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Abstract

The central concept of the Evolving Transformation System (ETS) model is struc-

tural object representation constructed by the process of inductive inference. The

model was proposed in 1990 by Lev Goldfarb to be applied to any pattern learning

or classification problem. A formal exposition of the model is presented in this the-

sis. It defines the concepts that encapsulate the idea of structural representation and

includes lemmas and theorems that link these concepts together into a single model.

The chosen form of definitions is related to several general postulates about structural

representation.

The main feature of this formalization of the ETS model is the presence of an

infinite hierarchy of representational levels. At each level, object representations are

constructed from primitive constructive transformations (building blocks). Primitive

transformations of the next level correspond to complex context-dependent additive

transformations of the previous one. This hierarchy allows to reduce the complexity

of representation of an object by constructing its higher-level representation through

the process of inductive inference. It is argued that it is not possible to obtain this

kind of hierarchy within the conventional symbolic approaches based on strings, trees,

graphs and the corresponding formal grammars.

The restriction of transformations to context-dependent “additions” simplifies

the problem of inductive inference in ETS, as compared to the problem of grammat-

ical inference, in which the transformations include deletions and substitutions and

which is known to be intractable. It is proved that the generative power of ETS

transformations is sufficient for simulating any string-rewriting system without cyclic



iii

derivations.

A stochastic generating process and a typicality measure on representations are

introduced, in order to conclude with a formulation of an optimization criterion for

inductive inference. The criterion is compared with the minimum description length

principle.
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Chapter 1

Introduction

In the following nine sections, I present my thoughts on the main ideas, postulates

and concepts of the ETS model. They are presented here, in order to introduce the

reader to the way I was thinking while working on the formalization of the ETS model

and, hopefully, give more sense to the formal definitions and theorems that constitute

this thesis.

I had a strong temptation to explain why the model should be formalized the

way it is formalized here, and, in fact, attempted to justify its ideas and postulates

in the introduction. What I have obtained in the end, still looks like a presentation

of the way I think about the model, and, to some extent, like a logical analysis of this

way of thinking. A critically minded reader will find a number of statements in this

introduction, which require further logical analysis, factual support, and references

to the literature in various areas of science. I have to apologize here for not providing

this to the extent the reader might want to have. This is not only because of space

limitation, but also because the purpose of my research was to formalize and not

to justify the model. However, I hope that the reader will find enough material in

this introduction to build a rough but consistent picture of the model and, with this

1
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picture is mind, have an easier time with the formal part.

Trying to achieve a certain level of transparency, I have omitted from the picture

most of the references to the literature. This is because most of the references that I

know either talk about the same issues in a different language, or talk about different

but related issues. In other words, there are very few direct references, which I could

mention as a foundation or starting point of my research. It is really a diverse and not

quite comprehensible variety of different sources, many of which can only be related

to the whole picture, but not to any of its parts. Moreover, a number of important

ideas and concepts presented in this thesis emerged during the extensive discussions

by the members of the ETS group at the University of New Brunswick and have

not yet appeared in press. For this reason, I decided to give a literature overview

separately, after the introduction into the model (in Section 1.10).

1.1 Mathematics as a language of scientific repre-

sentation

The issue of representation is and has always been central in all areas of science.

Every achievement in science has been due to a new ingenious outlook at a known

phenomenon or a description of a new one. To describe things or to look at them

differently means to construct a new representation for them.

First of all, this representation is constructed in the scientists’ minds. Then, it

is communicated among the scientists by means of a scientific language. Arguably,

any kind of language, including scientific languages, can also be a part of our internal

mental representations. And also quite undoubtedly, a large part of mental represen-

tations is not described by any of the existing languages. Thus, we can say that we
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think in English or in terms of images, formulas, numbers, but by no means this list

will cover all kinds of our thoughts. In other words, our representational capabilities

include but are not limited to the (current) languages of communication.

Languages can be informal, such as English or pictorial language, or formal, i.e.,

mathematical language. Here we are concerned with the formal language only.

It is quite an interesting question, to which extent mathematical language is a

language of representation in science, i.e., what part of scientific knowledge can be

described solely in mathematical language and what part relies on other means of

representation.

Among all scientific areas, physics is undoubtedly the one that uses the mathe-

matical language most extensively. Point, line, sphere, wave, distance, velocity, vector

field, probability, etc. are purely mathematical concepts employed by physicists to

describe, and even perhaps to think about, real-world phenomena. There is no other

area of science, where this would be the case.

This is not a coincidence, since part of mathematical formalisms has arisen di-

rectly from the study of physical phenomena. It is well-known that the concepts

of continuous function, differentiation, and integration, are the result of the gen-

eralization made by Newton: he assumed that “all geometrical magnitudes might

be conceived as generated by continuous motion” [Bal01], thus creating a new for-

malism based on the intuition about moving objects. Vice versa, mathematics has

been directing physics toward new discoveries. Examples of such influence include

Maxwell’s electrodynamics, Dirac’s quantum mechanics, quantum electrodynamics

and Einstein’s theory of relativity.

Other sciences—chemistry, geography, geology, economy, linguistics, history, bi-
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ology, psychology, cognitive science—certainly rely on mathematical language to some

extent, but it is not as significant as in physics in two aspects. First, very few sci-

entists in the above areas would claim that they think in mathematical terms. And

second, very few discoveries can be traced back to mathematical concepts.

The reason for this is that historically the mathematical language has been de-

signed to operate with concepts describing quantities obtained through the process of

numeric measurement and their derivatives. Physical phenomena are the ones that

admit an accurate numeric representation (I think that this statement actually de-

fines physics), but this is not the case with the other areas of science. Indeed, when

one thinks about a chemical molecule, a continent on our planet, a sentence from

a natural language, a biological cell, or human mind, one tends to think that there

is more to them than just a sequence of numeric values. In other words, not only

numeric concepts do not currently serve the purpose of representing objects in any

area of science except physics, but there is a good chance that they never will.

1.2 Numeric representation vs structural repre-

sentation

It is not our purpose here to get involved in a philosophical argument about the

inadequacy of numeric representation for the purposes of the above scientific areas.

Neither we are going to carry out such an argument in case of pattern recognition,

inductive learning, and classification. There are two reasons for it. First, this has

already been done in [Go90, Go96, Go03]. This view is very far from being universally

accepted in the scientific community and, probably, it will not be accepted based on

purely philosophical arguments. A formal model tested on practical problems is
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needed. This is the second reason. Though, a few points need to be mentioned here,

as an introduction to the author’s way of thinking about structural representation.

A numeric representation is an embedding of the data into a vector space, usu-

ally Euclidean. Using numeric representation, one can classify objects by grouping

together those that are close to each other according to the Euclidean metric or those

that can be separated by a decision surface (see Fig. 1.1). Artificial neural networks,

support vector machines, k-nearest neighbors would be the obvious examples of nu-

meric models.

Figure 1.1: Numeric object representation and classification based on Euclidean met-
ric or separation of data by a decision surface.

We would like to expand the concept of a numeric model by including all mod-

els, in which objects are represented by feature vectors and features are either real

numbers or elements of a finite set. Then bayesian networks, semantic networks, and

logical formalisms also fall into the category of numeric models, since they all repre-

sent objects by vectors, whose components are either boolean vales or elements of a

finite set.

All above mentioned numeric models have their advantages and disadvantages

and are widely used in various applications. It is well known in pattern recognition
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and other areas, how important is the selection of good features for numeric models.

