
Turing-completeness of additive transformations in the ETS
formalism1

Oleg Golubitsky

Department of Mathematics
University of Pisa

Via Buonarroti 2, 56127, Pisa, Italy
golub@dm.unipi.it

Abstract

We represent strings over a finite alphabet by the data structures, called string structs, introduced
in the evolving transformation system (ETS) model, which was proposed as a general model for
structural object representation and classification and has been formalized recently. Then we describe
string languages as classes of structs generated by a finite set of context-sensitive transformations.
The transformations are assumed to be additive, or non-deleting, in order to maintain the explicitness
of representation of the constructive history of objects from a class, postulated in the ETS formalism.
In case of strings, additive transformations are context-sensitive insertions; however, in case of structs
they are more general. We prove that any recursive language can be represented as a class of string
structs generated by additive transforms.

1 Introduction

The evolving transformation system (ETS) model is a model for structural object rep-
resentation. It was proposed in 1990 by Lev Goldfarb [5, 4] to be applied to any pat-
tern learning or classification problem. The model is based on the postulate that every
real-world object is a result of a constructive process called the object’s constructive
(sometimes evolutionary or developmental) history. Moreover, it is postulated that the
representation of this constructive process should be explicitly present in the object’s
representation.

Recently, the first formalization of the model appeared in several versions [7, 6, 8]. The
version [8] considered in this paper defines two main data structures. First, formations
are defined to represent constructive processes, i.e., finite sequences of elementary con-
structive steps that can generate objects from a certain broad class. Generally speaking,
several different constructive process may produce the same object. Therefore, a semantic
equivalence relation on formations is introduced, with respect to which two formations are
equivalent if and only if the corresponding constructive processes produce the same ob-
ject. Finally, structs are defined to represent objects as equivalence classes of formations
w.r.t. the semantic equivalence relation. Thus, a struct is a data structure that represents
a real-world object. It is shown in [8] that strings, trees, and graphs are particular cases
of structs.

In order to describe classes of objects, context-sensitive transforms are defined on
formations, and then carried over to structs. A class is defined as a set of all structs
generated by a given finite set of transforms. As opposed to the approaches based on

1The work has been supported by the Progetto di Interesse Nazionale “Algebra Commutativa e Computazionale” of the
Italian “Ministero dell’Istruzione dell’Università della Ricerca Scientifica Tecnologica and by the RFBR grant no. 02-01-
01033.

77

the Chomsky formal grammars [3, 9], all transforms in the ETS formalism are assumed
to be additive, or non-deleting. This restriction ensures that the transforms do not erase
the constructive history of objects, whose explicit presence in object representation is
required by the above postulate. As a consequence, the problem of inductive learning of
transforms from a finite training set is also simplified (see, for example, [1] for a learning
algorithm developed for classes of strings generated by additive transforms).

In case of conventional formalisms (strings, trees, and graphs), the restriction of ad-
ditivity significantly reduces the generative power of transforms. However, as we show
in this paper, in case of general structs, the restriction of additivity does not imply any
restriction of generative power whatsoever, i.e., arbitrary recursive languages can be gen-
erated.

The structure of the paper is as follows. In Section 2, the concepts of recursive language
and Turing machine are reviewed. In Section 3, the main concepts of the ETS formalism
are introduced. The example carried through Section 3 shows how to simulate Turing
machines by additive transforms in the ETS formalism. In Section 4, correctness of this
construction is proved, which implies that any recursive language can be generated by
additive transforms in the ETS formalism.

2 Recursive languages and Turing machines

A Turing machine M (see also [10]) is specified by

• A finite alphabet Σ containing a special “blank” symbol �.

• A finite set Q, whose elements are called “states”, containing three special elements:
the initial state q0, the “yes”-state qY and the “no”-state qN .

• A transition mapping δ : (Q \ {qY , qN})× Σ→ Q× Σ× {L,R}.

