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Abstract

With the increasing amount of data appearing on the World Wide Web, the in-
terest in new relevant models for information retrieval is growing. The purpose
of this study was to introduce a new model that considers the structure of in-
formation. This model is based on a new mathematical formalism: the evolving

transformation system (ETS) model developed by Goldfarb et al..

A structural (ETS) representation of the personality traits of professors in Com-
puter Science (relevant to the potential graduate students) based on their aca-
demic homepages is proposed. This ETS representation allows identifying classes
of professors characterized by structural similarities in the chosen personality

traits.

Since the model includes the structural information in the representations, it
enables one to retrieve the relevant elements that appear quite different from the

query. This would not be possible with any classical information retrieval models.
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Chapter 1
Introduction

1.1 Background and motivation

Since the last decade, an important collection of knowledge has emerged. The
World Wide Web (WWW) is actually the largest source of information for any
search. This quantity of information is an advantage, but it is also an inconve-
nience: such an amount of data implies searching is more difficult. Moreover, the
distributed architecture of the WWW implies heterogeneity of the format and of

the nature of information.

Soon after the emergence of the WWW, to facilitate the search in this collection of
data, some search engines appeared (AltaVista, Yahoo!, WebCrawler, and more
recently Google). These services are provided by companies. The only source of
profits for these companies comes from the sale of some advertisement space to
other companies. The price of this space depends only on the number of visits to
the site. These companies need a lot of people to visit their websites to benefit

from their activity.

In contrast, the user uses only tools that can bring him or her some benefits.

When someone uses a search engine, she or he will use only those that are the



most effective for her or his need. His or her criteria for judging a search engine
are generally the ease of use, the rapidity with which the query is treated, the

precision of the response, and the comprehensiveness of the result.

Improving the quality of their tools is the main issue for the companies. Two
threads are followed simultaneously: the first one is to collect all the possible
information (The number of pages collected by Google exceeded three billion in

January 2003) and the other one is to improve the quality of the retrieval.

Several models have been designed to get the best retrieval. All of these mod-
els are generally based on traditional mathematical models (including Boolean

algebra, vector spaces, and theory of probability).

In all of the traditional models for information retrieval, the text is represented
as a set of keywords or a set of ordered keywords. Clearly, the structure of the
information in a document is also information, and one has to take it into account
in order to have a reliable retrieval. This structure can be found at two levels: at
the sentence level (the grammatical structure is important since the meaning of
the sentence depends on the order of the words) and at an upper level (the level
of the whole entity [such as paragraph or document depending on the precision

of the information needed]).

The objective of this thesis is to present a first attempt at a structural information
retrieval that is based on the ETS model, which is a new mathematical formalism

developed by Goldfarb et al. [11]. The ETS model has initially been designed



as a structural model for pattern recognition. Its advantages lie in the fact that
the information is represented in a structural form and that the representation
contains the constructive history of the “real” object. This model will be used in

this thesis as a guide to represent the information.
1.2 Scope of the thesis

The purpose of this study is to show that the information structure is useful
in the representation of a document to improve the effectiveness of the retrieval
and that this cannot be achieved through classical models. A model based on
the ETS formalism is applied to the corpus of academic homepages of professors
in Computer Science. It is designed to allow a graduate student to select a

supervisor. The objectives of this study address five aspects:

1. To review briefly the different models used in information retrieval,

2. To get a reasonable knowledge of the ETS model in order to apply it to an

information retrieval problem,

3. To build an ETS representation of the professional profile of a professor
based on his personal academic homepage. We have underestimated the
complexity of this task. Even restricted to academic matters, developing a
reasonable generative profile is a complex task for which I have not received

any training.

4. To highlight the advantages of this representation for information retrieval,

and



5. To find the main drawbacks of this method and the improvements that can

be used in further work.
1.3 Thesis organization

In this thesis, Chapter 2 presents the basic current principles of information
retrieval. The three main categories of models used in information retrieval are
described: the set theoretic models, algebraic models, and probabilistic models.
A marginal approach called structured text retrieval is also presented. Finally, a

brief description of the measures of effectiveness of the retrieval is presented.
The ETS model and its basic principles are detailed in Chapter 3.

Chapter 4 describes the construction of the ETS representation of a professor’s
professional profile. The context of the study is explained in detail. The char-
acteristics of the corpus useful to the construction of the ETS representation are

developed, and finally, the representation is described.

Chapter 5 presents some classes based on the structural representations described

in the previous chapter. The generating processes for the classes are highlighted.

Chapter 6 briefly explains the matching and retrieval processes for the model
developed. It presents a critical analysis of the model and a comparison with one

of the most used models: the Boolean model.

The thesis ends with Chapter 7, in which the major conclusions of the research

are presented and recommendations are made for further research on the topic.



Chapter 2

Information Retrieval

The first appearance of the term information retrieval was in a paper by Mooers in
1952 [16]. The concept of information retrieval, as it is currently known emerged
at the International Conference on Scientific Information held in Washington,
D.C., in 1958. Thereafter, the works of Doyle and Salton established new meth-
ods of retrieval. The interest in information retrieval was initially dictated by
the need for accurate sources of bibliographic work. Hence, these systems were
mainly used by librarians to replace manual tools such as card catalogues and
universal classification schemes. The increasing amount of data stored on each
server and the nascent World Wide Web have led to a renewal of the interest
in Information Retrieval Systems in the 1990s [4]. In this chapter, a conceptual
view of information retrieval will be given. Then, different methods used by in-
formation retrieval systems will be detailed. The third section will be dedicated

to the basic measures of efficiency in such systems.
2.1 Principles

Information retrieval addresses the representation, storage, organization of, and

access to information items. It is indispensable to people to satisfy a need for



information. Actually, there are only two ways to get information: the first one
is simply asking other human if they have the information and the other one is

to search this information using a tool—an information retrieval system.

An information retrieval system will be considered as an object working with
the help of a computer but without the participation of a human being. The
questioner will be called the “user”. In this context, the basic principles can be

explicated as follows:

e the system acts over a finite set of documents called a corpus,

e a user issues a query in a language defined by the system, and

e the information retrieval system returns a relevant subset of the set of

documents.

the term information retrieval is often considered as synonymous with document
retrieval and text retrieval, but there are some conceptual differences between
these expressions. Document retrieval (or data retrieval) consists mainly in find-
ing a set of documents containing one or more keywords that appear in the user
query. However, a user is often more interested in finding information about a
subject represented by her or his query than in documents containing the key-
words. The search for information about a subject is the aim of information
retrieval. Therefore, two questions arise: how can the user express her or his

query and how should the documents be represented?



2.1.1 The user

A user consults an information retrieval system to satisfy an information need.
The user has to transform her or his information need into a query in a language
defined by the system. Typically, the corresponding expression is a conjunction
of keywords that should convey the information. Immediately, a problem arises:
the user may have a poorly defined interest or a broad information need. Another
problem is due to the difficulty created by the need for the user to express her or
his query in the language proposed by the system. One of the best languages for
expressing this query would be the natural language since it is the language she
or he knows best, but this language is still not perfect because the user may not

express correctly what she or he means.

2.1.2 Representation of the documents

Indexing a document

Indexing is the action of building data structures from a text. There are three
main methods for indexing: inverted files, suffix arrays, and signature files. In-
verted files are discussed below. Suffix arrays consider the text as a string. A
suffix is a substring of the text that goes from a fixed position to the end. Each
position gives a unique suffix. The array constituted by all the suffixes is the suf-
fix array. This suffix array is mainly used when the work needs to be performed
on the substrings. Signature files are data structures based on hashing. The text
is divided into text blocks. A mask is associated with each word, and another

mask is associated with each text block. The text block mask is obtained by



ORing the masks of all words in the block. If a word is present in the block, the

bits that are set in its mask will be set in the mask of the text block.

Inverted files

An inverted file is used to speed up the query process. A text is decomposed
into a list of words called a vocabulary. To each of these words is attached a
list of positions where the word appears. The set of all of these lists is called
the occurrences. The space required for an inverted file is relatively small. It is
presumed that the size of the vocabulary is O(n®) where n is the size of the text
and, (3 is a constant between 0 and 1 depending on the text. In practice, S is
between 0.4 and 0.6. The size of the occurrences is O(n). Such a structure is

used in the set theoretic models described in section 2.2.1.

Thesaurus

Generally, the documents of the corpus are represented by a set of keywords—
index terms. To increase the number of documents retrieved, one can use a

thesaurus.

A thesaurus is constituted by a list of important words in a chosen domain of
knowledge, and for each of these words, a list of related words is provided. Gen-
erally, this relationship is a relationship of synonymity. This thesaurus can be
used to reduce the number of index terms by providing a standard vocabulary.
It can also be used to provide a hierarchy to broaden or to narrow the query of
the user. One of the most important benefits is that the retrieval is based on

concepts rather than on words.



2.2 Conventional Models

Baeza-Yates and Ribeiro-Neto distinguish three main models for information re-
trieval [2]: the Boolean model, the vector model, and the probabilistic model.
The most classic model is the Boolean. It is based on sets: documents and
queries are represented as sets of index terms. Gudivada, Raghavan, and Grosky
called this model set theoretic [13]. The vector model is also called algebraic: the
documents and queries are represented as vectors in a t-dimensional space. In
the probabilistic model, probability theory guides the framework for representing
documents and queries. A marginal approach consists in keeping a part of the
structural information contained in the original text. This approach is called the

structured text model.

The above four approaches are described in the following subsections.

An information retrieval model is defined formally in [2] by a quadruple

<Da Qa f’ R(Qza dj)>a

where

e D is a set composed of representations for the documents in the collection,

e (@ is a set composed of representations for the queries (the user information

needs),

e F is a framework for modeling documents and query representations and

their relationships, and



e R(q;,d,) is a ranking function. This ranking defines an ordering among the
documents with regard to the query ¢;. The ranking function associates
a real number with the query ¢; € @ and the document representation

djED.

2.2.1 Set theoretic models

Boolean model

Boolean logic has long been the most widely used framework for information re-
trieval. In a Boolean retrieval system, the terms of the query are linked by logical
operators—AND, OR and NOT. The search engine returns only the documents
in which the terms satisfy the Boolean expression of the query. It can include
some functionalities to allow proximity or truncation searching. In such a model,
each document either matches the query or does not. The corpus is therefore di-
vided into two sets. There is no ranking, and there is no control over the number
of documents retrieved. Moreover, all documents retrieved are assumed to have

the same usefulness for the user.

