is a topic for future research.
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Figure 5.2: Data flow diagram of prototype information retrieval system for fairy

tales.

In a prototype system of this process, the user could enter their query directly as

an ETS struct, similar to the system being developed by InORB Technologies Inc.

where queries are entered as graphs [47]. Moreover, a structural similarity measure-

ment could be used between the document structs and the query struct, in order to

simplify the retrieving of relevant documents. These two simplifications, along with

the development of a preliminary preprocessor, would be enough to begin evaluation

of the ETS IR system compared to traditional approaches.
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5.3 Advantages

Throughout this thesis I have attempted to highlight representational advantages of

the ETS formalism as compared to other existing formalisms. Here, I will briefly

highlight some specific advantages the representation would provide in a fully imple-

mented system over existing IR tools.

Firstly, due to the nature of the representation of the documents, it is relatively

straight-forward to perform partial matching between a query and a fairy tale seg-

ment. This allows one to retrieve the relevant piece of a document corresponding

to the query, such as a single sentence or paragraph, rather than only being able to

retrieve an entire document. Secondly, the hierarchial class structure, and identifi-

cation of transformations, could potentially allow the system to generate summaries

of the retrieved segments, thus allowing a user to quickly locate the documents of

interest. Also, because of the hierarchial class structure, we can quickly narrow down

which documents the query corresponds to, by traversing the classes down through

the hierarchy, and pruning on irrelevant sub-classes. Finally, since the representation

is structural, users will be able to locate similar documents or parts of documents

by structural comparison, rather than collections of keywords. I feel that all of these

advantages will allow us to breath new life into IR, providing users with a much more

powerful and sophisticated search tool.
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Chapter 6

Conclusion and future directions

6.1 Conclusion

In this thesis, I have presented an initial application of the ETS model to the rep-

resentation of Russian fairy tales. This work was motivated by my interest in infor-

mation retrieval and what I felt was a need for a more powerful representation of IR

documents. Using the ETS formalism and in-depth analysis of many fairy tales, I

discovered around 40 ETS primitives that make up the underlying structure of events

for any Russian fairy tale. These primitives correspond to the events that take place

in the mind of the generic fairy tale listener/reader. With these primitives, I de-

veloped several example structs representing story segments belonging to the same

class. Using these structs, I proposed several supertransformations corresponding to

next level events in the conceptual representation of the stories. We believe that any

reader of fairy tales accumulates his/her cognitive experience in the form of (induc-

tively learned) supertransforms. Moreover, the next level events encapsulated by the
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supertransforms correspond to the next level primitives, thus, allowing the represen-

tation to climb levels. With each level climb, the representation is compressed, but

the overall plot becomes more transparent in the representation.

At this, still early stage, it appears to us that the ETS (event-based) representation

is eminently suitable for representing fairy tales. This is mainly due to a good match

between the ETS primitives and the fairy tale’s elementary events, as well as due

to the resulting explicitness of the representation. The good match is assured by

the fact that the ETS formalism is event-based and allows one to capture temporal

and structural relationships between events. Moreover, the concepts of transforma-

tion and supertransformation allow for a very natural introduction of levels of fairy

tale representation, without which, it appears, no intelligent information system is

possible. The structure of ETS, including the presence of levels, makes the advan-

tages of this formalism over other conventional information retrieval formalisms quite

apparent: the query can now be directed towards the right level and the right class.

Information retrieval has always been a result driven area, however, performance

levels have not increased as much as one would expect in the past few decades [46].

Some feel that we need more sophisticated statistical techniques for classification and

feature selection as well as more computational power, but I feel that it’s a question

of representation, not computational power or statistics. Many researchers are now

looking to techniques in NLP to improve the performance of their IR algorithms,

essentially attempting to create a richer representation of the documents within the

corpus. I think this is interesting, as the unification of models is always interesting

in science. However, we need a representation that will maintain the structure of the

documents after preprocessing because this temporal history is essential to a powerful
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representation of the corresponding class.

The central idea of ETS is that objects can be described by their formative history.

Any application of ETS must begin by postulating a basic/initial level of represen-

tation (as done in Chapter 4). All higher levels can be constructed by the inductive

learning algorithm, where classes are specified by the description of their representa-

tional levels (i.e. supertransformations). This class description is very powerful, as

it provides a transparent view of how objects within the class can be constructed.

This inductive representation allowed the formal specification of ETS (see [16]) to

unify several pattern recognition (PR) concepts such as classification, generation,

and structural representation. The unification of so many central ideas in PR makes

the model worth exploring for many applications even though all of the proposed

ideas within the formalism are still very new.

In [15], Golubitsky states that “The ‘proof of concept’ for the proposed model [ETS],

of course, depends on the success of its applications.” The application of ETS dis-

cussed in this thesis, is one of the first such applications of the ETS model. Un-

fortunately, it has not reached a completeness such that it can be compared via

performance levels to other existing tools in this area. However, although the ETS

model is still in its infancy, it was the right time to proceed with an application,

as it is through applying the model that we are able to evaluate and critique the

formal specifications. For instance, due to this application and a few other initial

applications of ETS, we were able to discover several deficiencies with the current

formalism.