The machine consists of an infinite tape subdivided into cells containing characters
from Σ and a head that points to a single cell at each moment. Altogether, the contents
of the machine’s tape, the position of the head, and the current state are called the
configuration of the Turing machine.

The initial configuration is the following: the machine’s tape contains a finite string
x ∈ (Σ \ {�})∗, called the input string, surrounded by blank symbols, the head points to
the leftmost character of x, and the state is q0. The machine can make a step as follows.
Given that, in the current configuration, the machine’s state is q ∈ Q \ {qY , qN} and the
head points to a cell containing character c ∈ Σ, perform the following operations:

• compute δ(c, q) = (c′, q′, d)

• write character c′ in the cell to which the head points

• move the head one position left, if d = L, or one position right, if d = R

• enter state q′.

If the machine enters state qY or qN , it halts.
We will specify the transition mapping of a Turing machine by listing a set of commands

of the form
(q, c) 7→ (q′, c′, d),

78

where q ∈ Q\{qY , qN}, c, c′ ∈ Σ, q′ ∈ Q, d ∈ {L,R}. The presence of the above command
in the list means that δ(q, c) = (q′, c′, d). For every pair (q, c) ∈ (Q\{qY , qN})×Σ, there is
at most one command in the list, and if there are none, we assume that δ(q, c) = (qN ,�, L).

The machine accepts a language L ⊂ (Σ \ {�})∗, if

• For all x ∈ L, the machine, starting in the initial configuration with the input string
x, halts in state qY after finitely many steps.

• For all x ∈ (Σ \ {�})∗ \L, the machine, starting in the initial configuration with the
input string x, halts in state qN after finitely many steps.

A language is called recursive, if there exists a Turing machine that accepts it. Infor-
mally, a language L is recursive, if there exists an algorithm that decides for any input
string whether it belongs to L or not.

Given a Turing machine M accepting a language L, we would like to modify it, so that

• for every configuration of M , the tape contains a string from (Σ \ {�})∗ surrounded
by blank symbols

• M erases everything from the tape before halting in state qY or qN .

This can be achieved through the following modifications:

• add states qY1
, qY2

, qN1
, qN2

, q′Y , q′N , qY E, qNE to Q

• add a new character X to Σ

• for every command of the form (q,�) 7→ (q′, c′, d), add command (q,X)→ (q′, c′, d)

• replace every command of the form (q, c) 7→ (q′,�, d) by (q, c) 7→ (q′, X, d).

These modifications ensure that for every configuration of M , the tape contains a string
from (Σ\{�})∗, and the head points to a character in the string or to the blank character
immediately preceding or following the string. Next, replace states qY by q′Y and qN by
q′N in all commands of M and add the following commands:

(q′Y , α) 7→ (qY1
, α, R) α ∈ Σ

(qY1
,�) 7→ (qY1

,�, L)

(and similar commands for the “no”-state). This ensures that, when the machine en-
ters qY1

or qN1
, the head points to a character in the string. Finally, add the following

commands (again, we list only the commands for the “yes”-state, and the corresponding
commands for the “no”-state are assumed implicitly):

(qY1
, α) 7→ (qY2

, α, R) α 6= �

(qY2
, α) 7→ (qY2

, α, R) α 6= �

(qY2
,�) 7→ (qY E,�, L)

(qY E, α) 7→ (qY E,�, L) α 6= �

(qY E,�) 7→ (qY ,�, L)

The last set of commands first moves the head to the blank character immediately fol-
lowing the string on the tape, then erases the string, and enters qY . We call the resulting
Turing machine refined.

79

3 ETS data structures and additive transforms

We introduce the concepts of a primitive representing an elementary constructive step,
a formation representing a finite constructive process (a finite sequence of elementary
constructive steps), and a struct representing a single object. As was mentioned in the
introduction, objects are thought of as equivalence classes of constructive histories, there-
fore structs are defined as equivalence classes of formations. The auxiliary concepts of
a site, composite, and site replacement are introduced for technical reasons (which are
discussed in [8]).