Fuzzy set model

This model is based on fuzzy set theory. In this theory, the boundaries of a set
are not well-defined. Each set A has a membership function p4 associating with
each element u in the universe U a value 4 (u) in the interval [0,1]. A value 1 is
associated with the element if it is a full member of the class and, 0 corresponds

to no membership. If B is another set and, if A is the complement of A, then,

pa(u) =1—pa

10



paus(u) = maz(pa(u), ps(u))

pans(v) = min(pa(u), pp(w))

The main idea is to construct a thesaurus and to use a correlation matrix C to
represent the correlation of the terms in the thesaurus. The values in the matrix
can be obtained by a clustering technique. Each correlation factor c;; between

two elements of the thesaurus, k; and k;, can be defined:

. T
N + Nj — N

where n;; is the number of documents in which £; and k; appear, n; is the number
of documents which contain only k;, and n; is the number of documents which
contain only k;. n; +n; — n;; represents the number of documents in which £; or
k; or both appear. Therefore, ¢;; is the probability that a document containing

k; or k; contains both.

The correlation matrix is used to define a membership function for each fuzzy set
associated with a term k;. The document d; has a degree of membership of the
set associated to a term k;:

pij=1-— H (1 — ca).

ki €d;

A query ¢ can be written in a disjunctive normal form. For example, the query
q = ko A (ky V k) can be written as g = (ko Aky Ake) V (ko Ny Aie) V (kg Aoy A K)

(A represents the operator AND and V the operator OR).

11



The query’s membership of the document d; is defined then as:

pg; =1 = (1= prajpnjbte) (1 = pagting(1 = pcj)) (1 = pag (1 — pro) (1 = pic;))
This query membership is used to measure the relevance of the document d;.

Extended Boolean model

The extended Boolean model has been proposed by Salton et al. [20]. This model
is motivated by the following critique of the Boolean model. Consider a query
q = k1 A\ ko. If no document containing both k; and k, exists, all documents will

be considered as irrelevant.

However a document which contains either k; or k£, is more relevant than one that
does not contain any of those. For a document dj, if the weights w,; and w,; are
respectively assigned to the pairs (k;,d;) and (K3, d;), the document and query

can be plotted as in Figure 2.1. The document d; has the coordinates (w;, wa;).

(0,2) (1,2) (0,2) (1,1)

©0 1.0 1.0

Figure 2.1: Extended Boolean model (from [2]).

Two particularities appear. For a conjunctive query ¢.,,q = k1 Aks, the best point

12



is (1, 1) whereas for a disjunctive query ¢, = k1 V k2, the point (0, 0) is the point

to be avoided. The similarity can be chosen as the following:

, [w?, + w2,
stm(qor, dj) = %

(1 —wyy)® + (1 — wyy)?

stm(qana, dj) = 1 — \/ 5

This formulation can be generalized to a t-dimensional space where ¢ is the num-

ber of terms in the thesaurus.

2.2.2 Algebraic models

Vector model

The vector model was proposed to correct the problem associated with the use
of only binary weights in the Boolean model. In the vector model, weight values
are assigned to the terms in the query and in the documents; these weights can
be different from 0 and 1. They are used to compute the degree of similarity
between each document and the query. This value can then be used to assign an
order of relevance for each document. Since some documents match the query

only partially, this method adds some precision to the set of retrieved documents.

Formally, the vector model can be expressed as follows:

e For an index term k; and a document d;, a weight w;;, positive and non-

binary is assigned,

13



e For a query g, a weight w;, is assigned for each index term &;,

A vector ¢ is defined as ¢ = (wiq, Waq, -+ , Wyq) Where ¢ is the number of

chosen index terms,

e A document d; is represented by a vector d; = (w1, woj, -+ ,wyj), and

The degree of similarity between ¢ and d; is measured by the correlation
between the vectors ¢ and d_;-. This correlation can be measured by the

cosine of the angle between these vectors:

-

i) =

|y
1‘&’%

<.

-
I

sim(q,d;) = cos(

2y

The choice of the index term weights can be made by means of a clustering
algorithm. This model assumes that the term vectors are linearly independent,
but it also requires that they are pair wise orthogonal. For further information,

one can refer to the work by Salton and McGill [21].

Generalized vector space model

This model has been proposed by Wong et al. in [23]. In the generalized vector
space model, the term vectors are not assumed to be orthogonal, nor are they
assumed to form a basis of the space. As previously mentioned, for a set of
index terms ki, ...,k the weights w;; are associated with the term-document
pair (k;,d;). In each document, more than one term k; can occur. All these
co-occurrences can be represented by a set of 2! minterms my, mo, ..., my:, with

my = (0,0,...,0), my = (1,0,...,0), ..., mgt = (1,1,...,1). Thus, m; points

14



to the documents containing none of the index terms k;, mo to those documents
that contain only k1, and so on. Then, to each m; is associated a vector 77i; such

that the ni; vectors are pairwise orthogonal:

my = (0,0,...,1)

The m7;’s form an orthonormal basis of a space of dimension 2. The set of
functions g; is defined such that g;(m;) returns the i-th compound in the minterm
m;. To each index term k; is associated an index term vector k: which represents
the normalized sum of the vectors associated with the minterms m, such that k;

is in state 1 in m,.:

k= Z{VT\gi(mr)zl} CirMy

=
\/ 2 {vrlgitmn)=1} Cir

Cir = E Wgj.

{d;[¥0,01(d5)=g1(m» )}
In the standard vector model, the document d_; is expressed as d; =), wi,jk_; and
the query gas =), wi,qlgi. In the generalized vector space model, ci; and ¢ can
be directly expressed in the space of the minterms n7; by the above equations.
As previously, the similarity between d; and ¢ can be measured by the cosine of
the angle in the space of vectors n7;.

15



Latent semantic indexing model

The underlying idea of this model is that the meaning of the text relies on the
concepts described in the document rather than on the terms used in the de-
scription of the document. The process of matching should therefore rely on the
concepts rather than on the terms. This idea led Furnas et al. to propose the
latent semantic indexing model [9]. Each document and each query is mapped

to a lower dimensional space in which the retrieval should be more effective.

A matrix M with ¢ rows and N columns is defined as a term-document association
matrix: ¢ is the number of index terms and N is the number of documents. To
each element M; ; of the matrix is assigned a weight term w;; corresponding to
the pair (k;,d;). The singular value decomposition is used to decompose matrix
M:
M = KSD'.

Sisa diagonal matrix of singular values of size r x r, where r is the rank of M ,
r = min(t, N). Let M, be the matrix of rank s closest to M in the least square
sense. Only the s largest values of S and the corresponding lines and columns of
K and D! are kept; the remaining values are deleted:

—

M, = K,S,Dt.

The matrix MStMS = (ﬁsgs)(ﬁsgs)t gives the relationship between documents.
For example, the relationship between d; and d; is the (4, j) element of this matrix.
The matching with a query ¢ is done by modeling the query as a pseudo-document
in the original M term-document matrix.

16



Neural network model

This model has been described by Wilkinson in [22]. It uses neural networks
with feedback and three layers. The first layer (input) represents the query
terms, the second one represents the document terms, and the third represents
the documents. This configuration returns a document even if it does not match
the query but has a close meaning. For a detailed explanation, one can refer

to [22].

2.2.3 Probabilistic models

Probabilistic model

This model was introduced by Robertson et al. in [19]. It is also known as the
binary independence retrieval (BIR) model. Given a user query ¢, there is an
ideal set of documents which contains all of the relevant documents and only
these documents. The probabilistic model attempts to estimate the probability
that the document d; is relevant. The set of documents that are predicted to be
relevant is denoted R. The similarity between the document d; and the query ¢
is computed by the ratio P(d; is relevant to ¢)/P(d; is not relevant to ¢). This

value can also be used to rank the documents.

The weights for the index terms are binary, w;; € {0,1} and w;, € {0,1}. A
query ¢ is a subset of index terms. R is the set of documents that are relevant.
Let R be the set of documents that are not relevant. P(R|d;) is the probability
that document d; is relevant to the query ¢, and P(R|d;) is the probability that

d; is not relevant to ¢. The similarity between the document d; and the query ¢

17



is the following:

sim(dj,q) =

P(d;|R) is the probability of randomly selecting d; in the set of relevant docu-
ments. P(R) is the probability of randomly selecting a relevant document from
the entire collection. P(d;|R) and P(R) are similarly defined on the set of non-
relevant documents. P(R) and P(R) are assumed to be the same for all docu-

ments and the index terms are assumed to be independent. Then, the similarity

is computed as follows:

sim(dj,q) =~

Q

P(k;|R) is the probability that the index term k; is in a document randomly

selected in R and P(k;|R) is the probability that it is not; P(k;|R)+ P(k;|R) = 1.

Since log(]_[gi(dj):1 P(ki|R)) =~ S!_, wiq X wi; x P(k;|R), one can define a new

similarity as the logarithm of the previous:

t _
» P(ki|R) P(k;|R)
sind ) = Y < b i+ 0k i
i=1 ' Z

Some assumptions are needed to “guess” the relevant probability of the docu-
ments. First, it is presumed that P(k;|R) is constant for all index terms k;, the

typical value is 0.5. Secondly, it is also assumed that the distribution of the index

18



terms in the set R is the same as in the whole collection. This assumption comes
from the independence of the index terms. The probability of observing an index
term k; does not depend on presence of other index terms. Hence, the probability
of observing k; in the document containing the other index terms of the query
is the same as the probability of observing k; in the other documents. These

assumptions yield:

P(ki|R) = 0.5,

_ n;
sz :—Z,
(kiR) =

where n; is the number of documents containing k; and where N is the total

number of documents.

For the following adjustments, the ranking can be improved. Let V be a subset
of the first set of documents retrieved. For example, it can be the first r ranked
documents where r is a threshold or » documents classified as most relevant by
the user. V; is defined as the subset of V composed of all of the documents
containing k;. Two assumptions are then made: P(k;|R) is approximated by the
distribution of k; in the documents retrieved so far, and P(k;| R) is approximated

by assuming that the non-retrieved documents are not relevant:

Vil
V]

P(ki‘R) =

n; — |Vz|

PmmzNﬂw

Some improvements can be incorporated by modifying the previous values:

Vil +0.5
P(k;|R) = NG
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PWklR) = =t
or
vl + %
P(ki|R):|V|7+]{
5 i Vil+
P(ki|R) = B — i TN
ilR) = =71

These adjustments are useful in calculating the similarity between the query and

a set of retrieved documents when |V is 1 or |V} is 0.

Bayesian networks

The two next models are based on Bayesian networks. A Bayesian network is
a directed acyclic graph in which the nodes represent random variables. The
causal relationships between the variables are represented by the edges, and their
strengths are represented by conditional probabilities. Hence, the parents of a
node are “the cause” of the node. The nodes without parents are the roots of the
network. Let G’ be a Bayesian network, z; be a node in GG, and I';; be the set of
parent nodes of x;. A set of functions Fj(x;, [';,) specifies the influence of I';, on
T
ZFi(ﬂ?i,in) =1

Vx;

Inference network model

In this model, random variables are associated with index terms, documents, and
queries. The event of observing the document d; is represented by the random

variable associated with this document. Observing document d; asserts a belief
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upon the variables associated with its index terms. Index terms and document
variables are represented as nodes in the network. Edges directed from a docu-
ment node to an index term node indicate that observing this document improved

the belief value of the term nodes.