The deficiencies have to do with the idea of a “site”. Formally, the term site was

never defined, thus, it is unclear in the current formalism what a site really is. In
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this thesis, I used sites as conceptual entities involved in the perception of the story,

however, without any formal definition of site I could potentially use very strange

sites. Also, any representation problems I experienced may be due to the misuse of

sites, rather than the formalism. Moreover, in the current formalism, as shown in

Chapter 4, sites do not change as we ascend levels. This leads to a somewhat strange

representation at higher levels, as higher level concepts will still involve the same

initial level conceptual entities.

Work has begun on a revised version of the formalism, one that defines the concept

of a site. It is important to note that due to the new definition of site (which I

will not discuss here) the model has been simplified. Also, the new definitions further

constrain the initial level selection of primitives, making it easier to determine “good”

primitives. Finally, learning appears to be simpler in the newer version, which is very

important, as ETS has always claimed that powerful representation makes learning

easy. All of these new ideas arose by observing the behavior of the initial applications

of the model.

Finally, although a newer version of the model is being researched, it appears that

much of the work discussed in this thesis is still applicable in the new version. I feel

that with some modification, the representation proposed here can be used with the

new version. Also, I feel that a fully working implementation will be possible within

the near future and hopefully the work I presented in this thesis is enough for other

researchers to see that this is indeed true. Also, hopefully, I have presented enough

arguments for the ETS model to convince other researchers (working in computa-

tional linguistics, IR, or other areas of PR) that this formalism is worth investigating

and applying to their own research areas. As more people research and apply the
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model, it will be easier and faster to apply to new domains. Also, the model’s formal

specification, inductive learning algorithm, and proposed concepts can be improved

through the research and critique of other scientists.

6.2 Future directions

The concentration of this thesis has been on the representation of documents for the

purpose of IR. The thesis has proposed many new ideas and approaches to IR based

on the ETS formalism, however, due to how new the formalism is, a prototype of the

proposed system has not been developed yet. In this section, I list some of the future

work and directions that I feel this research could go in. I think there are enough

new ideas here and within ETS to keep any researcher occupied for most of his/her

career.

• Revise representation for the new version of the ETS model.

• Investigate how to represent the association between events/words occurring in

a story and real-world knowledge.

• Develop IE layer/preprocessor to extract ETS primitives from document corpus,

possibly adjusting ETS primitives to improve accuracy of the preprocessor.

• Create fully working IR prototype using the intelligent process to perform clas-

sification of queries and document structs, or using a simplified structural sim-

ilarity measure.

• Evaluate prototype against statistical based IR tools.
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• Investigate applying ETS to general document and language representation.

• Investigate methods of improving IE systems by using the ETS formalism to de-

compose higher-level event structures into lower-level, more easily recognizable,

primitive structures.

• Explore other areas of NLP using ETS, such as summarization, generation, and

translation.
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Appendix A

AutoSlog-TS case frame filtering

program

#include <iostream>

#include <string>

#include <list>

#include <vector>

#include <fstream>

#include <iomanip>

using namespace std;

// determine if character is a number

bool isNum(char c) {

return c >= ’0’ && c <= ’9’;

}

// parses a string into a double

double getDouble(string s) {

double d = 0.0, dec = 0.0, fact = 0.1;

bool dpoint = false;

for(int i = 0; i < s.length(); i++) {
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if(isNum(s[i]) && !dpoint) {

d *= 10;

d += (s[i] - ’0’);

}

else if(isNum(s[i]) && dpoint) {

double tmp = (s[i] - ’0’) * fact;

fact *= 0.1;

dec += tmp;

}

else {

dpoint = true;

}

}

return d + dec;

}

// caseframe data structure

struct CaseFrame {

string CF, Name, Anchor, Slot;

vector<string> ActFcns;

double freq, relfreq, condprob, rlogscore;

CaseFrame() {}

void parseCF(string & s) {

CF = s.substr(4, s.length() - 4);

}

void parseName(string & s) {

Name = s.substr(6, s.length() - 6);

}

void parseAnchor(string & s) {

Anchor = s.substr(8, s.length() - 8);

}

void parseActFcns(string & s, ifstream & in) {

char line[80];

string tmp = s.substr(10, s.length() - 10);

ActFcns.push_back(tmp);

while(in.peek() != ’S’) {

in.getline(line, 80);

s = string(line);

tmp = s.substr(10, s.length() - 10);

ActFcns.push_back(tmp);
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}

}

void parseSlot(string & s) {

Slot = s.substr(5, s.length() - 5);

}

void parseFreq(string & s) {

freq = getDouble(s.substr(19, s.length() - 19));

}

void parseRelFreq(string & s) {

relfreq = getDouble(s.substr(23, s.length() - 23));