For this reason, a successful application of a numeric model to a particular classifi-

cation problem does not indicate yet that the model itself is robust. Indeed, given

a particular (i.e., not very general) classification problem, it is conceivable that one

will eventually come up with good features by applying the method of trial and er-

ror or any other, independent of the model, considerations. As a result, one may

obtain features that almost directly encode the class to which the object belongs, in

which case any reasonable classification model would succeed. On the other hand, for

very general and complex applications such as protein classification and drug design,

translation of natural languages, and motion control in unrestricted environments,

no existing models yet can solve classification problems adequately. Which does not

mean that they will not in the future, but it is also not clear why they should. Thus,

instead of judging about numeric models based on applications, we would like to carry

out some theoretical investigation of whether they fit our general intuition about ob-

ject representation and classification. We have already seen a number of scientific

areas, in which numeric representation is too rigid to represent objects in such a way

that their essence is captured and accurate classification is possible. Let me try to

give an abstract formulation of the reason for this.

I consider it important that numeric representation does not preserve the part/whole

relation between objects. That is, given a numeric vector representing an object (say,

a house), it is often hard to obtain the vector representing any of its parts (say, a

window). Unless, of course, these parts are directly encoded in the features, which

is clearly impossible for any object of a reasonable complexity. Yet, one has to be

able to represent the parts of objects, in order to be able to model transformations
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of the objects. For example, one has to have a representation for the window in

order to model the transformation “open the window”. In general, this is because

parts of objects are contexts of the transformations, i.e., they define the necessary

conditions for the transformations to apply. Finally, one has to be able to model

transformations of objects, in order to classify the objects.1 A house belongs to the

class of houses, because it shares with other houses certain transformations that have

been used to construct this house (say, build the base, the frame, the walls, lay the

roof) or can be applied to the house later on. This suggests an evolutionary descrip-

tion of objects, which consists in the description of the object’s past, in terms of the

transformations used to construct the object, and the object’s future, in terms of the

transformations that can be applied to the object later (see Fig. 1.2). A collection of

such transformations endowed with a generative mechanism that applies them is thus

a class description (see Fig. 1.3). A representation that explicitly includes the trans-

formations used to construct the objects from a certain class is called an evolutionary

structural representation.

1.3 Universal class description

An immediate consequence of the above definition is that evolutionary structural

representation of an object cannot exist without the description of a class to which

the object belongs. Thus, a description of an initial class, in which objects can be

represented has to be postulated in advance. This initial class should be thought of

as a very broad universal class that contains all kinds of different objects, in fact, all

1The proponents of numeric models will have to disagree with this statement, since numeric
classification is not based on modeling of transformations of objects.
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object

t1 t2 t3
t4

t5
t9

t8t7t6 t10

t11

t12

t13 t14{
past

{

future

...

...

Figure 1.2: Evolutionary description of an object: labeled arrows denote transforma-
tions (some of them may have the same structure, even though labeled differently).
An object can have several possible constructive histories and several possible future
developments.

t  =1

past

future

t  =2 t  =3

(a) (b)

...

Figure 1.3: Structural description of a class as a list of labels and structures of the
class transformations (the structure will be explained later) (a) and the corresponding
generating process that generates class objects by applying class transformations (b).

objects considered in a certain scientific problem. For example, it can be the class of

all chemical compounds, organic compounds, or proteins.

For a broad class like this we may already have a good idea about the transforma-

tions that construct its objects. In fact, we may have an informal description of these
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transformations. For example, some chemical reactions that build compounds from

atoms and smaller compounds can be understood as constructive transformations for

these compounds; biochemical processes that build proteins from amino acids can be

understood as constructive transformations for proteins; rules of composition of char-

acters, syllables, phonemes, words, etc. can be understood as linguistic constructive

transformations as well. It remains to translate the informal descriptions of these

transformations into a formal language of evolutionary structural representation, and

we obtain a formal description of a universal class.

1.4 Structural measurement

Once the description of the universal class is obtained, the problem of finding repre-

sentations of particular objects in this class arises. For example, how can we find the

sequence of transformations that construct the molecule in our flask? Again, such

sequences may already be known for certain molecules, so the corresponding formal

representations for them can be obtained.

What if the constructive sequence for the molecule is unknown? Then one can

guess a constructive sequence, predict certain properties of its result, and then com-

pare with the results of measurements of these properties for the molecule in the flask.

In this scenario, the existing measurement devices play the role of extensions of the

generative mechanism mentioned above. Note, however, that most of the existing

measurement devices are numeric and (probably, for this reason) the results of mea-

surements can only be matched with the properties that are predicted for the entire

constructive sequence. A part of this sequence often gives little information about

the properties. Thus, we face the problem of combinatorial search for the sequence of
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constructive transformations, to which a greedy strategy does not apply (the search

space is shown in Fig. 1.3b above). The search complexity becomes exponential in

terms of the length of the constructive history, hence only short histories can be

obtained in practice. Unless, of course, we have a model that guides this search.

An interesting example of a non-numeric measurement process capable of mea-

suring large objects is the DNA sequencing process. The sequencing process was

proposed by Sanger as a method for determining the nucleotide sequence of DNA

molecules [Cam93]. The DNA molecule consists of two complementary strands, each

of which can be thought of as a sequence of characters A, C, T , G for now, where A is

complementary to T and C is complementary to G. The sequencing method alters the

DNA replication process as follows. The first step, the separation of the two strands,

remains unchanged. Then each strand serves as a template, to which the comple-

mentary nucleotides are attached sequentially (these complementary nucleotides are

floating among the DNA molecules in abundance). In Sanger’s method, one also in-

troduces a modified version of one of the nucleotides, say A′, in some concentration.

A′ behaves exactly as A, that is it attaches to T , except it also terminates the repli-

cation process. Thus, instead of a complete complementary strand, we obtain only

its prefix. Now, by determining the length of this prefix, we can obtain the position

of A in the strand (the length can be determined by separating the DNA strands by

electrophoresis on a polyacrylamide gel, which can separate strands differing by one

nucleotide in length [Cam93]). Similarly, by introducing C ′, T ′, G′, one can obtain

the positions of the other nucleotides in the strand.

It is important to note that, although sequencing does produce a sequence of

transformations that can be understood as constructive for the DNA molecules, these
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are not the transformations that define the classes of these molecules. The trans-

formations that do define these classes are the evolutionary transformations that

have produced the molecules (and also the ones that might occur to the molecules

later), i.e., mutations. These mutations occurred to the molecule before the replica-

tion process simulated by the sequencing method. Thus, the sequencing process does

determine a part of constructive history of the DNA molecule, but this is only the

most recent part, whereas the classes of DNA’s are determined by the earlier parts of

the historic process. In other words, in order to be able to classify DNA molecules,

one has to construct their representation based on transformations corresponding to

mutations, which will clearly look different from the sequential attachments of nu-

cleotides. That is, the sequencing method is an example of a structural measurement

process in a certain universal class, but this is not the class, within which we can find

the subclasses of DNA’s created by evolution.

1.5 Conventional data structures and object rep-

resentation

Experience of using conventional data structures such as strings, trees, and graphs,

shows that it is possible to describe some of the evolutionary transformations as

transformations of these data structures. For example, certain point mutations and

crossovers can be described as formal production rules, rewriting rules, splicing rules,

etc. However, these descriptions have a lot of exceptions. The exceptions are of two

kinds: the actual evolutionary transformations may not be representable by rules of

the selected type and, vice versa, many of the rules may have nothing to do with the

actual evolutionary transformations. Both kinds of exceptions, if encountered often,
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cause problems: the first simply does not allow to encode transformations and the

second makes the search for the transformations intractable.