The random variables associated with the user query are used to express the
fact that the request for information has been satisfied. These variables are also
represented by nodes in the network. Since these variables depend upon the query
terms, the edges are directed from the index term nodes to the query nodes. Let
k be a t-dimensional vector, k = (k1, ko, ..., ki), where k; is a binary random
variable associated with an index term. There exist 2 possible values for k. The

ranking of a document d; with respect to a query ¢ is computed as P(g A d;).

P(gAd;) = Y Plgndslk) x P(k)

= > P(gnd;NE)
Vi

= > Plqld; Nk) x P(d; A k)
vk

- ZP(q\E) x P(E|d;) x P(d;)

Thus,

P(gnd;) = Zp(qu;’)x [ Pild)x [ Plkild;) x P(dy)

Vil gi(k)=1 Vilgi(k)=0

where g;(k) is the function such that g;(k) =0 < k; = 1 in k.
Belief network model
Probability space. Let K be the set of all index terms. Let U C K be a

subset of K. With U is associated a vector k such that g;(k) =1 < k; € U.
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K is viewed as a concept space and each document as an elementary concept.
U represents a document or a query. Each k; represents the membership of the

corresponding index term to the concept while the concept is represented by k.

Belief network model. In this model, as in the previous one, the query ¢ is
represented by a network node associated with a random variable. P(q) represents
the degree of coverage of the space K by ¢q. The same representation as above is
used for a document d;. Both ¢ and d; are represented by subsets of index terms.
Contrary to the previous model, a document node is pointed to by the index
terms that compose the document. The ranking of document d; with respect to

q is given by P(d,|q):
P(dlg) = P(d; Aqg)/P(q).

Since P(g) is constant for all documents, the ranking is given by P(d; Ag). Using

the formula derived in the previous section, one produces the following:

P(d;lq) =~ ZP(dj/\q|u)><P(u).

2.2.4 Structured text retrieval models
These models have been developed to combine the information in the content
with the information related to the structure of the documents. In this section,

only two of these models will be outlined: one is based on non-overlapping lists

and, the other one is based on a structure close to a tree called proximal nodes.
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Model based on non-overlapping lists

In this model proposed by Burkowski in [6, 7], the text of the document is divided
into text regions and is collected in several lists. If the division of the text into
regions can be multiple, then there can be more than one list. The text can be
divided into units such as chapters and sections. The text regions from different

lists can overlap.

Ly Chapters

L, Sections

Ly Subsections

Ls Subsubsections

Figure 2.2: Example of the representation of a document structure.

An inverted text is built for the text regions; each structural component is an
entry in the index. The query can be expressed as follows: select a region that

does not contain another region or a region that contains a specified word.

Model based on proximal nodes

This model was proposed by Navarro and Baeza-Yates [1, 17, 18]. It allows one
to upondefine independent hierarchical indexing structures over a text document.
The nodes are the elements of the hierarchy (chapters, sections, paragraphs, etc).
This query is then processed by matching the elements of the hierarchy from the
top to the bottom until the match is successful. This model is more powerful

than the model based on non-overlapping lists since the query formulated can be
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more complex.
2.3 Measure of the retrieval effectiveness

As explained in [3], the efficiency of a search engine can be measured by the
ratio of the relevant documents and the retrieved documents. One focuses on a
particular query; with respect to this query, one can build the set Rel of docu-
ments that are relevant and the set Retr of documents that are retrieved by the
search engine. A good search engine will retrieve the set Rel and only this set. To
know the real efficiency of a search engine, generally, two values can be used. If

the main criterion selected is the exhaustiveness, one can use the measure Recall

defined as

|Retr N Rel|

Recall =
eca el

Otherwise, if the criterion is the relevancy, the measure Precision defined by:

| Retr N Rel|
| Retr|

Precision =

can be used. It can easily be shown that a good tool will have a value close to one
for the appropriate criterion (or both), whereas a less interesting one will have

smaller values.
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Figure 2.3: Comparison of the sets Retr and Rel (from [3]).
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Chapter 3
ETS Model

The ETS model is a model for structural representations proposed by Goldfarb et
al. (for the last documented version, see [11, 10]). It has initially been designed
for pattern recognition but its advantages have also been shown in chemistry [12]
and in genomics [14]. In this chapter, a short explanation of what a structural
representation is will be given and the basic principles of the ETS model will be

detailed.

3.1 Structural representations

In pattern recognition, two main approaches are generally considered [8, 5]. The
first one is the decision-theoretic approach. Decision-theoretic methods mainly
use numeric-valued features to represent patterns. These features are a set of
characteristic measurements that are extracted from the patterns. The distances
between the different patterns are measured only by traditional distances (based
on the distance between the feature vectors). Separation of classes involves only
partitioning of the feature space by one or more hyperplanes, or more gener-
ally hypersurfaces. This approach is purely quantitative; it assumes all relevant

relationships can be represented numerically.
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The second approach is a structural approach. This approach is also called syn-
tactic when it is based on the Chomsky grammars. Syntactic and structural
methods are based on the representation of the class by the characteristic way
in which the subpatterns are related to each other. These relations are called
the structure of the pattern. Chomsky grammars are the structural models most

commonly used, together with their variations (graph grammars, tree grammars,

etc. [15]).

3.2 The ETS model

This chapter focuses on the ETS model, a new structural model. The following
definitions come from [11], although a completely revised version is in preparation.

To maintain consistency with the source, we will use the same notation as in [11].
3.2.1 Primtypes (or primitive type)

The primtypes are the elements of a finite set II. For each element (primtype)
7w € II, two sets, init(r) and term(m), are given. These two sets are subsets
of a fixed set of abstract sites (or a-sites) A. They are respectively the sets of
initial a-sites and terminal a-sites of the primtype w. The set of all a-sites is

sites(m) = init(m) U term(m).
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Pictorially, the more intuitive representations for primtypes are spheres
(Figure 3.1 left). The elements of the set of initial a-sites are represented
by points in the upper hemisphere while the terminal a-sites of the prim-
type are represented in the lower hemisphere. The points on the equator

will be the points in the intersection of both sets. To simplify the drawings,

the primtypes will be drawn as circles (Figure 3.1 right).

Figure 3.1: Representation of a primtype .

3.2.2 Composites

Composites

The concrete sites, or simply sites, are the elements of a countably infinite set S.

The composites (or primitive composites or simply primitives) are the elements
of the set I'. For each v € T', we define three subsets of S: init(7y), term(y) and
sites(7y) called respectively the set of initials, the set of terminals, and the set of

all sites of the composite . These sets are constructed inductively as follows.

First, let A be the null composite.

init(X) = term(\) = sites(\) =0

For m € II, let f be a fixed injective mapping f : sites(m) — S. f is called the

site realization for primitive 7.
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The primitive 7{f) is a primitive whose sets are defined as follows:

indt(m(f)) = f(init(r)),

term(n(f)) = f(term(m)),
sites(m(f)) = f(sites(m)).

7{f) is an element of T.

The primitive m (f1) is represented in Figure 3.2. The initials and termi-

nals are represented by the lines that start or end at the abstract sites.

Sy Sy 1S3

Syl 1S4 Ss |55

Figure 3.2: Representation of the primitive 71 (f;) (71 is the primtype represented
in Figure 3.1).

A new composite v/ € I' is created from two primitives: v € I', v # A, and

7{f) € I satisfying

site(y) N sites(w(f)) = term(y) Ninit(w{f)).

The composite v/ is defined by the expression:

v<am(f),

which means that the sets of concrete sites of 7' are defined as follows:

init(y') = init(v) U [init(w(f)) \ term(y)],
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term(y') = [term(7) \ init(m(f))] U term(n(f)),

sites(v') = sites(y) U sites(m(f)).

The operation by which ' is obtained is called the attachment of the primitive
7{f) to 7. The attachment consists of connecting the identical sites in term(vy)

and init(m(f)).

Thus, each composite is inductively defined by its construction process:

v =mi(f1) Ama(fa) <+ - A (fn)-

The continuation sites of the composite v are defined as:

cont(y) = init(y) Nterm(7y).

The attachment of two composites 7 (f;) <9ma(f2) and 73(f3) can be repre-

sented as in Figure 3.3. The initials of the primitive (73(f3)) are “linked”

to the terminals of the primitive (m1(f1) <m2(f2)).

Due to the construction of the composite v, the number of elements in the union
of the initial and terminal sites can be smaller than the total number of sites.

The sets of internal and external sites are respectively defined by:

ext(y) = init(7y) Uterm(y),

int(y) = sites(y) \ ext(y).
Site replacement
For v € T', the site replacement A is an injective mapping

h : sites(y) — S.
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Si| |4 54

Sl Se

Figure 3.3: Representation of the attachment (71{f1) <ma(fa)) < m3(f3).

The composite y(h) is defined inductively as:

o If v = 7(f), then y(h) 24 m(g) where g = ho f.
e The site replacement is then defined inductively. Let A’ = h|sesa), P :
sites(a) — S and g = ho f. If v = a<n(f) and a(h’) has been constructed,

v(hy = a(n'y am(g).

The site replacement can be assimilated to the relabeling of the sites of a

composite (See Figure 3.4).

The following relationships are true:

mit(y(h)) = h(init(7y)),
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Sl S4 S5 S7 SIOSH

Sl Sﬁ S? 512

Figure 3.4: Site replacement. The internal sites of the composite v = (m(f1) <
mo(fo))<ms(f3) (left) are replaced by the mapping h to obtain the composite y{h)
(right).

term(y(h)) = h(term(v)),
sites(y(h)) = h(sites(7y)).
For a demonstration of these properties and the following ones, refer to [11].

If v is a composite, v € T, and hy : sites(y) — S and hy : sites(y(h1)) — S are

two site replacements,
(v(h1))(h2) = {h2 0 h1).

Let v be a composite, and h a site replacement, h : sites(y) — S. If 4 is the
composite such that ' = (h), there exists the site replacement b’ : sites(y') — S

such that 7/(h") = ~.
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Similarity

Two composites a and [ will be called similar if there exists a site replacement
h: site(8) — S such that

hf|ea:t(ﬂ) == ’Ld

where id represents the identity and

a = p(h).

The similarity between o« and S is denoted by a ~ £.

Si 59 S5

Syl (54 S| 53

Sl S4 55 Sl Sl3 Sl4
Sl Sﬁ Sl SG

Figure 3.5: Similarity between two composites.

From this definition, we can infer that two composites are similar only if

we can relabel the internal sites of one and get the other (Figure 3.5).

Let o and 8 be two similar composites and A the site replacement such that
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a = [{h), then

init(a) = init(B),

term(a) = term(p),

int(a)) = h(int(5)).
Composition
Let a and 8 be two composites. If o and [ satisfy the condition

sites(a) N sites(B) = term(a) Ninit(B)
the composition of the two composites exists. It is denoted
a<f

and defined by induction on  as:

° a<l)\défoz

aan(f), a#A

o If 3 =~<an(f) and <~y has been constructed,

o< (@ary)an(f).