}

void parseCondProb(string & s) {

condprob = getDouble(s.substr(19, s.length() - 19));

}

void parseRLogScore(string & s) {

rlogscore = getDouble(s.substr(20, s.length() - 20));

}

void print(ostream & out) {

out << setiosflags(ios::fixed) << setprecision(3);

out << "CF: " << CF << endl;

out << "Name: " << Name << endl;

out << "Anchor: " << Anchor << endl;

out << "Act_Fcns: ";

for(int i = 0; i < ActFcns.size(); i++) out << ActFcns[i] << endl;

out << "Slot: " << Slot << endl;

out << "Stats: frequency = " << freq << endl;

out << " relativeFreq = " << relfreq << endl;

out << " cond_prob = " << condprob << endl;

out << " rlog_score = " << rlogscore << endl;

out << endl;

}

};

// definition of a CaseFrame iterator

typedef list<CaseFrame>::iterator CFIter;

// linked list used to store caseframes

list<CaseFrame> caseFrames;

// function to parse caseframe input into data structure

void parseCaseFrame(CaseFrame & cf, ifstream & in) {
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char line[80];

string s;

for(int i = 0; i < 9; i++) {

in.getline(line, 80);

s = string(line);

switch(i) {

case 0:

cf.parseCF(s);

break;

case 1:

cf.parseName(s);

break;

case 2:

cf.parseAnchor(s);

break;

case 3:

cf.parseActFcns(s, in);

break;

case 4:

cf.parseSlot(s);

break;

case 5:

cf.parseFreq(s);

break;

case 6:

cf.parseRelFreq(s);

break;

case 7:

cf.parseCondProb(s);

break;

case 8:

cf.parseRLogScore(s);

break;

}

}

}

// prints a filtering menu

void printMenu() {

cout << "Menu:" << endl;
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cout << "1. Filter on frequency." << endl;

cout << "2. Filter on relative frequency." << endl;

cout << "3. Filter on conditional probability." << endl;

cout << "4. Filter on rlog score." << endl;

cout << "5. Print case frames to file." << endl;

cout << "6. Display number of case frames." << endl;

cout << "7. Quit." << endl;

}

// filters case frames based on frequency

void freqFilter() {

cout << "Choose the smallest acceptable frequency: ";

double freq;

cin >> freq;

for(CFIter iter = caseFrames.begin(); iter != caseFrames.end(); ++iter) {

if(iter->freq < freq) {

iter = caseFrames.erase(iter);

iter--;

}

}

}

// filters case frames based on relative frequency

void relFreqFilter() {

cout << "Choose the smallest acceptable relative frequency: ";

double relfreq;

cin >> relfreq;

for(CFIter iter = caseFrames.begin(); iter != caseFrames.end(); ++iter) {

if(iter->relfreq < relfreq) {

iter = caseFrames.erase(iter);

iter--;

}

}

}

// filters case frames based on conditional probability

void condProbFilter() {

cout << "Choose the smallest acceptable conditional probability: ";

double condprob;
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cin >> condprob;

for(CFIter iter = caseFrames.begin(); iter != caseFrames.end(); ++iter) {

if(iter->condprob < condprob) {

iter = caseFrames.erase(iter);

iter--;

}

}

}

// filters case frames based on rlog score

void rlogFilter() {

cout << "Choose the smallest acceptable frequency: ";

double rlogscore;

cin >> rlogscore;

for(CFIter iter = caseFrames.begin(); iter != caseFrames.end(); ++iter) {

if(iter->rlogscore < rlogscore) {

iter = caseFrames.erase(iter);

iter--;

}

}

}

// prints case frames to a file

void printToFile() {

cout << "Enter file name: ";

string s;

cin >> s;

ofstream out(s.c_str());

for(CFIter iter = caseFrames.begin(); iter != caseFrames.end(); ++iter) {

iter->print(out);

}

out.close();

}

// allows user to select a menu item

void pickItem() {

printMenu();
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int sel = 0;

cin >> sel;

switch(sel) {

case 1:

freqFilter();

pickItem();

break;

case 2:

relFreqFilter();

pickItem();

break;

case 3:

condProbFilter();

pickItem();

break;

case 4:

rlogFilter();

pickItem();

break;

case 5:

printToFile();

pickItem();

break;

case 6:

cout << caseFrames.size() << endl;

pickItem();

break;

case 7:

break;

}

}

int main() {

string f;

cout << "Enter the case frame file: ";

cin >> f;

ifstream in(f.c_str());

cout << "Reading case frames file." << endl;
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while(!in.eof()) {

caseFrames.push_back(CaseFrame());

parseCaseFrame(caseFrames.back(), in);

// eat whitespace after a case frame entry

while(in.peek() == ’\n’ || in.peek() == ’\r’

|| in.peek() == ’ ’) in.get();

}

cout << "Case frames read." << endl;

pickItem();

return 0;

}
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