Noam Chomsky has introduced a hierarchy of types of formal grammars, known

as Chomsky’s hierarchy. By moving along this hierarchy from regular (type 3) to

context-free (type 2), context-sensitive (type 1) and unrestricted (type 0) grammars,

we decrease the number of exceptions of the first kind but simultaneously increase

the one of the second. Thus, we might hope to find an intermediate type, for which

both kinds of exceptions are reasonably rare. But this is apparently not the case. For

example, context-free grammars describe only a small part of evolutionary transfor-

mations, yet are already extremely hard to search for. This suggests that we should

be moving along a different hierarchy.

Surprisingly enough, the extension of Chomsky’s theory to graphs suggests an

idea about this new hierarchy. It is known that there are context-dependent string

languages that, if the strings are encoded by linear labeled graphs, can be generated by

context-free graph grammars (see [Ro97]). In other words, by choosing a different data

structure instead of a different type of rules, we may hope to increase the generative

power and keep reasonable the complexity of the search for the rules.2

Still, the question of how to choose the appropriate data structure in a systematic

way remains open. And, once this data structure is chosen, which transformations

should be considered on it? The purpose of the ETS model is to answer these ques-

tions.

2This is not to say that we should try to represent evolutionary transformations by graph-
grammatic rules. In fact, the parsing problem for context-free graph grammars is known to be
NP-complete, and there is no advantage of graph grammars that I am aware of as far as the repre-
sentation of evolutionary transformations of genetic molecules is concerned. But the idea of changing
the data structure instead of the generative mechanism, in my opinion, is important.
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1.6 ETS constructive histories and object repre-

sentations

Both questions are answered in the ETS model simultaneously. It is postulated that

once a data structure is fixed, its transformations are fixed as well. This postulate

is consistent with the general approach to data structures and abstract data types in

computer science. It is just that for some reason this approach has not been strictly

followed in case of strings, trees, or graphs—there is no fixed definition of a trans-

formation of these structures or, in other words, different kinds of transformations

exist.

The definition of the ETS data structures is essentially based on the concept

of the object evolutionary history (the idea was proposed by Lev Goldfarb). This

history, which is a sequence of constructive transformations, is explicitly present in

the central data structure of the model (see Fig. 1.4a). Once the data structure

corresponding to a single constructive history is introduced, it becomes inevitable

that objects should be viewed as collections of constructive histories (see Fig. 1.4b).

t4

t5

t7t6

(a) (b)

t1 t2 t3
t4

t5
t9

t8t7t6

Figure 1.4: A single constructive history represented as a sequence of constructive
transformations (a), and an object represented as a collection of constructive histories
(b). The structure of transformations will be explained later.
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This assertion reflects the fact that objects usually have several possible construc-

tive histories. For example, there can be several ways to obtain a certain chemical

compound through reactions. In other words, there are several constructive histo-

ries, which have the same result, and this result is the compound. Or, if we want to

be more accurate here, we have to assume that the results of different constructive

histories may be different, but they appear to us and, more importantly, to various

chemical reactions to be the same.

Formally, one can express the fact that certain constructive histories produce the

same result by introducing an equivalence relation on the set of constructive histories;

the equivalence classes then are representations of objects. These equivalence classes

turn out to be a rich source for data structures. In particular, it is shown in this thesis

how to obtain strings, trees, and graphs in this way. It will also become clear that the

equivalence classes are much more general than these conventional data structures

(see Fig. 1.5).

natural
numbers

sequences stringstrees
graphs

simple complex
EQUIVALENCE CLASSES

Figure 1.5: Equivalence classes of constructive histories and conventional data struc-
tures depicted as particular cases of the equivalence classes.

The choice of the equivalence relation depends on the particular application and

requires to incorporate existing scientific knowledge about the objects into the defi-

nition of the equivalence relation. Sometimes this can be done easily, if the existing
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knowledge is already expressed as an equivalence relation (for example, the resonance

effect in chemistry—see Fig. 1.6). In other cases, it may require substantial effort

(see the definition of an equivalence relation on the histories corresponding to organic

compounds in Dmitry Korkin’s PhD thesis [Ko03]). But, in any case, the definition

of the equivalence relation on histories is not what we mean by a systematic selection

of the data structure for object representation. This is because this definition has

to be done in one step, and systematic approach means at least several steps guided

by a model. In fact, the definition of the equivalence relation is only the initial step

in the process of construction of object representation, which has to be made by a

human. The remaining steps are supposed to be made by an algorithm based on the

ETS model. Each of these steps modifies the initial representation by applying the

inductive learning algorithm.

O
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O
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.. ...
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Figure 1.6: “The resonance description of ozone . . . the molecule has a structure
represented by the superposition of the two structures shown” [Paul75].

1.7 Inductive learning and modification of object

representation in ETS

It is time now to recall that the initial representation is the representation of objects

in a large universal class. It is the description of this class that is specified, when
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we define the constructive histories and the equivalence relation on them. Recall also

that, because of the exponential complexity of the search for a representation, we can

only assume that representations of small objects, whose histories consist of just a

few constructive steps, can be obtained.3

From now on, we will call the constructive steps in the universal class primitive

transformations. Complex objects, together with decomposition of their history into

primitive transformations, usually also admit decomposition into larger chunks, which

we will call composite transformations (see Fig. 1.7). For example, a protein can be

decomposed into atoms or into amino acids, which can themselves be decomposed into

atoms. Thus, intuitively, composite transformations are composed out of primitive

transformations.

past

future

Figure 1.7: Decompositions of a constructive history of an object into primitive trans-
formations (left) and composite transformations (right).

Now, suppose we have several objects that, on the one hand, are small enough

to allow their representation in the universal class and, on the other hand, are large

3Strictly speaking, the number of steps in different histories for the same object may vary, but
this is not important for us now.
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enough to contain composite transformations in them. Then, by applying the in-

ductive learning algorithm, we can extract these composite transformations from the

given object representations.4 Once the composite transformations are extracted, one

can obtain new representations for the objects as follows: the new constructive histo-

ries are sequences of composite transformations, and the new object representations

are equivalence classes of them.

Note that the new representations are simpler in terms of the number of trans-

formations in the constructive histories. This applies to any objects from the class

generated by the extracted composite transformations.5 Thus, within this subclass

of the universal class, we are now capable of constructing representations of more

complex objects, compared to the ones that we could obtain before learning. For ex-

ample, once we discover amino acids from simple compounds, we can represent much

more complex compounds, such as proteins. In other words, the composite transfor-

mations learned from the training set allow to lift the representations of objects from

the subclass, to which this training set belongs, to a new level of the representational

hierarchy (see Fig. 1.8).6

1.8 ETS representational hierarchy

The representational hierarchy and inductive learning algorithm constitute the sys-

tematic and algorithmic approach to the construction of representation of complex

objects, which was discussed above. Once a subclass is learned, and therefore we are

4The inductive learning problem is a very important and difficult problem, thus the claim that
composite transformations can indeed be extracted from the training data needs a thorough justifi-
cation. We will return to this question in a moment, in Section 1.9 below.

5Recall our discussion of structural class description at the end of Section 1.1.
6Note the difference between this hierarchy and the Chomsky’s hierarchy.
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Figure 1.8: Representational hierarchy (the number of dots over a transformation
label specifies the level, to which the transformation belongs).

capable of representing its more complex objects, we can take a new, more complex,

training set and learn the composite transformations of the next level, which will

be compositions of the current composite transformations. This process, which we

will call the inductive learning process, can be continued to a potentially unlimited

number of representational levels.