The composition of two composites can be represented as in Figure 3.6.

The initials of the composite (74(f1) <75(f5)) are “linked” to the terminals

of the composite (m1(f1) <m2(f2)).

The sets of initial sites, of terminal sites, of all sites, and of continuation sites of

the composition are therefore as follows:

init(a < B) = init(a) U [init(B) \ term(a)]
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Figure 3.6: Composition of two composites (7 (f1) <m2(f2)) < (m4(f1) <75{f5))-
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term(a < B) = [term(a) \ init(B)] U term(5)

sites(a <t B) = sites(a) U sites(f)

cont(a < f) = [cont(a) N cont(B)] U [cont() \ sites(B)] U [cont(B) \ sites(c)]

The composition is associative: let o, § and v be three composites for which the

compositions o< 3 and (a< ) <~y exist; then <y and o<t (8 <) exist and

(@<p) 9y =a<(847) = aafay.
The demonstration of this property can be found in [11].

Semantic identities

Let o and 3 be two composites. The semantic identity between o and 3 is defined

by

init(a) = init(B)

and term(a) = term(pB)

and is denoted

8.

(07

It means that these two composites are indistinguishable in an object represen-

tation from an external point of view.

Semantic equivalence relation

Let 7 be a specified set of semantic identities. The semantic equivalence relation
or semantic relation induced by this set is denoted ~ and defined on the set of
composites I" as follows:
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e lfa=4, (a,0) €L, a~p.

o If o~ [ and
f @ sites(a) —» S
g : sites(B) = S
are externally consistent, i.e. satisfy
[leat(a) = Glext(8)s

then

a(f) ~ B(g)-
o Ifa~pf, v~ dand a<y and B <0 exist, then

ady~ [<6.

The relation ~ can be expressed as:

For o, g €T,

(

dneN|Vie[l,n] Jo; €T |
o = o
an~ &4 or ;= a;_1{f:)
with f; : site(ci—1) — S such that f;|est(a, ,) = id

with ag = o and o, = .

\

The following properties hold:

e If two composites are semantically equivalent, they have identical initial

and terminal sites.

o If = (3, then a ~ f3.
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Site equivalence identity

Let 7(f) be a primitive and h a site replacement satisfying:

hlinit(m(f))] = init(7(f})
and

hlterm(m(f))] = term(n(f)).

The semantic identity
m(f) =m(ho f)

is called the site equivalence identity. The set of all possible such identities will

be denoted Egsite(II).

3.2.3 Istructs (or instance structs)

Istructs (or instance structs)

Let II be a specified set of primtypes and Z a specified set of semantic identities.

The instance structs or istructs (for (II,Z)) are the elements of the quotient set

O =T/~={[y][y €T}

where ~ is the semantic relation induced by Z and I' is the set of primtypes

constructed from II.
Istruct [y], v € T, is also denoted . For istruct =y, three sets of sites are defined:
init(y) = init(y),

term(sy) = term(y),

38



and

ext(y) = ext(y).

Istruct [A] or A is the empty istruct.

‘ The set © could be thought of as a the set of canonical elements of T'.

Istructs site replacement

Let v € ©. An istruct site replacement is an injective mapping h : ext(vy) — S.

~(h) is defined as

v(h) = [v(W];

where 7 is an element of the class of 4 and h is a site replacement h : sites(y) — S
satisfying:

h|ewt('y) - h

Istructs composition

Let «, B be two istructs such that

ext(a) Next(B) = term(a) Ninit(B).

The composition of o and 3 is defined as

adf =aap]

where o and S are respectively elements of the classes of a and 3, and a < 8

exists.

The composition of istructs is associative.
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Parallel compositions

Let o, 8 € T such that

sites(a) N sites(B) = cont(a) N cont ().

The parallel composition of o and 3 is denoted

al|

and is the composite a <1 3.

If
a = mi(f1)||m(f2)
and

5=7TQ<f2>H7T1<f1>,

the semantic identity

Q
If

B

is a commutative identity. The set of all such possible identities will be denoted

Comm(1I).

3.2.4 TItransformations or instance transformations

Itransformations or instance transformations

Let IT and Z be respectively a set of primtypes and a set of semantic identities.
O is the corresponding set of istructs. An instance transformation, or itransfor-

mation, is a pair 7 = (o, 8) (a and B are two istructs) such that there exists
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d € O satisfying

B =ad<d.
The istruct o will be called the context of the itransformation 7 and
def
ext(tT) = ext(a) Uext(B).

If & = [A], the itransformation is called context free. 7 will denote the set of all

itransformations for (II, 7).

Itransformation site replacement

For an itransformation 7 = (a, 8), an itransformation site replacement is an
injective mapping h : ext(T) — S. The itransformation 7(h) is defined as

T(h) Y (0 (Blesiay), B(Plestis)))-

Itransformation of istruct
For an istruct 4 and an itransformation 7 = (a, 8) satisfying
Y = Ysront T,
the r-itransformation of an istruct <, denoted « < 7, is defined as

7front d 18

The action of an itransformation 7 can be viewed as an attachment of
T to the istruct which contains the context of this itransformation. The
itransformation does not delete any information from the istruct since
the context is not erased. Therefore, this itransformation is an evolution-

ary transformation. It is the origin of the name of this model (evolving

transformations system — ETS).
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Let v, €0, 7= (a,8) € T.
/

St

signifies that there exists a site replacement h such that

v =~y <a1(h).

Let « be an istruct. Its set of immediate ancestors is defined as

AZ(7) o {a€0O|(a#7v)and (3T € T|a 5 v)}.

Induction axiom for istructs

Let ©' be a subset of ©. If

Ae©

and Vye€© [AZ(y) CO = €O,

then ©' = ©.

Inductive structure

Let II be a finite set of primtypes, Z be a set of semantic identities, © the
corresponding set of istructs, and 7 the set of itransformations. (II,7") will be

called an inductive structure only if the induction axiom for istructs holds.

3.2.5 Transformation systems and classes

Structs, transformations

Let istruct v € ©. The struct corresponding to - is defined as

% ] {~v(h)|h is a site replacement }.
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Let itransformation 7 € 7. The transformation corresponding to 7 is defined as

P {7 (h)|h is a site replacement }.

In the inductive structure (II,Z), the set of structs will be denoted as

— de _
0 Y (yyeo}

and the set of transformations will be denoted as

— def

T =A{7|TeT}

A transformation set is a finite set of transformations 7 C T.

Ipaths
Let T be a transformation set in (II,Z). Let 71, ..., T, be itransformations such
that 71,...,7, € T and aq, ..., a1 be istructs such that
a1 =0; <4711 € [1,n].
The tuple

(a1, 71,000, Toy .oy Ty Q1)
is a T-ipath or ipath from a; to a,, ;. The set of all T-ipaths will be denoted

by IPp.

Let ¢ be an ipath. The beginning and end of ipath ¢ are respectively
begin(c) “ o

and
end(c) wf Q.
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The length of c is n:

Let C1, Cg € IPT,

cl = (al,Tl,QQ,TQ,...,Tn,an_H)

and
Co = (/81551:1827625 ey 6m718m+1)'

If m = n and there exist site replacements g; : ext(a;) — S, i € [1,n + 1] and
h; :ext(T;) = S, j € [1,n] such that
B; = ai{gi), i € [1,n + 1],
d; =7;(hy), j € [1,n],

and for j € [1,n]
hilext(r;)net(a;) = Yilext(rj)next(a)s
hilezt(rj)netiaj 1) = Yilext(rj)net(aj 1)
c1 and ¢y will be said to be equivalent: ¢; ~ cs.

Paths
Let ¢ be an ipath. The T-path, or simply path, corresponding to c is:

¢ {d € IPp|d ~ c}.

For a path ¢, the beginning and end of ¢ are respectively begin(c) s begin(c)

and end(c) «f end(c); the length of path ¢ is |¢| «f |c|.
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Let n > 0. The set of all paths of length n is denoted P} and the set of all paths

is denoted by Pr & U, Pr.

Let &, 3 € ©. The sets of all paths and all paths of length n from & to 3 are,

respectively,
Pr(&, B) def {p € Pr|begin(p) = & and end(p) = B}

and
ni= 7a) %l =~ 3 7
PT(aaﬂ) = PT(aaﬁ)ﬂPT

Path composition

Let ¢; = (@1, T1,--+, Tn, Qpy1) and o = (Qpi1, Totls - s Tntms Cntme1) be T-

ipaths. The composition of ¢; and ¢y is
def
C20C = (01,7'1, &2, T2, s Tnitm, an+m—|—1)-
If end(c;) # begin(cs), by definition, ¢ 0 ¢1 = ¢1.

Let p1,ps € Pr be two paths such that end(p;) = begin(p2). The path

def

|
ol

P2 01

defines the composition of p; and py, with ¢ = ¢y 0 ¢y, ¢; € p1, o € py, and

end(cy) = begin(cy).

If end(py) # begin(py), by definition, py o p; = p;.
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Elementary paths

Let T be a transformation set in an inductive structure (II,Z) and 4 € © be a

struct. The set of elementary paths from 4 is

EPr(y) € | Pi(v, ).

ac®
The transformation for an elementary path ¢ € EPr(), where ¢ = (v, T, ), is
TeT.

Path embedding

Let ¢; = (o1, T1,-. ., Ty, 0ny1) and ¢ = (B, 61, -..,0m, B,,41) be two T-ipaths.
If m = n and there exists an istruct 4 such that 8, = v < a; and Vi € [1,n],

d; = T;, c; can be embedded in c,. This fact is denoted by ¢; — cs.

Path p; can be embedded in path p, (p; < p2), if there exist ipaths ¢; € p; and

cy € py such that ¢; can be embedded in c,.

Transformation system

A weighted transformation set is a pair W7T = (T, 1), where T is a transformation

set and [ : T"— R, is a mapping.

Let & € © be a struct, called progenitor, and let (7,1) be a weighted trans-
formation set with 7 = {71,79,...,Tm}. A transformation system is a triple

TS = (T,1,R).

The set of structs generated by TS is the set

75 Y (5 € 6|Pr(&,7) # 0}.

46



Let TS = (T,l,k) and ¢ = (1, T1,- .., Tn, Qni1) € I Pr be respectively a trans-

formation system and an ipath. The number
(D) =1(c) D i(m) + -+ ()
is the duration of ipath ¢ (and path ¢).

The generating process Grg is a countable state Markov stochastic process de-

fined as follows:
1. The states of G are elements of the set 7'S of structs generated by T'S.

2. The amount of time which G spends in state 4 is a random variable dis-

tributed exponentially with mean

1
e 1/UP)

L=

3. When G leaves the state 4, it chooses randomly an elementary path p €

EPr(%) with probability

I(p)

4. All random variables in 2 and 3 are mutually independent.

Typicality measure

Let T'S be a transformation system, G, the generating process for T'S, Eq(%),

the expected time spent by G in state 4, and let Eg be defined as:

Eed " Eo(®).