Let S be a countably infinite set whose elements are called sites.

Definition 1. A primitive is a 3-tuple π
def
= 〈α, I, T 〉, where α is the label of primitive

π, and I, T are disjoint finite linearly ordered subsets of the set of sites S.
For a primitive π = 〈α, I, T 〉, we use the following notation:

init(π)
def
= {i | i ∈ I} set of initial sites for π

term(π)
def
= {i | i ∈ T} set of terminal sites for π

sites(π)
def
= init(π) ∪ term(π) set of (all) sites for π.

◮

The reasons for describing elementary constructive steps by the above primitives are
discussed in [8, Appendix].

A primitive 〈α, I, T 〉 can be represented pictorially as a convex shape with |I| sites
marked on its upper part and |T | sites marked on its lower part. The left-to-right ordering
of the sites corresponds the linear orderings on I and T .

Given a Turing machine over alphabet Σ with the set of states Q, we introduce |Q|+
2|Σ| + 3 primitives shown in Fig. 1 (q ∈ Q, c ∈ Σ). The meaning of these primitives, as

q
c c

Figure 1: Primitives (site labels are omitted for simplicity).

elementary constructive steps, is the following (starting from the leftmost primitive):

1. Creation of the beginning of a Turing machine tape (formally, the tape is infinite, so
this primitive signifies the position before the leftmost non-empty cell of the tape)

2. Creation of the end of a Turing machine tape (the position after the rightmost non-
empty cell)

3. (|Q| primitives) Attachment of the head of a Turing machine in state q to the tape
(q ∈ Q)

4. Recording that the machine has made a step (this primitive is to be attached at the
bottom of the previous one)

80

5. (|Σ| primitives) Creation of an active cell (i.e., the one to which the head points)
with a character c ∈ C inside

6. (|Σ| primitives) Creation of an inactive cell with c ∈ C inside

The initial and terminal sites of each primitive are designed in such a way that the
simulation of the Turing machine becomes possible (see below).

Definition 2. A pair of primitives 〈π, σ〉 satisfies the attachment condition, denoted
π ⊣ σ, if and only if

sites(π) ∩ sites(σ) = term(π) ∩ init(σ).

A composite is a finite set of primitives γ = {π1, . . . , πn} which can be ordered by a
linear ordering < so that for all i < j, πi ⊣ πj.

For the above composite γ, define the following sets of sites:

init(γ) = ∪n
i=1 init(πi) \ ∪

n
i=1 term(πi)

term(γ) = ∪n
i=1 term(πi) \ ∪

n
i=1 init(πi).

◮

Pictorially, it is convenient to represent a composite by connecting the shared sites
of its primitives; the attachment condition expresses formally the intuitively necessary
requirement that connections can only exist between terminal sites of one primitive and
initial sites of another. The difference between composites and hypergraphs is discussed
in [8, Section 2.1.2]. In Fig. 2, two examples of composites are shown (site labels are
omitted).

c

c

c

1

2

n

0
q

Y
q

(a) (b)

Figure 2: (a) Composite corresponding to the initial configuration of the Turing machine with the input
string c1 . . . cn; (b) Composite corresponding to the “yes”-configuration of the Turing machine with empty
tape.

Definition 3. An ordered pair of composites 〈α, β〉 satisfies the composition condition,
if for all primitives π ∈ α, σ ∈ β, π ⊣ σ.

For a pair of composites 〈α, β〉 satisfying the composition condition, the composition

α ⊳ β is defined as the union of sets α and β. ◮

Composition of any pair of composites satisfying the composition condition is a com-
posite. Moreover, the composition operation is associative [8, Lemma 4].

Two composites that differ only in their sites but have the same internal structure
represent the same constructive processes. Thus, a constructive process is uniquely rep-
resented by the set of all site replacements of a given composite:

81

Definition 4. For a primitive π = 〈α, I, T 〉 and an injective mapping h : sites(π) → S,

called site replacement, the primitive π〈h〉 is defined as

π〈h〉
def
= 〈α, h(I), h(T)〉.