Note that the description of the inductive learning process as a process that

creates a multi-level representational hierarchy is consistent with the biological un-

derstanding of the evolutionary process in Nature. I see the result of this process in
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the hierarchy of atoms, molecules, cells, tissues, organs, organisms, societies, etc...—

each concept in this list corresponds to a level in the representational hierarchy. This

description is also consistent with the psychological understanding of learning per-

formed by children, which involves construction of more complex concepts out of

previously learned simpler ones. Finally, it is consistent with the process of devel-

opment of scientific concepts and theories. Thus, according to the ETS model, the

general laws guiding the construction of object representations should be identical

with those guiding the construction of objects themselves! In a broader perspective,

this assertion expands the meaning of the term “representation”. For example, bio-

logical organisms can be considered as representations of the inorganic environment

they live in, constructed within the universal class of organic compounds. In general,

any kind of interaction results in construction of a new representation within a certain

class, which triggers another step of the inductive learning process, i.e., of the global

evolutionary process.

1.9 ETS transformations and inductive learning

As it is clear from above, it is crucial for the ETS model (and any other model of

classification) that the inductive learning problem is solved efficiently. Probably, the

unpopularity of symbolic approaches in the areas of pattern recognition and classi-

fication (compared with numeric ones) is largely due to the fact that in many cases

learning in symbolic environments is extremely difficult. For example, this is the case

with regular and context-free grammars, even though their generative power is quite

limited.

Of course, a learning algorithm with a good theoretical upper bound on its time
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complexity and/or good practical performance would be a definite asset of the model it

is based upon. But right now, when the formalization of the model has just been com-

pleted, it is too early to talk about learning in algorithmic terms. In fact, because the

model is so general, it unlikely that it will be possible to develop a universal learning

algorithm. It is more reasonable to direct the research toward concrete applications,

consider particular universal classes, and design particular learning algorithms for

them. Therefore, the design of the learning algorithm is really inseparable from the

applied side of the model. All I can do now, when a substantial amount of work on

practical application and testing of the model is still ahead, is give some clues on why

I think that the learning problem in the ETS model will be resolved more successfully

than it has been for other symbolic approaches. I hope, the reader will allow me to

discuss briefly the future of the model, rather than what has been achieved so far.

The two key features of the model that, in my opinion, should result in an efficient

learning algorithm, are explicit representation of the constructive histories and the

representational hierarchy.

It is pretty clear how the representational hierarchy works: it allows to subdivide

a difficult learning problem into several simpler steps and takes care of linking those

steps together. The reason why we should be successful in making a single learning

step is in the explicit representation of the constructive histories.

Recall that a single learning step consists in constructing composite transforma-

tions based on a training set. The fact that objects from the training set are defined

as collections of constructive histories leaves very little freedom to the choice of the

form of transformations. Indeed, it implies that transformations act on constructive

histories and, by acting, continue them. Thus, transformations have to be construc-
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tive, i.e., they can add something to constructive histories but cannot delete anything.

A transformation may also require that a certain segment of constructive history is

present before it can be applied. All these considerations imply the definition of a

transformation as a context-dependent attachment of a part of constructive history

(see Fig. 1.9).7

context

body

Figure 1.9: A transformation defined as a context-dependent attachment of a part of
constructive history.

The definition of transformations of constructive histories is naturally extended

to transformations of objects, since the latter are collections of histories. In case of

strings, for example, we obtain context-dependent insertions of substrings, and in

case of graphs context-dependent attachments of subgraphs.

By defining transformations as attachments (i.e., prohibiting substitutions and

deletions), we guarantee that the transformations are explicitly present in the objects

generated by them. This explicit presence of transformations in the training set is the

feature that should make the search for these transformations a tractable problem.

In fact, for certain special cases of non-deleting transformations on strings efficient

learning algorithms have been developed in Sandeep Nigam’s and John Abela’s theses

7This requires to define a part/whole relation on histories and objects. But this relation is
something that we began our discussion with (see Section 1.2), so it is essential to the model anyway.
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[Ab02, Ni93].

Now it may look as though the transformations have been defined in such a

way that the learning is as easy as possible, but no care has been taken for their

generative power. Where is the guarantee that any interesting classes can be described

using the formalism? I think, the statement that this is possible in principle is

justified by a theorem proved in this thesis. The theorem states that a broad class of

string-rewriting systems (or unrestricted grammars), namely all systems whose rules

do not allow to produce a part of an object from the object, can be simulated by

ETS transformations, given that the representation of constructive histories and the

equivalence relation on them are chosen appropriately (see Theorem 14).

Finally, the ETS model provides an optimization criterion for inductive learning,

which is based on another central concept defined in this thesis, the stochastic gener-

ating process. This process is associated with every class and is therefore specified by

the class description (which is a set of transformations) plus numeric parameters that

control the flow of the process. The process induces a numeric measure of typicality

on the class objects and on the transformations that are composed of class transfor-

mations. As a result, we obtain a criterion for learning of a subclass from a training

set, which forces to maximize both the typicality of the objects from the training set

with respect to this subclass and the typicality of the transformations constituting

the subclass description. These two typicalities “balance each other” (similarly to

the minimum description length principle), thereby yielding a non-trivial subclass

description. The trivial subclasses, such as the entire universal class and just the

training set, are excluded because one of the typicalities becomes very low.
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1.10 Literature overview

The ETS model was proposed as a framework for structural object representation

and classification in 1990 by Lev Goldfarb. His group has published several papers

(see, for example, [Go90, GN94, Go96, GGK01, GG01, Go03]), in which the main

ideas and postulates of the model are formulated and a comparison between numeric

and structural representations is carried out (the structural representation considered

in these papers corresponds to the evolutionary structural representation discussed

in this thesis; the term “evolutionary” is added to clarify and emphasize the differ-

ence from other uses of the word “structure” in science). The terminology for the

central concepts in this thesis is consistent with these papers. In the graduate the-

ses written by the members of the ETS group at the University of New Brunswick

(e.g. [Cha92, Dew91, Sa92, Ni93, Kam95, Ab02]), one can find concrete learning

algorithms designed for some special cases of structural representations and classes.

The model is applied to classification problems in computer vision in [Des96, Ho98]

and to classification of molecules in [Ko03].

The idea of a generative class description goes back to Noam Chomsky’s “Syn-

tactic Structures” [Cho65] (or, perhaps, even further), in which he proposed formal

grammars to describe the classes of syntactically correct sentences in natural lan-

guages. Formal grammars [RS97] have found numerous applications in computational

linguistics and computer science. As an alternative approach (but not very different

from formal grammars, in my opinion), one can consider string-rewriting systems

[Bo93]. Other rewriting mechanisms are discussed in [Paun98] in connection with bi-

ological computations. String rewriting models have been later generalized to graphs,
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resulting first in inductive descriptions of graph classes (for example, see [Bat85] for

an inductive description of the class of all planar graphs), and then in the theory of

(hyper-)graph grammars [Ro97] (or graph-rewriting systems), which has also found

its applications [Bl95].

The importance of representation of object’s constructive history has been em-

phasized by Leyton in [Le92]. This book considers numerous examples of various

objects, such as geometric shapes or natural language sentences, from the historic

perspective.

The multi-level hierarchy of representations has been discussed by Sloman (see,

e.g., [Slo00]). The concepts of i-trajectory and e-trajectory introduced in [Slo00] corre-

spond quite closely to the ETS concepts of constructive processes at lower and higher

representational levels, respectively. Indeed, i-trajectories are “trajectories that are

possible for an individual which adapts or changes itself”, whereas e-trajectories are

the ones “that are not possible for an individual machine or organism but are pos-

sible across generations” [Slo00]. In other words, “e-trajectories for individuals can

be thought of as i-trajectories for a species, or a larger encompassing system, such as

an ecosystem”. A simpler example of such larger encompassing system would be an

organism, whose i-trajectories are at the same time e-trajectories for its constituents,

e.g. cells. Interestingly enough, Sloman mentions in [Slo00] in conclusion that “the

ideas discussed here deal with phenomena which still seem to be too ill defined for

mathematical formulation and computational modeling. However, that may change.”