FETS
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T S satisfies the existence condition of the typicality measure if E is finite. Such

a transformation system is called class transformation system or simply class.

C will denote the set of elements of class C.

If C is a class, GG is the generating process for C, and 4 € C, the C-typicality

measure or typicality is the measure vc on © defined as

_\ def Ec(%)
ve(y) = Ee

For a class C =TS and a path p € P¢ def Prg, the probability of p is defined as

pe(p) el P(G passes any path p’ into which p can be embedded).

3.3 Example

This example is from [10].

The set of primtypes used to represent rectilinear planar shapes is given in Figure
3.7

”AQ@@@a@o

length left ight lin ste

i "y structural closng

detachment link ; )
unit turn turn unit unit

Figure 3.7: The set of primtypes for the class of rectilinear planar shapes.

The class of shapes selected for this example is the class of crosses. Figure 3.8
represents the progenitor of the class of crosses; it can be viewed as a unitary
Cross.
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Figure 3.8: The progenitor for the class of crosses.

The transformations are represented in Figure 3.9. The transformation on the
left increases the height of a leaf; the one on the right increases simultaneously

the width of two opposite leaves.

By applying successively the two transformations, one can generate all the crosses.

Figure 3.10 presents an example of a shape from this class.
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Figure 3.9: The transformations for the class of crosses. The shaded part is the

context.
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Figure 3.10: A cross (left) and its representation (right).
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Chapter 4

The chosen ETS homepage
representation

This chapter is dedicated to the description of the ETS representation developed
for a particular information retrieval task. The first section introduces the context
in which the model will be used. The second section highlights the properties of
the corpus (ensemble of documents in which the search is performed) defined for
this study. The adaptation of the ETS model to an information retrieval task
is finally detailed in the third section. The last section of this chapter provides

examples of structural representations created from the developed model.
4.1 Preliminary discussion

A first attempt at a structural information retrieval, based on the ETS model,
is presented. For this attempt, the following context was selected. A student is
looking for a supervisor to enroll in a graduate program in Computer Science. She
or he wants to select his supervisor based on criteria such as the research area and
the previous work of the professor; but she or he is also interested in the “relevant”
traits of personality of the professor. For example, she or he may want to know

how much freedom the supervisor gives to her or his graduate students. Academic
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homepages have been selected as the means to gather all this information. The
corpus was, therefore, defined as the set of the academic homepages of professors
working in Computer Science. Each of these homepages is used to extract the
academic profile of the professor in a structural ETS form (presented in detail
in section 4.3). However the ETS representation produced from the web pages
can be completed with extra information obtained from any other source. To
find out which professor the student would like to work with, she or he issues
a query in an ETS form, 7.e. the query is either a partial representation, a
complete representation, or a set of transformations and a progenitor. A system
matches the query with the ETS representations produced from the academic
web pages, and a subset is retrieved. This subset is ranked by the typicality of
each representation computed either with the set of transformations or within

the class of the partial representation given by the student in the query.
4.2 The characteristics of the corpus

Within the corpus, composed of the academic homepages of the professors work-
ing in Computer Science, several regularities were observed. Indeed, all professors
present nearly identical information (e.g. publications, research projects) in their
homepages. Most of the information can be classified into the categories pre-
sented below; the most common titles found in the web pages, corresponding to

these categories are also quoted.
Education Education, resume, CV, etc.

Extra academic positions Editorial board, professional activities, institute
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membership, activities, committees, positions, administrative duty, etc.

Research projects Research interests, current projects, curriculum projects,

research projects, etc.

Publications Recent publications, papers, technical reports, recent books,

books, etc.

Courses Recent courses, current courses, teaching, recent news, etc.

Students Student research opportunities, students, theses supervised, prospec-

tive students, etc.

Extra professional information Biography, biographical and personal, fam-

ily, hobbies, musical interest, non-professional activities, etc.

Research group Affiliation, research groups, laboratories, etc.

Awards Awards, honors, etc.

Talks Recent talks, debate contribution, conference participation, etc.

Funding Recent funding, grants, etc.

Links Funny links, links, pictures, etc.

Other information such as the patents of the professor can be present, but they are
less common. These categories were used as the basis for the ETS representations

of the academic homepages.
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4.3 ETS homepage representation

An ETS representation of the professional profile of the professors based on their
homepages has been developed. A complete representation is made up of six
placeholders (present in each representation), and a list of attributes that can be
attached either to the placeholders or to the other attributes. The placeholders

are described first, then the attributes, and finally the possible attachments.

4.3.1 Placeholders

Six placeholders are present in each representation. These placeholders are used
for ease of construction and understanding of the ETS representation and are

present in each representation. These placeholders are illustrated in Figure 4.1.

? ?

Social Intellectual
predispositions predispositions

A ¢ o

Person

S B N
Professional Supervision Research
status
JAN LN
d. e. f.

Figure 4.1: Primtypes used as placeholders.
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Person :
The placeholder Person is used as a root for the representation (Figure
4.1 a.). Since the structural representation of the academic homepage char-
acterizes the academic profile of the professor, all other primitives are con-
nected to it, directly or indirectly. Three placeholders, which describe three
aspects of the professional profile of the professor, are directly attached to
the placeholder Person; they correspond to the placeholder Social predis-
positions, the placeholder Intellectual predispositions, and the place-

holder Professional status.

Social predispositions :
The attributes attached to the placeholder Social predispositions char-
acterize the intrinsic qualities of the person in his relations with others
(Figure 4.1 b.). For example, a professor can be open and enjoy relations
with other people or can be more reserved and prefer to have only a few

contacts.

Intellectual predispositions :
The attributes attached to the placeholder Intellectual predispositions
represent the intellectual predispositions of the professor (Figure 4.1 c.).
The professor can be either an abstract or a concrete thinker, she or he

can prefer working on interdisciplinary subjects or investigating a subject
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in depth.

Professional status :
The attributes attached to the placeholder Professional status deal with
the career choices of the professor (Figure 4.1 d.). This includes research

and supervision.

Supervision style :
The placeholder Supervision style is attached to the placeholder Profes-
sional status (Figure 4.1 e.). The attributes attached to the placeholder
Supervision style deal with the relationships between the professor as
supervisor and her or his graduate students. This relation is characterized
by the freedom she or he wants to give to her or his students. Her or his

experience is also taken into account.

Research :
The placeholder Research is attached to the placeholder Professional
status (Figure 4.1 f.). The attributes attached to the placeholder Re-
search describe the research work of the professor. They express the im-
portance of the research for the professor and the way she or he carries out

her or his research.
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4.3.2 Attributes

This section presents the attributes used in the ETS representation of the home-
pages. Figure 4.2 illustrates these attributes. They are represented as primtypes
attached either to the placeholders or between themselves. Words have been se-
lected to represent these attributes. However, the meanings of these words are
subject to different interpretations. The descriptions below are given to remove

the possible ambiguity.

In the description of the attributes, those characterizing the same aspect of the
professional profile of the professor are presented together. The one that best fits

the professor will be selected and attached in the structural representation.

Casual / Formal :
These attributes describe the rigidity of the professor with regard to the
establishment.
Casual: A casual person shows little concern with the rules and prefers to
behave in harmony with her or his feelings (Figure 4.2 a.).
Formal: A formal person always follows the established customs and rules.

She or he is very strict in her or his relations with others (Figure 4.2 b.).

This information can be extracted from the web page by the formality

of the professor’s language, ideas and page layout.
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Figure 4.2: Primtypes used in the representation.

Extrovert / Introvert :
People can be interested in their own thoughts or in others. This leads to

two definitions (Oxford Dictionary):

28



Extrovert: A person predominantly concerned with external things or ob-
jective considerations (Figure 4.2 c.).
Introvert: A person predominantly concerned with her or his own thoughts

and feelings rather than with external things (Figure 4.2 d.).

Some indicators to decide whether the professor is more extroverted
or introverted are the presence or absence of personal information,

and/or information about the family or friends of the professor, etc.

Dominant mode of thinking: Abstract / Concrete :
Some professors prefer working on concrete things, like software engineering,
whereas others prefer working on more abstract things, like the development

of theoretical models.

Abstract thinking characterizes professors who prefer working on things
theoretical or disassociated from any specific instance (Figure 4.2 e.).

Concrete thinking characterizes people who prefer working on concrete
things, i.e. belonging to immediate experience of actual things or events

(Figure 4.2 f.).

The area in which the professor studies and her or his research work

are good indicators of the professor’s mode of thinking.

Pragmatist / Far-thinker :

Pragmatist: A pragmatist works on short-term applications. Her or his
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approach to problems is very practical. She or he works to earn quick re-
sults and renown (Figure 4.2 g.).

Far-thinker: The person has a long-range vision. She or he has a pio-
neering role and tries to work for things that may not have any application
for several decades. The person thinks that she or he has a part to play in

Science. She or he works to make Science progress.

This aspect of the professional profile of the professor can be retrieved

from the titles of the publications, or/and in a paragraph dedicated

to the presentation of her or his research work.

Specialized / Diversified :
These attributes characterize the diversification of the professor’s work: she
or he may prefer having a broad area of study, may be interested in various
research topics, or may be specialized in a narrowly defined area (Figure

4.2 1 and j.).

Whether the professor is specialized or diversified can be deduced
from the web pages by analyzing the different research interests of

the person and by analyzing the titles of the publications.

Orientation: Students / Professors / Industry :
This feature expresses whether the professor is interested in working with
students (Figure 4.2 k.), other professors (Figure 4.2 1.), or industry (Fig-

ure 4.2 m.). One, two, or three of these attributes can be attached to the
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structural representation. It is assumed that the orientation of the profes-
sor can be deduced from the homepage: for example, if the homepage is
designed particularly to interest students, the orientation of the professor

will be towards the students.

The orientation towards students can be inferred, for example, from
the homepage by the presence of a list of thesis topics, of a list of
present or past students, or of a paragraph explaining the require-
ments to be a graduate student.

A particular emphasis on the research work, on the publications, on
the previous collaborations with other universities denotes an orien-
tation towards professors.

The orientation towards industry can be deduced, for example, by
the presence on the web page of one or more laboratory logos, by the

description of the work done with the laboratories, or by a biography

written in the third person singular.

University rank in CS :
This attribute expresses the rank of the university in Computer Science.
The value 3 represents top or leading universities, the value 2 represents
good or renowned universities, and the value 1 represents universities that

cannot be classified into either of the previous categories (Figure 4.2 n.).
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This classification can be done statically for all universities. Since the
number of universities in the two first categories is finite and relatively
small, these two sets can be built. The lists of the top and of the good
universities can then be used to find the university rank. Knowing
the name of the university, this name is searched in both lists. If it
is found in one of the lists, the university rank is the rank of the list

(levels 2 and 3). If it cannot be found, it is classified as “other” (level

1).