For a composite γ = {π1, . . . , πn} and an injective mapping h : sites(γ) → S, the
composite γ〈h〉 is defined as follows:

γ〈h〉
def
= {π1〈h

∣

∣

sites(π1)
〉, . . . , πn〈h

∣

∣

sites(πn)
〉}.

◮

A formation is defined as the set of all composites obtained from a given composite
through site replacements. A pictorial representation of a formation can be obtained
from that of a composite by removing the site labels. Since formations have no sites, the
operations of composition and site replacement are undefined for them. The connection
between formations and abstract graphs is discussed in [8, Section 2.1.5].

Next, we define structs representing objects via the introduction of the semantic equiv-
alence relation on formations. The informal assumptions behind the definitions, as well
as the reasons for some formal requirements, are discussed in [8, Section 2.2] and omitted
here.

Definition 5. Composite α is called directly reducible to composite β via a composite
pair c = 〈γ, γ′〉, denoted α

c
→ β, if there exist composites γ1, γ2 such that

α = γ1 ⊳ γ ⊳ γ2

β = γ1 ⊳ γ′ ⊳ γ2.

Formation ᾱ is called directly reducible to β̄ via c, if there exist composites α ∈ ᾱ,
β ∈ β̄ such that α

c
→ β.

The direct reduction relation induced by a set of composite pairs I is defined as follows:

ᾱ
I
→ β̄ ⇐⇒ ∃ c ∈ I ᾱ

c
→ β̄.

The equivalence relation induced by I, denoted ∼I , is defined as the reflexive, symmet-

ric, and transitive closure of the direct reduction relation
I
→, i.e., the minimal equivalence

relation containing
I
→. ◮

Next, we formulate a condition on composite pairs in I, sufficient to make the equiv-
alence relation ∼I a congruence with respect to composition ([8, Lemma 18]).

Definition 6. A composite pair c = 〈γ, γ′〉 is called a semantic identity, if

init(γ) = init(γ′), term(γ) = term(γ′).

We will use the following “equality” notation for the semantic identities: identity 〈γ, γ′〉
will be denoted as γ = γ′. ◮

Definition 7. If I is a set of semantic identities, relation ∼I is called the semantic

equivalence relation induced by I. ◮

82

Definition 8. Let I be a set of semantic identities, and let∼I be the semantic equivalence
relation on formations induced by I. For a formation γ̄, the struct containing γ̄ is defined
as

γ
def
= [γ̄]∼I

def
= [[γ]]∼I

def
= {γ̄′ | γ̄′ ∼I γ̄}.

◮

We impose two requirements on the set I of semantic identities: first, that I is finite,
and second, that every equivalence class w.r.t. ∼I (i.e., every struct) is finite. The
latter condition ensures that all operations in the ETS formalism (including checking
struct equality) are computable [8, Section 2.3.7]—which is a necessary requirement for
the purpose of this paper: the simulation of Turing machines by ETS operations. Other
reasons for imposing this requirement of struct finiteness are discussed in [8].

Given a Turing machine M with alphabet Σ, set of states Q, and transition mapping

δ : Σ× (Q \ {qY , qN})→ Σ×Q× {L,R},

we introduce the semantic identities shown in Fig. 3. They are designed in such a way
that all formations representing various configurations that the machine can enter starting
from a fixed initial configuration are semantically equivalent.

The detailed meaning of the semantic identities in Fig. 3 is the following.

• (R1) This is a family of |Σ| · (|Σ| − 1) · (|Q| − 2) · (|Σ| − 1) · (|Σ| − 1) · |Q| identities,
each of which signifies that composite representing the configuration in which

– the head points to a character c ∈ Σ

– the machine is in state q ∈ Q \ {qY , qN}

– there is at least one character α ∈ Σ \ {�} to the right of c

is equivalent to the composite representing the configuration in which

– c is replaced by a character c′ ∈ Σ \ {�}

– the machine is in state q′ ∈ Q

– the head points to α

– the fact that the machine has made the step (q, c) 7→ (q′, c′, R) is recorded via the
attachment of the step recording primitive at the bottom to the head primitive.