Hopefully, the ETS model will help this change to come sooner. I also agree with Slo-

man that a mathematical formulation should precede computational modeling. For

this reason, the logical completeness and general mathematical clarity of the model
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are the primary goals of this thesis, whereas the computational questions are touched

only briefly, and some of them are even left beyond its scope.

In papers [Fo88, Ai97], Fodor, Pylyshyn and Aizawa argue for the inadequacy of

numeric representations as a model of mental representations, since the latter possess

certain properties which the former do not. Following [Fo88], we formulate these

properties in linguistic terms, however, it should be noted that these arguments can

be extended far beyond linguistics. So, mental representations are

(a) systematic, which means that our “ability to produce/understand some sen-

tences is intrinsically connected to the ability to produce/understand certain

others” [Fo88];

(b) compositional, which means that there are “semantic relations between words

and the expressions of which they are constituents” [Fo88]. In particular, “com-

positionality implies that (some) expressions have constituents” [Fo88], thereby

explaining systematicity. Indeed, then our ability to produce/understand a sen-

tence implies the ability to produce its constituents and, as a consequence, all

other sentences composed of these constituents;

(c) productive, i.e., under appropriate idealization, our representational capacities

are unbounded, even though they admit a finite description. The property

of productivity is a consequence of systematicity and compositionality, if we

assume that primitive constituents admit arbitrary large compositions.

All these properties are very much related to our discussion of evolutionary structural

object representation, the necessity of modeling of transformations on objects for

classification, structural class description, and the form of transformations. In a
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sense, all these ideas go back to the generative approach to classification proposed by

Chomsky.

Some formal results about the limitations of numeric representations are pre-

sented in [Be01].

The importance of inductive learning for object representation and classification

needs not be emphasized here. I would only like to quote Hermann von Helmholtz:

“Inductive inferences, executed by the unconscious activity of memory, play a com-

manding part in the formation of intuitions. It may be doubted that there is any

indication whatsoever of any other source or origin for the ideas possessed by a ma-

ture individual.”

The minimum description length (MDL) principle, which is very similar to the

maximum entropy principle [Gr98], can be derived as a special case from the theory

of Kolmogorov complexity [Ri89, Li97]. The MDL principle has been used as a

principle for the design of various optimization criteria for inductive learning (see

[Ke97] for example). These criteria always include two components corresponding to

the complexities of the descriptions of the class and of the training set, assuming that

the training set is described in terms of the class description. The presence of these

two components brings some arbitrariness to the applications of the MDL principle,

since the components usually have different nature and form (for example, in case of

grammatical inference, the components are the complexities of a grammar and of a

set of sentences, which are computed quite differently). Because of this difference,

there is no guiding principle which would tell us how to combine the two components

in one criterion in a consistent manner (since the units of complexities can be chosen

arbitrarily). The only way to resolve this problem is to come up with a model, in
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which class descriptions and training set descriptions would have the same nature and

form. Although the forms of transformations and objects are different in the ETS

model (the former have contexts and the latter don’t), they are still similar enough

to allow a consistent measurement of their complexities and, therefore, a consistent

criterion based on the MDL principle.

1.11 Structure of the thesis

In Chapter 2, the basic representational level is introduced and the concept of a basic

level inductive structure is defined. This includes a formal description of a construc-

tive process (Section 2.1) and a definition of an object representation (Section 2.2)

based on the underlying constructive processes. In Section 2.3, several examples of

basic level inductive structures are considered and related to some conventional data

structures, including natural numbers, sequences, strings, trees, and graphs. Based

on the explicit presence of the constructive processes in the representation, we explain

why certain computational problems on conventional data structures, including the

problem of inductive inference, are intractable. We also suggest how to resolve this

intractability—which leads us to the definition of higher representational levels. In

Section 2.4, we introduce the concept of a struct tuple, which serves as a technical

tool for the formal definition of the the infinite hierarchy of representational levels in

Chapter 3.

A comparison of various generative formalisms, including Chomsky grammars

[Cho65, RS97], string-rewriting systems [Bo93], and graph grammars [Ro97], with the

ETS formalism is carried out in Sections 2.3.4 and 3.1. The arguments are supported

by several theorems, most importantly Theorem 2 of Section 2.2.6, Theorem 11 of
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Section 3.1.6, Theorem 13 of Section 3.2.1, and Theorem 14 of Section 4.1. Examples

of inductive structures corresponding to graph languages in ETS are considered in

Section 4.2. These examples are followed by a conjecture that any recursive language

can be generatied by a particular first level inductive structure.

In Chapter 5, we discuss briefly the stochastic generating process, which is in-

tended to model the process of construction of representations in time. A detailed

study of this process, including its formal definition as a continuous parameter Markov

chain, is presented in [Golub02]. A measure of typicality, induced by this process, is

also defined in Chapter 5, followed by the formulation of an optimization criterion

for inductive inference. The structural measurement process is briefly discussed in

this section, the details can be found in [GG01]. Finally, the optimization criterion

is compared with the minimum description length principle [Gr98].

A conclusion and an overview of future research directions are presented in Chap-

ter 6.

The following results of this thesis can be considered as the most important ones

from the point of view of their nontriviality or “distance” from definitions: Theorem 2

in Section 2.2.6 about struct finiteness and its higher-level analogue, Theorem 11 in

Section 3.1.6; Theorem 5 in Section 2.3.8 about undecidability of part/whole distin-

guishability and struct finiteness conditions; Theorem 14 in Section 4.1 establishing

a correspondence between ETS transformations and strongly acyclic string-rewriting

systems; a collection of lemmas and theorems listed in the introduction to Chapter 3

that provides the formal basis for the inductive construction of the infinite represen-

tational hierarchy.



Chapter 2

Basic representational level

The formalization of the ETS model begins with the definition of the basic repre-

sentational level and the corresponding inductive structure. This includes a formal

description of a constructive process (Section 2.1) and a definition of an object repre-

sentation (Section 2.2) based on the underlying constructive processes. In Section 2.3,

several examples of basic level inductive structures are considered and related to some

conventional data structures, including natural numbers, sequences, strings, trees, and

graphs. Based on the explicit presence of the constructive processes in the representa-

tion, we explain why certain computational problems on conventional data structures,

including the problem of inductive inference, are intractable. We also suggest how

to resolve this intractability—which leads us to the definition of higher representa-

tional levels. In Section 2.4, we introduce the concept of a struct tuple. This concept

serves as a technical tool for the formal definition of the the infinite hierarchy of

representational levels in Chapter 3. In order to ensure logical consistency of our

definitions—which allows to work with the concepts of any representational level in

the same abstract manner—a number of level-invariant statements are proved.

29
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2.1 Process of construction of object representa-

tion

We introduce the concept of a primitive type, which is a formal equivalent of the notion

of a primitive constructive operation, and the concept of a formation, which corre-

sponds to the process that involves several primitive operations and thus constructs

a representation of a physical object.

For technical reasons, it turns out to be convenient to introduce auxiliary concepts

of a primitive, which may be thought of as an instance of a primitive type and thus

corresponds to an instance of a primitive constructive operation, and a composite,

which is a particular composition of primitives and thus corresponds to an instance of

the above constructive process. Instances are necessary to specify how the primitive

types are composed with, or connected to, each other. Alternatively, connections

could be specified directly, for example by a mapping between connection sites. For

our purposes, it is more convenient to define primitives that already “know” how

to connect to each other. This allows to compose them via a binary operation of

attachment. In Section A we draw a parallel between the two approaches and suggest

a simple mental image for primitives and composites.