Research novelty: Established / Popular / New / Radically new :
This part of the representation characterizes the domain in which the pro-
fessor does her or his research: four levels were defined.

Established: The research area is now well known. Many research works
have been published (Figure 4.2 o.).

Popular: A lot of research has already been done in this area but more
needs to be done. The interest in this area is still growing (Figure 4.2 p.).
New: Only a few research works have been published in this area (Figure
4.2 q.).

Radically new: The professor develops a completely new approach in this

area (Figure 4.2 1.).
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This information can be retrieved from the web page using the titles of
the publications and the presentation of the professor’s research work.
A clustering technique can be used in combination with a static list.
A static list can be created for the established and popular research
areas. A clustering algorithm can be used to differentiate the new and
radically new research. Radically new research will use some terms

or term associations that are unusual.

Experience :
The attribute Experience is used to express the status of the professor:
whether she or he is experienced or not. The degree of experience is used for
two domains: the experience in research and the experience in supervision

(Figure 4.2 s.). Three levels were defined:
e Level 1: The professor is new (in her or his domain or in supervision).
She or he has no or little experience.
e Level 2: The professor has some experience.

e Level 3: The professor is quite experienced. She or he has been work-

ing in her or his domain or with graduate students for years.
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In research, the level of experience is inferred from the date of the
degree of the professor, and/or the number of articles she or he has
published in a given domain. In supervision, the level of experience

can be defined using the number of theses the professor has super-

vised.

Active :
The attribute Active represents the importance that the professor attaches
to her or his research work. The value 1 will be assigned to a professor who
is not really involved in research, whereas the value 3 will be used for a

professor dedicated to her or his research work (Figure 4.2 t.).

The publications are the best indicator to find out the importance the
professor attaches to his research work. Only the publications of the
last two or three years are used to perform this measure. A threshold

expressed as a number of publications per year can be used to define

each level.

Organization skills :
The attribute Organization skills is present in the representation if the
professor is skilled at organizing either her or his work, her or his ideas, or

the work of a team (Figure 4.2 u.).
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The organizational skills of the professor appear in the web pages
in the layout of the ideas. It appears in the publications as well;
the way they are organized can be an indicator. If the professor has
an administrative position, it may be deduced that she or he has

organizational skills.

Joint work :
This attribute is attached to the representation when the professor collab-

orates with other people (Figure 4.2 v.).

It can be determined whether the professor is involved in joint work or
not by examining the list of publications, for example. If the professor
is co-author with other professors, it can be assumed that she or he

often does joint work. Another clue is presence or absence of links on

her or his homepage to some laboratories in which she or he works.

Leading scientist :
The attribute Leading scientist is attached to the structural representa-
tion if the professor has initiated her or his domain of research or given a
new direction in her or his area (Figure 4.2 w.). A leading scientist has been
successful because she or he has developed a new and interesting theory for

example.

Leading scientists are usually well known in their area.
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Area :
This attribute is related to the research area of the professor (Figure 4.2 aa.).
For this study, five areas corresponding to Artificial Intelligence (AI),
Theory, Hardware, Software Engineering, and Systems were defined.
These five areas are broad enough to classify all the homepages studied.
Only one area is associated to the structural representation of the aca-

demic homepage of the professor.

A list of keywords is defined for each area. The homepages are then
classified, depending on the presence or absence of the various key-

words.

Sub-area :
This is the sub-area in which the professor works (Figure 4.2 x.). This sub-
area has to be broad enough to be used for several professors. For example,
a good sub area for Al is machine learning. A professor can work in several

sub-areas.

A list of keywords for each sub-area can be defined. Finding the sub-

areas can be done by searching these keywords in the web page and

then by associating the most relevant sub-areas to each web page.

Style: Flexible / Inflexible :
This attribute expresses the freedom the professor gives to her or his grad-
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uate students. The professor may let the student select the direction in
which she or he wants to lead her or his research work (Figure 4.2 y.) or
she or he may want the student to follow exactly her or his instruction to
achieve her or his research work (Figure 4.2 z.). These attributes are not

compulsary.

The flexibility of the professor can appear in the enumeration of the
requirements needed by her or his future graduate students, in the

description of the projects proposed to the students, or in both.

Departmental rank in the area :
This section represents the reputation of the Computer Science Department
in the area in which the professor works (Figure 4.2 bb.). Three integers are
used to characterize the departmental rank in the area: the value 1 is as-
signed to an unknown department in the area, the value 2 to a department
with a good reputation in the area, and the value 3 to a leading department

in the area.

The values can be assigned statically: a list of the leading (criterion

3) and known departments (criterion 2) for each area can be used to

classify all of the departments.

Some of the classifications described previously are subjective and cannot be de-
termined with accuracy. Further studies will be needed to automate this extrac-
tion of information. To have more objective classifications, the criteria should be
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chosen more objective, or the information should be completed by other sources.

4.3.3 Attachments between placeholders and attributes

The attachments between the different primitives have been defined to highlight
the precedence of a primitive on the ones attached to it. A primitive will be
attached to another if it is a consequence of the previous, or if it is less important
and both characterize the same aspect of the professional profile, or if they convey
a meaning by their association. Figure 4.6 presents the layout of the primitives
with all of their possible attachments. By convention, the attachment illustrated
in Figure 4.3 a. means that 6 is either attached to m or p but not both; the
attachment illustrated in Figure 4.3 b. means that either 7 or p can be attached

to o but not both.

a. b.

Figure 4.3: Representations of the primitives when two different attachments are

possible.

The attachment illustrated in Figure 4.4 means that the three primitives Ori-

entation: students, Orientation: professors, and Orientation: industry
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can be attached together regardless of the order but that if another primitive has
to be attached to this group, it will be attached to the primitive Orientation:

professors.

Orientation:\:
industry

Orientation:
professors

.....

Figure 4.4: Representations of the primitives when each order of attachment

exists.

The attachment shown in Figure 4.5 a. is used for ease of representation. The
dotted line means that several sub-areas can be attached one by one in the struc-
tural representation. To the last sub-area is attached the primitive area. One of
the five defined areas (i.e., AI, Theory, Hardware, Software Engineering,
or Systems) is then attached to the primitive Area. To simplify the representa-
tion, in Figures 4.5 a. and 4.6, only the area Software Engineering is presented
(dotted ellipse). An actual attachment with all the sub-areas represented will be

drawn as in Figure 4.5 b.
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established
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Knowledge
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Research
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Research
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Departmenta
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................... ) epartmenta
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Figure 4.5: A representation of the sub-areas in a modeled form (a.) and in a

practical form (b.).

4.4 Examples

The ETS representations of approximately fifty homepages have been built. The
academic homepages have been selected among the web pages of professors in
Computer Science working in various Canadian universities. Three representa-

tions are presented below.
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Figure 4.6: All of the primitives and their possible attachments.
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Figure 4.7 represents the ETS representation of the homepage of professor Dave
Mason at Ryerson Polytechnic University, Toronto. The URL of this homepage is
http://www.sarg.ryerson.ca/~dmason/. This professor is casual and extroverted.
He allows some flexibility for his graduate students. He does joint work with other
professors, and is very interested in research. He is a concrete thinker, and works

mainly on a popular sub area: Software Reliability.

The ETS representation of the homepage of professor Holger Hoos at the Univer-
sity of British Columbia (http://www.cs.ubc.ca/~hoos/) is presented in Figure
4.8. This professor is more formal and introverted. He is an abstract thinker
specialized in Al. Two sub-areas are predominant in his research work: Proposi-
tional Satisfiability and Ant Colony Optimization. Both sub-areas are popular.

He does joint work with other professors.

The third example (Figure 4.9) is the representation of the homepage of professor
Joanne Atlee (http://se.uwaterloo.ca/~jmatlee/) at the University of Waterloo.
This professor is more casual and introverted. She shows great organization skills.
She is a concrete thinker specialized in Software Analyses. She is very interested

in research work and collaborates with other professors.

72



Person

Social
predispositions

Intellectual
predispositions

Dominant Professional
Pragmatist mode of thinking: status
concrete
Specialized
Sub area ' Orientation:
Students
Orientation:
Research Professors
novelty:
Research

Supervision @

Expe- Expe-
rience @ rience
3 2

Figure 4.7: Representation of the homepage
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Figure 4.8: Representation of the homepage http://www.cs.ubc.ca/~hoos/.
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Figure 4.9: Representation of the homepage http://se.uwaterloo.ca/~jmatlee/.
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Chapter 5
Classes

The ETS representation of academic homepages allows the highlighting of classes
of professors who show similar features in their professional profile. This chap-
ter presents classes built from the ETS representation described in the previous

chapter.

In the ETS model, classes are described by their generative process. To describe

a class, a progenitor and a set of weighted transformations are required.

A large number of classes can be built. Only one class and two of its sub-classes

are presented in this study.

The class selected is the class I' of professors who are more likely to be successful
than are the average professors. Here, “successful” means successful either in
their research work, or in their academic career. For example, a professor oriented
towards industry will be considered successful if he manages to interest industry,
to have a good reputation in the industrial community, and then to obtain funded
projects. A professor interested in fundamental research will be successful if he

manages to be renown in the scientific community or to develop a new formalism.
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5.1 Progenitor

The progenitor of a class is the common ancestor of all of the elements in the class.
It is made up of all of the placeholders and attributes common to all elements of

the class.

The progenitor K of the class I' (presented in Figure 5.1) contains five placehold-
ers: Person, Social predispositions, Intellectual predispositions, Profes-
sional status, and Research. Diversification is assumed to increase the chances
of success of a professor. In the structural model, the attribute Diversified is
attached to the placeholder Intellectual predispositions; this placeholder is
already present in the progenitor. The attribute Diversified can therefore be
attached to the placeholder Intellectual predispositions to form the progeni-

tor.

Person

/

Social
predispositions

Intellectual
predispositions

Professional
status

5&%&?&

Figure 5.1: Progenitor k of class I
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The [ primitives attached to the attribute Diversified are used as contexts for
the transformations that attach the sub-areas in which the professor works. A
diversified professor can lead research works in a maximum of five sub-areas (if
the professor has specialized, a maximum of two sub-areas can be attached). This

is why five 8 primitives are represented in Figure 5.1.

The primitives o and O are used as contexts for transformations that chain other
attributes characterizing the professional profile of the professors of the class. A
transformation that attaches an attribute to the primitive o or O will also attach
a or O to the added attribute. The context (a or O) is therefore still present
after the use of a transformation; this context allows successive applications of

transformations.

Chaining also shows an order of importance among the primitives. Because the
context is re-created, the transformations, which are used to chain the elements,
can be applied in different orders. These orders can, therefore, reflect the relative

importance of each of the primitives.

5.2 Transformations

A class is defined by a progenitor and a set of weighted transformations. The
set of transformations for the class I' is presented in Figures 5.2, 5.3, and 5.4.
The context required to apply the transformations is represented by the shaded

primitives.