• (L1) This family of identities is similar to R1 and corresponds to the step (q, c) 7→
(q′, c′, L).

• (R2) Composite representing the configuration in which

– the head points to a character c ∈ Σ

– the machine is in state q ∈ Q \ {qY , qN}

– c is the last character on the tape

is equivalent to the composite representing the configuration in which

– c is replaced by a character c′ ∈ Σ \ {�}

– the machine is in state q′ ∈ Q

83

1

1

α

q

2

c

α

1

q

3

2

2

=

c’

α

1

=

c

q

2

1

=

c’

α

1

2

3

2

3

3

2

α

α

q

1

=

c’

1

=

c

q

2

1

=

c 2

q

1

2

1

c’

2α

2

R L

1

2

3

q’
q’

q’

q’

q’

1

α

q’

1

q

2

c

α

4

=

α

2

1

q

q

α

1

=

5

1

q
q

1

=

6

1

q’

Figure 3: Semantic identities.

84

– a new cell is created after c with a � symbol in it

– the head points to the new cell

– the fact that the machine has made the step (q, c) 7→ (q′, c′, R) is recorded.

• (L2) is similar to (R2).

• (R3) Composite representing the configuration in which the head points to the �

symbol at the beginning of the tape, the machine is in state q, and there is a character
α ∈ Σ to the right of the head is equivalent to the one in which the cell with the
� symbol is removed, the machine is in state q′, the head points to α, and the step
(q,�) 7→ (q′,�, R) is recorded.

• (L3) is similar to (R3).

Identities (4–6) simulate the final erasing stage of a refined Turing machine:

• (4) Composite representing the configuration in which the head points to the right-
most symbol c ∈ Σ \ {�}, the machine is in state q ∈ {qY E, qNE}, and there is a
character α to the left of c is equivalent to the one in which the cell with c is removed,
the machine is in state q again, the head points to α, and the step (q, c) 7→ (q,�, L)
is recorded.

• (5) Composite representing the configuration in which the head points to the only
symbol α ∈ Σ \ {�} on the tape and the machine is in state q ∈ {qY E, qNE} is
equivalent to the one in which α is replaced by �, the machine is in state q again,
and the fact that the machine has made the step (q, α) 7→ (q,�, L) is recorded.

• (6) Composite representing the configuration in which the tape is empty and the
machine is in state q ∈ {qY E, qNE} is equivalent to the one in which the tape is
empty again, the machine is in the corresponding state q′ ∈ {qY , qN}, and the step
(q,�) 7→ (q′,�, L) is recorded.

The direct reduction relation and the semantic equivalence relation induced by the
identities in Figs. 3 are denoted →M and ∼M , respectively.

Next, we define additive context-dependent transforms on composites, formations, and
structs.

Definition 9. A pair of composites τ = 〈α, β〉 satisfying the composition condition is
called a transform with the context α and body β, denoted

context(τ)
def
= α, body(τ)

def
= β.

If α is empty, the transform is called context-free. ◮

Definition 10.

1. A transform τ is applicable to a composite γ, if the following two requirements
are met:

• there exist composites γ1, γ2 such that γ = γ1 ⊳ context(τ) ⊳ γ2

• composites γ and body(τ) satisfy the composition condition.

85

2. Transform τ is applicable to a formation γ̄, if τ is applicable to a composite γ ∈ γ̄.

3. Transform τ is applicable to a struct γ, if τ is applicable to a formation γ̄ ∈ γ.

◮

The |Q|+ 1 transforms corresponding to the Turing machine are shown in Fig. 4.

Y
q

q

body

context

Figure 4: Transforms corresponding to the Turing machine (the first one is context-free).