Several primitives sequentially attached to each other form a composite. Compos-

ites that correspond to the same compositions of primitive types form an equivalence

class, called a formation.

2.1.1 Primitives

Definition 1. A primitive is a 3-tuple π
def
= 〈α, I, T 〉, where α is the label of

primitive π, and I, T are disjoint finite linearly ordered sets.
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For a primitive π = 〈α, I, T 〉, we use the following notation:

init(π)
def
= {i | i ∈ I} set of initial sites for π

term(π)
def
= {i | i ∈ T} set of terminal sites for π

sites(π)
def
= init(π) ∪ term(π) set of (all) sites for π.

I

Note that the sets init(π), term(π), and sites(π) are unordered.

Pictorially, it is convenient to represent a primitive 〈α, I, T 〉 as a circle with |I|

points marked on its upper part and |T | points marked on its lower part. Each point

is labeled by a letter denoting the corresponding site. The left-to-right ordering of

the points in the picture specifies the linear orderings on I and T . In Fig. 2.1, four

primitives are shown:

π1 = 〈α, 〈a, b〉, 〈c〉〉

π2 = 〈β, 〈c〉, 〈d, e, f〉〉

π3 = 〈β, 〈c〉, 〈d, f, e〉〉

π4 = 〈β, 〈c〉, 〈a, f, e〉〉.

Note that different primitives can share their labels and/or sites and also that π2 6= π3.

π1 π2

α β

a b

c

c

d
e

f

π3

β

c

d
f

e

π4

β

c

a
f

e

Figure 2.1: Pictorial representation for primitives.

In addition to the abstract illustrations like Fig. 2.1, I would like to illustrate each
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concept of the basic representational level with an example, which will run through

this and the next section and result in the ETS definition of string data structure.

Consider the set S of strings over the alphabet {a, b, c} (the construction below

can be easily extended to arbitrary finite alphabets), and assume that each string is

obtained as a result of a sequence of insertions of characters, starting from the empty

string. The set of specifying primitives for strings, ΠS, is shown in Fig. 2.2. Primitives

πa, πb, and πc correspond to the elementary operations of insertion of characters a, b,

and c at any position in the string.

πa

1

2

πb

1

23 3

a b

πc

1

2 3

c

Figure 2.2: Primitives corresponding to insertions of characters.

The reasons for defining a primitive as the above 3-tuple are discussed in the

Appendix.

2.1.2 Composites

We have defined primitives in such a way that no additional concepts are required to

define compositions of them, since the information about the potential connections

of a primitive to other primitives is contained in its sites. We can call two primitives

attached, if they share sites properly. More precisely, the only sites that can be shared

by attached primitives are terminal sites of the first primitive and initial sites of the

second.

Definition 2. An ordered pair of primitives 〈π, σ〉 satisfies the attachment condi-
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tion, denoted π a σ if and only if

sites(π) ∩ sites(σ) = term(π) ∩ init(σ). (2.1)

I

Note that the intersections in (2.1) may be empty, in which case we obtain an

“empty” attachment. In Fig. 2.1, the only two pairs that satisfy the attachment

condition are 〈π1, π2〉 and 〈π1, π3〉.

Composites are defined as finite1 sequences of primitives satisfying the attach-

ment condition. The way how the primitives are attached is already specified by their

sites.

Definition 3. A composite is a finite sequence of primitives γ = 〈π1, . . . , πn〉 such

that if i < j, then πi a πj. The empty composite is denoted by λ. I

Pictorially, it is convenient to represent a composite by connecting the shared

sites of its primitives (see Fig. 2.3). The position of a primitive in the sequence

corresponds to its vertical position in the picture (thus, no primitives can be have the

same vertical position).

An example of a composite representing a constructive history for the string

“aacb” is shown in Fig. 2.4.

Composite is a new abstract data type.2 It differs from the conventional data

types such as strings, trees, graphs, and hypergraphs, in one important aspect. A

composite explicitly contains all structural information about the process that has

1Finiteness is necessary for practical use of composites for representation of constructive processes.
Infinite composites may prove (and actually have proved) to be useful in description of various
properties of classes of objects, but this is beyond the scope of the present thesis.

2Two operations on composites will be defined later.
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a

b

d

e
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c

g

e

e
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α
e

c

d

h

h

Figure 2.3: Two examples of composites.

a

b

a

c

1

2
2 3

3
4 5

6 7
6

8 9

Figure 2.4: A composite representing a particular constructive process that constructs
string “aacb”. In this process, first, character ’a’ is created, then another ’a’ is inserted
before it, then ‘b’ is inserted after the first ’a’ and, finally, ’c’ is inserted before ’b’.

constructed it, namely, which primitives and in which order have been attached by

this process. For the conventional data types, on the contrary, it is often hard to tell

what that process was. In fact, depending on a particular problem or application of

the data type, different processes may be assumed (the above example shows that a

string of length n has n! possible constructive histories, if only insertions are allowed;

in reality, this assumption is not necessarily made, so the number of possible histories
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for a string is actually unlimited).

Formally, one can consider composites as hypergraphs [Ro97], but the following

distinctions should be kept in mind, as they relate to the above mentioned require-

ment of explicit representation of the constructive history. First, the sets of initial

and terminal sites of primitives are ordered (the reason for the introduction of this

ordering is explained in the Appendix), as opposed to the unordered set of nodes of a

hyperedge. Second, the primitives in a composite are also ordered. One of the reasons

for introducing new terminology in [GGK01] and, consequently, in this thesis is that

the emphasis is on these orders and not on the other characteristics of primitives and

composites, which make them somewhat similar to hyperedges and hypergraphs. It

is these orders, that, in my opinion, invoke the right way of thinking about prim-

itives and composites and eventually leads to a generalization of these concepts to

the higher representational levels, which is presented in Chapter 3. The difference

of those, generalized, concepts (see, for example, Def. 39) from hypergraphs should

become even more apparent.

2.1.3 Composition of composites

Composites can be constructed out of other composites via the operation of compo-

sition.

Definition 4. An ordered pair of composites 〈α, β〉 satisfies the composition con-

dition, if for all primitives π ∈ α, σ ∈ β, π a σ.

For a pair of composites 〈α, β〉 satisfying the composition condition, the com-

position α C β is defined as the concatenation of sequences α and β. I

Remark. Considering composites as ordered multisets of primitives (indeed, ordered
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multisets and sequences are the same concepts), one can unambiguously use the set

notation, such as π ∈ γ, where π is an element of sequence γ.

In Fig. 2.5, two composites representing particular constructive histories for

strings “ab” and “bc” and their composition are shown. The composition repre-

sents a constructive history for the string “abcb”, which is the result of insertion of

“bc” into “ab” (between ‘a’ and ‘b’).

b b

a c

1

2
2 3

4 5

6 7
7

8 9

5

=

b

a

1

2
2 3

4 5

b

c

6 7
7

8 9

5

Figure 2.5: Composition of two composites representing constructive histories for
strings “ab” and “ba’.

Lemma 1. A pair of composites 〈α, β〉 satisfies the composition condition if and only

if the concatenation of sequences α and β is a composite.

Proof. If a pair of composites 〈α, β〉 satisfies the composition condition, then, as a

direct consequence of definitions of a composite (Def. 3) and composition (Def. 4),

for all πi, πj ∈ α C β (i < j), πi a πj. Hence α C β is a composite.

Conversely, consider πi, πj ∈ α C β. If πi ∈ α and πj ∈ β, then i < j. Hence, if

α C β is a composite, then, according to Def. 3, πi a πj. Therefore, the composition

condition is satisfied. ¥
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The following two lemmas follow directly from the properties of concatenation of

sequences:

Lemma 2. For any composite γ, λ C γ = γ C λ = γ (where λ is the empty composite).