The transformations 7; to 74 attach attributes that characterize the relationship
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Social Social Social Social
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abstract
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Tg Ty
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T10 .
o Professional ‘
‘ status ‘

Figure 5.2: Transformations for the class T'.

between the professor and other people. It was presumed that this aspect of
the professional profile of the professor was not involved in determining class

membership. All of the attributes characterizing this aspect of the professional
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Figure 5.3: Transformations for the class I' (cont.).

profile of the professor can, therefore, be attached. However no transformation
allows the attachment of the attributes Formal and Extrovert to the same

element because it is unlikely to find those features combined in the same person.
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Figure 5.4: Transformations for the class I' (cont.).

Transformations 75 or 74 are involved in determining class membership. It is
presumed that the professor has a large chance of being successful either if she or

he is a far-thinker and has a dominant mode of thinking which is abstract, or if

81



she or he is a pragmatist and has a dominant mode of thinking which is concrete.

Transformation 7; attaches the attribute Leading scientist. This means that
the professor is successful in her or his research work. This transformation de-
termines class membership. If an element has this attribute, it clearly belongs to

the class.

Transformations 73 and 79 add the placeholder Supervision.

Transformation 71y attaches the degree of research experience of the professor. In
reality, 79 represents three different transformations. 79_; is the transformation
T1o with a degree of experience 1, 79_5 is the transformation 74 with a degree of

experience 2, and so on.

Transformation 74; attaches the attribute Orientation: students.

Transformation 715 attaches the attribute Orientation: professor if the at-
tribute Far thinker and the group made up of the placeholder Research and
the attribute Experience with a degree 1 or 2 are already present in the repre-
sentation. This means that a “successful” professor who is a far thinker and not
yet very experienced will certainly be mainly interested in working with other
professors to propose her or his opinions to the scientific community. She or he

will also do joint work to develop her or his ideas.

Transformation 73 means that a “successful” pragmatic professor will be more
interested in working with the industry to complete numerous projects and to

gain renown within the industrial community.
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Transformations 74 and 75 attach the attributes characterizing the supervision
style of the professor. It was presumed that a formal professor would be more

likely to be inflexible whereas a casual professor will be more likely to be flexible.

Transformation 716 represents three transformations (716_1, T16_2, T16—3)- Each
of these transformations characterizes a degree of experience: 1, 2, or 3. This is

done in a manner similar to transformation 7o, above.

Transformation 717 means that a “successful” professor who is casual and prag-

matic will probably do joint work and be very active.

Transformation 733 means that a “successful” formal professor will certainly prefer
spending more time working on her or his own; she or he will probably not

collaborate, but she or he will be active.

Transformations 719 and 759 mean that a “successful” professor oriented toward
professors will certainly do joint work and be very active. Moreover, if she or he

is an extrovert, it may have an effect on her or his joint work.

Transformations 79; and 759 add the Area and the sub-areas.

Transformation 793 attaches the departmental rank in the area. Because the rank

can be equal to 1, 2, or 3, the respective transformations are 793_1, To3_2, and

T23-3-

Transformation 794 adds the organizational skills of the professor. This attribute

will be added if the professor is skillful in organizing either her or his work or her
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or his students’ projects.

Transformations 7o5, o7, Tog, To9 and 73p add the area in which the professor

works.
Transformation 79¢ attaches the sub areas in which the professor works.

Transformations 737, 730 and 733 attach the attributes characterizing the novelty

of the work of the professor in each sub-area.
Transformation 734 attaches the rank of the university in Computer Science.

Figure 5.5 shows the element 7 of I" defined as:
Y= K774 476 <T10-1 <IT12 A T9 A T16-1 I T19 < T22 < T26—Machine learning < 733 < T2

<]7—26—Expert systems A T32 1 T22 4 T26—Knowledge representation U732 AT25 1T23—1 97341

5.3 Typicality

The typicality of an element in a class is computed using the typicality of each
of the transformations present in its constructive history. This typicality can be
a weighted sum, a product, or any other statistical computation. The computa-
tional method used should include the weights of all the transformations in the
constructive history, i.e. if two elements differ only by one transformation, one
has the transformation « and the other the transformation 3, and « and S have

different weights, the typicality of the elements should be different.

In this model, the typicality of an element has been defined as the sum of the
weights of the transformations applied to the progenitor to obtain this element.
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Figure 5.5: An element 4 of I'.

With this computation of the typicality, an incomplete representation will have
a lower typicality than has a full representation. This computation will facilitate

the matching part of the retrieval.
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A weight or typicality value is assigned to each transformation to describe the
importance of this transformation within the class. If a transformation is present
in the definition of several classes, the typicality value of this transformation will
vary from one class to another. The typicality values have been selected as fol-
lows. A weight of approximately 100 will be assigned to the transformations that
determine class membership (if such a transformation is present in the construc-
tive history of the element, it is likely that the element will belong to the class).
Weights of 30 and 10 will be assigned to the transformations that are respectively
very significant and significant for the class. If such a transformation is present
in the constructive history of the element, it increases its chance of belonging to

the class.

When applying some transformations, it may happen that the elements become
less typical within the class or no longer belong to the class. Such transformations
are called anti-features. The weight associated with such a transformation is

negative.

The transformations which are neither significant nor anti-features of the class
are called noise transformations. These transformations will have a weight either

positive or negative, that is close to 0.

The weights assigned to the transformations presented in section 5.2 are summa-

rized in Table 5.1.
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Transformation Typicality Transformation Typicality

T1 0.0 718 10.0
T2 0.0 Ti9 15.0
T3 0.0 o0 17.0
T4 0.0 91 0.0
75 30.0 To9 0.0
76  30.0 To3 0.0
77 100.0 794 30.0
T8 0.0 o5 0.0
Tg 0.0 796 0.0
T10 0.0 o7 0.0
711 10.0 Tog 0.0
Ti2  25.0 Tog 0.0
713 35.0 T30 0.0
Tia  25.0 31 30.0
715 15.0 Ta9  20.0
T16 0.0 733 30.0
717 20.0 a4 0.0

Table 5.1: Typicalities of the transformations for the class I'.

The typicality (%) of the element 4 (presented in Figure 5.5) belonging to class
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[ is computed as follows (using the notations presented in Chapter 3):

v() = Um)+U(m) + U(716) + U(T10-1) + U(712) + U(79) + 1(T16-1) + {(T19)
+1(722) + 1(T26—Machine learning) + {(733) + [(722) + {(T26_Expert systems)
+I(732) + U(722) + {(T26—Knowledge representation) + L(732) + (725)
+i(T23-1) + U(734)

= 120.0

Because this number is positive and very large, the element is very typical for

the class.

5.4 Sub-classes

Sub-classes are part of the class. A sub-class is defined by a progenitor, which
can be the same as the progenitor of the class or a progenitor that includes the
progenitor of the class, and a set of transformations. These transformations can
be the transformations defining the class (features and noise transformations) or
transformations composed by the combinations of several transformations of the
class. The weights of these transformations can vary slightly from those of the
transformations of the class. The anti-features of the class are also part of the

anti-features of the sub-class.

In this section, two sub-classes of the class I', presented earlier in this chapter,
are detailed. The first sub-class groups the persons who are open-minded. The

second sub-class represents highly productive persons.
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5.4.1 First example of a sub-class

One of the sub-classes of the class I is the sub-class I'; representing people who
are open-minded. A person belonging to this sub-class will be more likely to be
casual. She or he will enjoy collaboration with other professors. She or he will

be flexible when supervising graduate students.

The progenitor k; of this sub-class is presented in Figure 5.6. K is the same

progenitor as K with the transformations 7 and 79 applied.

Person

Social
predispositions

Intellectual
predispositions

Professional
status

K/ Research

Supervision

Figure 5.6: Progenitor k; of class I';.

The set of transformations that define the sub-class I'; is as follows:

61 = {T?n T4, T, T7, T10, T11, T12, T13, T14, T15, T16, T17, T19, 720, T21, 722, 723,

To4, T25, 726, T27, T28, 729, T30, 731, 732, 733, 7'34}
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The weights associated with the transformations of this sub-class are summarized

in Table 5.2.
Transformation Typicality Transformation Typicality
73 10.0 9, 0.0
Ta 0.0 Too 0.0
75 20.0 Tog 0.0
¢  90.0 Toa  30.0
77 100.0 95 0.0
T10 0.0 96 0.0
711 30.0 97 0.0
Ti2  25.0 T 0.0
713 35.0 To9 0.0
Tia  29.0 T30 0.0
Tis 5.0 131 30.0
T16 0.0 T32  20.0
17 30.0 733 30.0
Ti9  25.0 T34 0.0
To0  30.0

Table 5.2: Typicalities of the transformations for the sub-class I';.

The example shown in Figure 5.7 represents an element -, of the subclass I'y

90



Person

Social
predispositions

Intellectual
@ @ predispositions

Professional
status

Dominant
mode of thinking:
abstract

¢‘4‘!

University
rank in CS:
1

Orientation:
Professors

Orientation:
students _/J

Research
novelty:
radically new,

Machine

learning
Expert
Systems

Knowledge
Representation

Supervision
Research P

novelty:
new

Research

Research
novelty:
new

Departmental
rank in the area:

Figure 5.7: Element ~; of sub-class I';.

constructed as follows:

Y1 = K1973<476AT10-2 IT12 4711 715 I T16—2 < T20 < T22 < T26—Machine learning
733 1 T2 4 T26—Expert systems 1732 1 Tp2 4 T26—Knowledge representation 1732

To5 1 To3—1 1 T34—1
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Its typicality v;(7;) in the subclass I'; is computed with the method used previ-

ously and the weights found in Table 5.2. Its value is as follows:

vi(,) = 190.0

5.4.2 Second example of a sub-class

Another sub-class of the class I" is the sub-class I'; representing people who are
very productive. A person belonging to this sub-class will be a pragmatist and a
concrete thinker. Her or his orientation will tend to be towards industry. She or
he will do joint work with other professors to obtain more results. She or he will

have numerous graduate students for the same reason.

The progenitor ko of this sub-class is presented in Figure 5.8. K, is the same

progenitor as k with the transformations 75 and 715 applied.

The set of transformations that define the sub-class I'; is as follows:

@2 = {7—1’T277-37T4aT7’T87TQTIOaT117T14a7—15a7—16a7—17a7—187TZlaTQQaTQ?n

T24, 726, 728, 729, T30, 731, 734}

The weights associated with the transformations of this sub-class are summarized

in Table 5.3.