Definition 11. A finite sequence of transforms 〈τ1, . . . , τn〉 is called valid, if

• composition γ = body(τ1) ⊳ . . . ⊳ body(τn) exists

• τ1 is context-free

• for all i ∈ {2, . . . , n}, τi is applicable to struct

[[body(τ1) ⊳ . . . ⊳ body(τi−1)]].

The result of the above valid sequence of transforms is defined as struct [[γ]]. ◮

Classes of structs are specified by transforms as follows.

Definition 12. For a transform τ , an injective mapping

f : sites(context(τ) ⊳ body(τ))→ S

is called a transform site replacement. By definition,

τ〈f〉 = 〈context(τ)〈f〉, body(τ)〈f〉〉.

An abstract transform τ̄ is defined as the set of all transforms obtained from τ by
site replacements:

τ̄ = {τ〈f〉}.

◮

Definition 13. Let T̄ be a finite set of abstract transforms. The class of structs generated
by T̄ , 〈T̄ 〉, is defined as the set of results of all valid sequences of transforms 〈τ1, . . . , τn〉,
where τ̄i ∈ T̄ . ◮

86

Denote by CM the class of structs generated by the abstract transforms τ̄Y and τ̄q (q ∈
Q) shown in Fig. 4. If the struct finiteness condition is satisfied, there exists an algorithm
that checks whether a struct γ belongs to a given class 〈T̄ 〉. Indeed, for all formations
γ̄ ∈ γ, one can take any composite γ ∈ γ̄ and consider the set of all decompositions

γ = γ1 ⊳ . . . ⊳ γk,

where each γi coincides with the body of a transform τ (τ̄ ∈ T̄). For each decomposition,
one can verify whether the corresponding sequence of transforms is valid. Then γ ∈ 〈T̄ 〉 if
and only if at least one such sequence can be found. Thus, classes of structs are recursive.
We will prove the converse statement, which implies that all recursive languages can be
represented as classes of structs.

Theorem 1. Let L ⊂ (Σ \ {�})∗ be a recursive language, and let M be a refined Turing
machine accepting it. Let s ∈ (Σ\{�})∗ be a string encoded by the composite γs as shown
in Fig. 2(a). Then

s ∈ L ⇐⇒ [[γs]] ∈ CM .

Proof. According to the set of semantic identities introduced in Figs. 3, the formations
shown in Fig. 5 are semantically equivalent. This chain of formations corresponds to the

F
q

~ ~
c

c

c

1

2

n

0
q

Figure 5: Chain of equivalent formations corresponding to a computation of the Turing machine.

computation of the refined Turing machine M , starting from the initial configuration with
the input string s and halting in state qF ∈ {qY , qN}, where qF = qY if and only if s ∈ L.
Since M halts after finitely many (say, m) steps, the above chain is finite, and the last
formation γ̄F contains m step recording primitives. Clearly, the struct [γ̄F] = [[γs]] belongs
to the class CM if and only if qF = qY . �

4 Proof of struct finiteness

In order to show that the above representation of Turing machines by transforms implies
their Turing-completeness, we need to prove that the semantic equivalence relation ∼M

satisfies the struct finiteness condition. In fact, we only need to prove that structs con-
taining a string formation shown in Fig. 2(a) (we call them string structs) are finite. We
do it in two steps:

1. Prove that every string struct contains a canonical irreducible formation.

2. Show that the existence of this canonical formation implies struct finiteness.

87

Let A be the union of all string structs. Note that every formation in a string struct
represents a configuration of the Turing machine. Indeed,

• the string formation shown in Fig. 2(a) represents the initial configuration

• application of any semantic identity in Fig. 3 from left to right corresponds to a step
of the Turing machine

• application of any semantic identity from right to left corresponds to a backward
step of the Turing machine.