Lemma 3. If α C γ C β = γ, then α = β = λ.

Composition of composites is associative:

Lemma 4. If α, β, γ are composites such that pairs 〈α, β〉 and 〈α C β, γ〉 satisfy the

composition condition, then the pairs 〈β, γ〉 and 〈α, β C γ〉 also satisfy the composi-

tion condition and

(α C β) C γ = α C (β C γ). (2.2)

One can verify associativity of composition directly using the definition of com-

position, or, alternatively, apply the composition criterion introduced below.

Definition 5. For a composite γ,

init(γ)
def
=

⋃

π∈γ init(π) \
⋃

π∈γ term(π)

term(γ)
def
=

⋃

π∈γ term(π) \
⋃

π∈γ init(π)

sites(γ)
def
=

⋃

π∈γ sites(π).

I

For the composite shown in Fig. 2.4, the sets of sites are:

init(γ) = {1}, term(γ) = {4, 5, 7, 8, 9}, sites(γ) = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Lemma 5. For any pair of composites 〈α, β〉 satisfying the composition condition, the
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following relationships hold:

init(α C β) = init(α) ∪ [init(β) \ term(α)] (2.3)

term(α C β) = [term(α) \ init(β)] ∪ term(β) (2.4)

sites(α C β) = sites(α) ∪ sites(β). (2.5)

Lemma 6. (Composition Criterion) A pair of composites 〈α, β〉 satisfies the com-

position condition if and only if

sites(α) ∩ sites(β) = term(α) ∩ init(β).

2.1.4 Site replacement

The operation of site replacement plays two roles:

1. For some disconnected composites, we would like to be able to replace some of

their sites, in order to connect them.

2. Intuitively, two composites that differ only in their sites but have the same inter-

nal structure, represent the same constructive processes. Thus, a constructive

process is uniquely represented by an equivalence class of composites modulo

site replacements, rather than by a composite.

Definition 6. For a primitive π = 〈α, I, T 〉 and an injective mapping

h : sites(π)→ S,

called site replacement, the primitive π〈h〉 is defined as

π〈h〉
def
= 〈α, h(I), h(T )〉.3

3Here h(I) and h(T ) should be understood as linearly ordered sets, where the orderings are
induced from those on I and T by the injective mapping h.
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I

Definition 7. For a composite γ = 〈π1, . . . , πn〉 and an injective mapping

h : sites(γ)→ S ,

called site replacement, the composite γ〈h〉 is defined as follows:

γ〈h〉
def
= 〈π1〈h

∣
∣
sites(π1)

〉, . . . , πn〈h
∣
∣
sites(πn)

〉〉.

I

β
a

b

γ
e

(a) (b)

c

β
f

a

γ
e

d

b a

Figure 2.6: Composite (a) and its site replacement (b).

For a composite γ with sites(γ) = {s1, . . . , sk}, a site replacement h : sites(γ)→

S is specified by the list of its values as follows (see also Fig. 2.6):

s1 → h(s1), . . . , sk → h(sk).

In Fig. 2.6, a composite γ and the result of its site replacement γ〈h〉 are shown, where

the site replacement mapping h : sites(γ)→ S is defined by

a→ f, b→ a, c→ d, e→ e.

The following lemmas are straightforward.
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Lemma 7. Let γ be a composite, and let h1 : sites(γ)→ S1, h2 : sites(γ〈h1〉)→ S2 be

site replacements. Then,

(γ〈h1〉)〈h2〉 = γ〈h2 ◦ h1〉.

Lemma 8. Let γ ′ = γ〈h〉. Then there exists a site replacement h′ : sites(γ ′) → S ′

such that γ ′〈h′〉 = γ.

The operations of composition and site replacement are related to each other:

Lemma 9. If 〈α, β〉 is a pair of composites satisfying the composition condition, and

h : sites(α C β) → S, h1 = h
∣
∣
sites(α)

, h2 = h
∣
∣
sites(β)

are site replacements, then the

pair 〈α〈h1〉, β〈h2〉〉 also satisfies the composition condition and

α〈h1〉 C β〈h2〉 = (α C β)〈h〉. (2.6)

For composites α, β, we shall write α ≈ β if and only if there exists site replace-

ment h : sites(α)→ sites(β) such that β = α〈h〉.

From Lemmas 7,8, it follows that relation ≈ on a set of composites is an equiva-

lence relation, i.e., it is reflexive, symmetric, and transitive.

2.1.5 Formations

A formation is an equivalence class of composites modulo site replacements. It is

a new data type, whose instances correspond uniquely to processes that construct

object representations. Formally, it is necessary to have such a data type, in order

to be able, for example, to count the number of processes that can possibly construct

a given object representation. Later on, based on the ETS representation of strings

and graphs, we show that they implicitly admit exponentially many constructive
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processes. A consequence is the intractability of the learning problems on strings and

graphs.

Let Π be a set of primitives (its cardinality can be arbitrary), and let ΓΠ be the

set of all composites that are composed of primitives from Π. One can think about

these sets as corresponding to a particular environment (see Section A for a discussion

about environments).

Let also ≈Π be the relation obtained via restriction of ≈ to ΓΠ:

≈Π
def
= {〈α, β〉 | α, β ∈ ΓΠ and α ≈ β}.

An equivalence class with respect to≈Π containing composite γ is called a formation,

denoted γ̄ or [γ]. The following is the characteristic property of formations:

ᾱ = β̄ ⇔ α ≈ β.

The set of all formations, i.e., the quotient set ΓΠ/≈Π , is denoted Γ̄Π.

A pictorial representation for a formation can be obtained from that for a com-

posite by removing the site labels. Since formations do not have sites, the operations

of composition and site replacement cannot be defined for them either. For exam-

ple, two formations shown in Fig. 2.7a can be “composed” in four different ways

(Fig. 2.7b).

For a countable set of primitives Π, the set of composites ΓΠ is countable, as

a subset of the set of finite sequences over Π. For the set of formations Γ̄Π to be

countable, it is only required that the set of labels of primitives from Π is countable.

The intuition behind the concept of formation is quite similar to the one behind

the concept of abstract graph in the theory of graph grammars [Ro97, Section 3.5.2]:
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Figure 2.7: Two formations (a) and four ways to compose them (b).

“Almost invariably, two isomorphic graphs are considered as representing the same

system state. In fact, such a state is determined by the topological structure of the

graph . . . while the true identity of the nodes is considered just as a representational

detail”; likewise, the constructive process is determined by the “topological structure”

of a composite, and particular site labels are just a representational detail. Therefore,

“it is very natural to look for an equivalence which equates all isomorphic graphs” (an

equivalence class w.r.t. it is called an abstract graph). In ETS, such an equivalence

is expressed via site replacements; in fact, the latter play the role of standard isomor-

phisms [Ro97, Def. 3.5.13] between graphs. However, an analogue of Lemma 9 cannot

be expressed directly for graphs, since there is no sequential composition operation

on them; a similar property called allowance for sequential composition is expressed

in terms of abstract derivations [Ro97, Proposition 3.5.16].

2.1.6 Part/whole relation on composites and formations

The part/whole relation on composites is introduced, in order to obtain the part/whole

relation on formations. The latter represents the part/whole relation on the object

constructive processes.
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Definition 8. A composite α is a part of composite β, denoted α ¹ β, if there exist

composites γ1, γ2 such that β = γ1 C α C γ2. The set of all parts of a composite β is

denoted Parts(β). I

An example of a composite representing a constructive history for the string

“babaa” and of a part of this composite is shown in Fig. 2.8. This part represents

a constructive process, which produces two subsequences of the original string, “b”

and “ba”.

a

b

1

2
2 3

4 5

a

b

3

6 7
6

8 9

a
10 11

9

b

2

4 5

a

b

3

6 7
6

98

Figure 2.8: A part of a composite representing a constructive history for string
“babaa”.