The example shown in Figure 5.9 represents the element ~, of the sub-class I
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predispositions
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Dominant status

mode of thinking

concrete
a Research

Orientation:
industry

Pragmatist

Figure 5.8: Progenitor ko of sub-class I';.

constructed as follows:

Yo = Ko7 <97y <A78<dT0-3 4711 AT14 < T16-3 IT1g-3 < T2q < To2
AT26—Software reliability < 731 < 722 < T26—Software evolution < 731 < 722
<qT26—Parallel programming 731 47T30 IT23—2 17342

Its typicality vo(7,) in the class I'y is as follows:

Vo () = 255.0

Table 5.4 summarizes the typicality of the elements 4, 4; and 4, computed in

the class I' and in the sub-classes I'; and I's.
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Transformation Typicality Transformation Typicality

T1 0.0 Ti6—3 20.0
Ty 0.0 17 40.0
T3 0.0 T1s 2 10.0
T4 0.0 Tis—3 30.0
7 100.0 T 0.0
T8 0.0 Too 0.0
Ty 0.0 To3 0.0
T10-1 0.0 T4 50.0
T10—2 10.0 796 0.0
Tio—3  20.0 o 0.0
™ 10.0 To9 0.0
T4  35.0 T30 0.0
Ti5 5.0 31 30.0
T16-1 0.0 T34 0.0
Ti6—2  10.0

Table 5.3: Typicalities of the transformations for the class I's.
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Figure 5.9: Element -, of sub-class I's.
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Element Typicality Typicality Typicality
in class I'  in sub-class I'y in sub-class I'y
¥ 120.0 150.0 X
¥, 167.0 190.0 X
Yo 230.0 X 255.0

Table 5.4: Typicalities of the different elements in the class and subclasses (X

means that the element cannot be generated from the progenitor and the trans-
formations defining the class).
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Chapter 6
Homepage retrieval

The user—a graduate student—issues a query: either a full representation, a
partial representation, or the description of a class (progenitor and set of trans-
formations). The retrieval system returns the elements of a class or of a set of
classes. This chapter explains the matching process and highlights the differences

between the model developed in the present study and the Boolean model.
6.1 Matching

Matching is the core of the retrieval process. In the model presented in this
thesis, retrieval is based on classes. Classification of the representations of the
academic homepages is done before processing the query. Each class contains

several elements, and each element can belong to several classes.

When a user issues a query, this query can be expressed in three different forms:

e An element of the universe. The user inputs as a query the full representa-
tion of the professional profile of the fictitious professor with whom she or

he would like to work.

e A partial representation. The query is a partial representation, i.e. a part
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of a representation described in the previous case.

e The description of a class. The query issued is composed of a progenitor

and a set of transformations.

6.1.1 The representation of an element as a query

In this type of retrieval, the user inputs the full representation of the professional

profile of a fictitious professor. Two cases arise:

e If the input representation belongs to only one class, the retrieved elements

are the elements that belong to this class.

e If the input representation belongs to more than one class, the retrieved
elements are the elements of the classes for which the input representation
has the highest typicality. The number of classes output depends on the

precision and completeness needed by the user.

The existence of a hierarchy in the classification in classes, sub-classes, and so
on, increases the precision of the retrieval. Depending on the degree of precision
required by the user, the depth of the search can be adapted. Ranking is based

on the typicality of each element for the class.

6.1.2 An incomplete representation as a query

In most cases, the user cannot input a full representation, because she or he is
unable to specify her or his query exactly or does not want to restrict her or
his query too much. Hence, the information retrieval system should be able to
process such an incomplete query.
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This input representation is considered as an element for which the generative
process has been stopped; it is an incomplete element. If the generating process
has been achieved, the typicality of the full representation obtained would have
been the sum of the weights of all the transformations present in its construction
history. However, the transformations applied to the incomplete element are
unknown. Hence, a null weight is assigned to each of them. The typicality
is therefore the sum of the weights of the transformations of the constructive

history of the incomplete element. This typicality is an assumed typicality.

In the previous chapter, the typicality of an element was defined as the sum of the
weights of the transformations present in its constructive history. This measure
is effective because it assigns higher values to incomplete elements that contain
in their constructive histories the set of transformations that most strongly de-

termine class membership.

The set retrieved is the class in which the partial representation has the highest
typicality. As before, the ranking is based on the typicality of the elements within
the class. For example, the user can input a query represented in Figure 6.1. This

query is constructed as follows:

K dT9<dT3<Tg T2 T2 1 Tg I T15 < Tig_2 < Tog-

The value of the typicality associated with this query in class I' is 87. This value
is relatively large. Depending on the other classes, the system may retrieve some

elements of class I'.

However, as in any retrieval system, when the query of the user is not completely
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Figure 6.1: Example of a query.

defined, the retrieved class may not correspond to the (unexpressed) expectations

of the user.

The ranking method used when the user inputs either a full or a partial rep-
resentation may be slightly improved. The typicality of the retrieved elements
can be computed using larger weights for the transformations that constitute the

constructive history of the query. The weight increase can be defined as follows:

e A large multiplicative coefficient can be assigned to the transformations
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that attach attributes like Area. Such attributes are easy to define and

cannot mislead the user.

e A small multiplicative coefficient can be assigned to the transformations

that attach attributes that are more difficult for the user to define.

This method assigns a higher rank to the elements showing a higher similarity
to the input representation whereas the first method assigns a higher rank to the

more typical elements of the class.

6.1.3 The description of a class as a query

In some cases, the user inputs her or his query as a fully defined class, i.e. a pro-
genitor and a set of weighted transformations. The system tests the membership
of each element of the universe to the input class. If the element belongs to the

class, it is part of the retrieved set. Ranking is based on typicality.
6.2 Comparison with a Boolean model

In a Boolean model, each document of the corpus is represented by a set of
keywords. A query is expressed as a set of keywords linked by logical operators:
AND, OR, and NOT. A Boolean model is applied to the corpus defined for this
study to draw a comparison between the Boolean model and the one presented

in this study.

To keep some consistency between both models, in the Boolean case, the key-
words associated with each homepage belong to the set of attributes presented
in Chapter 4. The query issued by the user is also a subset of these attributes,
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linked by the logical operators. The system retrieves the elements that satisfy

the Boolean expression of the query. No ranking is done.

There are three main differences between these models:

e In the Boolean model, no ranking is possible. Hence, the first element
output by the retrieval system can be the less interesting for the user.
However, in the model based on ETS, if the user issues a query which
conveys all the information she or he wants, she or he will get the best

result first.

e Given a query, expressed as a full representation or a partial representation
in the model based on ETS or as a list of keywords linked by logical opera-
tors in the Boolean model, the set of elements retrieved will be significantly

different.

In the Boolean model, the elements retrieved by the system will correspond
to those that satisfy the Boolean expression of the query. The main disad-
vantage is that this exact matching may lead to retrieval of too few or too

many documents.

In the ETS model, the elements retrieved will be those that are similar to or
contain the input representation, further all the elements that have similar
properties. This property improves the completeness and the precision of

the information retrieved.

e Ifno document matches the query of the user, the set of documents retrieved
using the Boolean model is empty whereas the set of documents retrieved
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using the model based on the ETS framework is the class in which the
partial or full representation given by the user has the highest typicality.
This typicality can even be negative. The documents retrieved are the most

similar to the query.

6.3 Discussion

The Boolean model is one of the simplest retrieval models. More elaborate models

have been developed; some of them include a method of ranking (Chapter 2).

The novelty of the model based on the ETS framework compared to other mod-
els used in information retrieval is the use of the structure of the information
contained in the document. This structure expresses the interdependence of at-
tributes. This dependence may be expressed in other formalisms, but the struc-
tural information will be treated as the “other” information. For example, the
attachment can be expressed in a Boolean model by adding to the list of key-
words a list of structural information, but this information can be used only as
the keywords are used. This information cannot be treated as structure. The use
of the structural information in the ETS model is one of its main advantages.

The structural representation of a document expresses its constructive history.

The novelty of the model based on the ETS formalism, therefore, lies also in
the presence of a generating process that allows classification of documents into
classes of elements having similar properties. Such a model returns elements that

can be very different in their representations but these elements have similarities
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in their professional profile.

For example, if a graduate student wishes to work with a professor who is likely
to be successful, she or he may input the element 4 presented in Figure 5.5. The
class retrieved is the class I'. The element -, presented in Figure 5.9 belongs
to the class I, it is therefore retrieved. The representation of the element «, is
totally different from the representation of the element 4. However, the element
v, is one of the documents that the user expects. No other model used in in-
formation retrieval would have included this element in its output because of its

large difference with the query.
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Chapter 7

Conclusion and recommendations

The main objectives of this thesis were to develop a model based on the ETS
formalism, to apply it for an information retrieval task, and to show its advantages

compared to other models.

First, the corpus consisting of the academic web pages of professors in Computer
Science in various Canadian universities was studied to find regularities. Based
on these regularities and those features of the professional profile of the profes-
sor believed to interest a graduate student, a structural ETS representation of
the professional profile was developed. This representation was composed of six
placeholders and a list of attributes that characterize three main aspects of the
professional profile of the professor. Based on this model, classes grouping the
professors who show similarities in their personalities can be defined. One repre-
sentative class and two sub-classes were constructed. The retrieval process was
then defined. When a user issues a query (which is a representation), the system
returns all the elements of the class in which the input representation has the

highest typicality. The ranking is based on the value of the typicality.

Although the model was simple in that it included only a few aspects of the pro-
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fessional profile, it has proven to be effective for an information retrieval task. In
addition, the model showed advantages in comparison to models commonly used
in information retrieval: it includes the structural information in the representa-
tions. The repartitioning of the elements into classes and sub-classes enables the
system to retrieve relevant elements that are totally different from the query. This

retrieval would not be possible with any classical information retrieval models.

Based on the experience gained from the present study, the following recommen-

dations for further research are made:

e The representation of the traits of personality of the professor was built
without significant knowledge of Psychology. It was based on the study of
the characteristics of the corpus and an analysis of the information inter-
esting for a student. This representation is limited, as not all the aspects
of the personality are taken into account. Therefore, an advanced psycho-
logical investigation of the personality of professors and of the needs of the

graduate students would improve the reliability of this representation.

e The construction of the ETS representation of the homepages has been done
manually. A system should be developed to index the webpages automati-
cally. This issue is not related directly to the proposed ETS representation,

but some investigations need to be done to achieve it.

e The class and the sub-classes presented in this thesis have not been se-
lected automatically. To automate this creation of classes, the study of the

learning process of the ETS model would be recommended.
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e The presented model has been used on few web pages (compared with the
thousands existing on the WWW). Large-scale tests of a prototype model

will be useful to gain a better knowledge of the effectiveness of this model.

e The major drawback of this model is that it is difficult for a user to use. To
perform a search, the user has to define a partial or full representation in
a form he is not used to (structural). To improve the ease of utilization of
this model, the user should input a query in a more classical form. A pre-

processing stage would transform this query into an ETS representation.

e A user should be asked to test this model and compare it with Google
(one of the most widely used search engines). Even if the two methods are
different, the user should be able to express which one gives the results she

or he feels to be the best.

e The model has been applied to one domain, i.e. academic webpages. It

would be interesting to transfer it to similar domains.
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