Since, for any configuration, the step of the Turing machine is uniquely determined by the
value of the transition mapping, every formation in a string struct can be directly reduced
to at most one formation. In particular, this trivially implies that the direct reduction
relation on A is confluent:

Definition 14. Let→∗ denote the reflexive and transitive closure of relation→. Relation
→ is called confluent [2, Def.1.1.6], if whenever w →∗ x and w →∗ y, there exists z such
that x→∗ z and y →∗ z. ◮

According to [2, Corollary 1.1.8], confluence implies that every string struct contains
at most one irreducible formation. It also contains one of the formations corresponding
to the “yes”- or “no”-configuration of the Turing machine (see Fig. 2(b)), which are
irreducible. Call these formations canonical. Due to confluence, every other formation in
the string struct is reducible to the canonical one. Therefore, it is sufficient to show that
only finitely many formations can be reducible to it. Moreover, for every formation there
exist only finitely many formations directly reducible to it, since for every configuration
of the Turing machine there are finitely many backward steps. Hence, it is sufficient
to shown that there is no infinite chain of backward direct reductions starting from the
canonical formation:

γ̄0 ←M γ̄1 ←M γ̄2 ←M . . .

But the latter follows from the fact that, according to the semantic identities in Fig. 3,
whenever ᾱ→M β̄, the number of step recording primitives (the fourth one in Fig. 1) in
ᾱ is one less than in β̄.

5 Conclusion

The statement proved in this paper, that ETS additive transforms are Turing-complete,
means that the generative power of various equivalent computational formalisms (such as
the Turing machine) is equal to that of the ETS formalism. In other words, all classes
of real-world objects that we attempt to describe in algorithmic terms (for example, as
string languages generated by a Chomsky grammar), can also be described in terms of
ETS transforms.

However, we do not suggest that, if one wants to represent a class of real-world objects,
one should first design an algorithmic description of this class, and then translate it into
the ETS language by applying the construction described in this paper. In our opinion,
such an approach is not feasible because computational formalisms were not designed for
the purpose of object representation and class description. In contrast, the ETS formalism
offers a mechanism for constructing representations of complex objects and describing

88

their classes. This mechanism is based on a multi-level representational hierarchy and the
“intelligent process” that constructs this hierarchy and subsumes the process of inductive
learning [6]. Thus, our research direction is to study this process and apply it to particular
representation and classification problems. The result presented in this paper guarantees
that in doing so we are not losing any computational power.

References

[1] J.M. Abela, ETS Learning of Kernel Languages, Ph.D. Thesis, Faculty of Computer
Science, University of New Brunswick, 2002.

[2] R. Book, F. Otto, String-Rewriting Systems, Springer-Verlag, New York, Berlin,
1993.

[3] N. Chomsky, Syntactic Structures, Fifth printing, Mouton & Co., London, 1965.

[4] L. Goldfarb, Is there a different mathematics, “mathematics of the mind”, that
would explain the biological (structural) “measurement” processes? Lev Goldfarb’s
home page, http://www.cs.unb.ca/profs/goldfarb

[5] L. Goldfarb, On the foundations of intelligent processes I: An evolving model for
pattern learning, Pattern Recognition 23, 595–616, 1990.

[6] L. Goldfarb, D. Gay, O. Golubitsky, D. Korkin, What is a structural representation?
Second version. Faculty of Computer Science, U.N.B., Technical Report TR04-165,
2004.

[7] L. Goldfarb, O. Golubitsky, D. Korkin, What is a structural representation? Faculty
of Computer Science, U.N.B., Technical Report TR01-137, 2001.

[8] O. Golubitsky, On the Formalization of the Evolving Transformation System Model,
Ph.D. Thesis, Faculty of Computer Science, University of New Brunswick, 2004.

[9] Handbook of Formal Languages, eds. G. Rozenberg, A. Salomaa, Springer-Verlag,
Berlin, Heidelberg, 1997.

[10] E. Weisstein, Turing Machine, From MathWorld–A Wolfram Web Resource,
http://mathworld.wolfram.com/TuringMachine.html

89