It follows from the definition that the properties of a partial ordering relation

hold for ¹, i.e. it is reflexive, antisymmetric and transitive.4

The following lemma relates the part/whole relation with site replacements:

Lemma 10. If α ¹ β and h : sites(β)→ S is a site replacement, then

α〈h
∣
∣
sites(α)

〉 ¹ β〈h〉.

4Intuitively, a relation named part/whole should be a partial ordering.
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Proof. Since α ¹ β, β = γ1 C α C γ2 for some composites γ1, γ2. Then, by Lemma 9,

γ1〈h
∣
∣
sites(γ1)

〉 C α〈h
∣
∣
sites(α)

〉 C γ2〈h
∣
∣
sites(γ2)

〉 = β〈h〉,

hence α〈h
∣
∣
sites(α)

〉 ¹ β〈h〉. ¥

Definition 9. A composite α is called an ancestor of composite β, if there exists

composite γ such that

β = α C γ.

The set of all ancestors of a composite β is denoted Anc(β). I

Obviously, for any composite β, Anc(β) ⊆ Parts(β). Both sets are finite, since

they are contained in the set of all subsequences of the finite sequence β.

Now we extend the concepts of a part and of an ancestor to formations.

Definition 10. A formation ᾱ ∈ Γ̄Π is called a part (ancestor) of a formation

β̄ ∈ Γ̄Π, if there exist composites α ∈ ᾱ and β ∈ β̄ such that α is a part (ancestor) of

β. We use the same notation, ᾱ ¹ β̄, Anc(β̄), and Parts(β̄) for formations. Relation

¹ on Γ̄Π is called the part/whole relation on formations. I

Lemma 11. For any set of primitives Π, the part/whole relation on formations is a

partial ordering.

Proof.

• Reflexivity of ¹ on Γ̄Π directly follows from the reflexivity of ¹ on composites.

• Antisymmetry of ¹ on Γ̄Π. Let ᾱ, β̄ be two formations such that ᾱ ¹ β̄ and

β̄ ¹ ᾱ. Then, by definition of ¹ on Γ̄Π, there exist composites α1, α2 ∈ ᾱ,

β1, β2 ∈ β̄ such that α1 ¹ β1 and β2 ¹ α2. Since composites α1, α2 belong to the
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same formation, there exists site replacement g such that α1 = α2〈g〉. Similarly,

there exists site replacement h such that β2 = β1〈h〉. Thus, by Lemma 10,

α2〈g〉〈h
∣
∣
sites(α1)

〉 ¹ β2.

By transitivity of ¹ on composites, we have

α2〈h
∣
∣
sites(α1)

◦ g〉 ¹ α2,

which, by definition of site replacement, implies that

α2〈h
∣
∣
sites(α1)

◦ g〉 = α2.

By antisymmetry of ¹ on composites, α2 = β2, which implies ᾱ = β̄.

• Transitivity of ¹ on Γ̄Π. Let ᾱ, β̄, γ̄ be three formations such that ᾱ ¹ β̄

and β̄ ¹ γ̄. Then, by definition of ¹ on Γ̄Π, there exist α ∈ ᾱ, β1, β2 ∈ β̄,

γ ∈ γ̄ such that α ¹ β1 and β2 ¹ γ. Since composites β1 and β2 belong

to the same formation, there exists site replacement h such that β2 = β1〈h〉.

Hence, by Lemma 10, α〈h
∣
∣
sites(α)

〉 ¹ β2. By transitivity of ¹ on composites,

α〈h
∣
∣
sites(α)

〉 ¹ γ, hence ᾱ ¹ γ̄.

¥

Lemma 12. For every formation γ̄ ∈ Γ̄Π, the set Parts(γ̄) is finite.

Proof. Suppose, Parts(γ̄) is infinite. Fix a composite γ0 ∈ γ̄. By Def. 10, for each

ᾱ ∈ Parts(γ̄), there exist composites α ∈ ᾱ and γ ∈ γ̄ such that α ∈ Parts(γ). Since

both γ and γ0 belong to the same formation, γ0 = γ〈h〉 for some site replacement h.

Then, by Lemma 10, α0
def
= α〈h

∣
∣
sites(α)

〉 ¹ γ0. Since formations are equivalence classes

of composites, all α0 corresponding to distinct ᾱ ∈ Parts(γ̄) are distinct. However,

the set of parts for any composite is finite, contradiction! ¥
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2.1.7 Specification of a set of primitives

Consider the practical problem of specification of an infinite set of primitives. This has

to be done before we can consider composites or formations. Arbitrary infinite sets of

primitives cannot be specified by finite descriptions (since the set of all possible finite

descriptions is countable, and the collection of all possible infinite sets of primitives

is not). For our purposes, it suffices to consider only sets of primitives closed under

site replacements:

Definition 11. A set of primitives Π is closed under site replacements, if for all

π ∈ Π, if σ is a primitive such that sites(σ) ⊂ ∪π∈Π sites(π) and σ ≈ π, then σ ∈ Π.

I

Two primitives π and σ are called equivalent, if for the composites 〈π〉 and 〈σ〉,

we have 〈π〉 ≈ 〈σ〉. In other words, π and σ are equivalent, if their labels coincide,

| init(π)| = | init(σ)|, and | term(π)| = | term(σ)|. It is easy to see that equivalence

classes of primitives are primitive types (see Def. 51).

To specify a set of primitives Π closed under site replacements, it is sufficient to

fix a set of sites S and a set of primitive types Π̄. Each primitive type can be either

specified as in Def. 51 by a label and two integers, or by choosing any primitive that

belongs to it, called the specifying primitive. In what follows, we specify sets of

primitives in the latter way.

To summarize this section:

• primitives and a composites have been defined;

• a countable set of primitives Π induces countable sets of composites ΓΠ and a

countable set of formations Γ̄Π;
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• the associative operation of composition and the operation of site replacement

on composites have been defined;

• a formation is an equivalence class of composites with respect to site replace-

ments; a formation is a formal concept that corresponds to the process that

constructs an object representation;

• parts and ancestors of composites and formations have been defined;

• the part/whole relation on formations is a partial ordering; every composite and

every formation has finitely many parts.
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2.2 Representation of objects

Composites and formations have been defined in order to describe formally the con-

structive processes. Now, thinking about an object representation as a result of a

constructive process, we define the corresponding formal concept. Rather than defin-

ing this result directly, we introduce the semantic equivalence relation on formations;

the equivalence classes modulo this relation are called structs and correspond to the

results of the constructive processes.

The definition of semantic equivalence is based on the following postulate: se-

quential composition of constructive processes p1 and p2 is semantically equivalent to

(i.e., produces the same result as) the sequential composition of the processes p′1 and

p′2, if p1 is equivalent to p′1 and p2 is equivalent to p′2. In other words, the seman-

tic equivalence relation is a congruence with respect to composition. This postulate

implies that the semantic equivalence relation is naturally induced, or generated, by

a fixed set of equivalent formation pairs called semantic identities. An equivalence

class of formations, called a struct, is the formal concept corresponding to a single

object representation.

It should be noted that our definition of object representation as an equivalence

class of representations of constructive processes is conceptually similar to the def-

inition of a quotient group (or ring) w.r.t. a congruence induced by a system of

identities, which correspond to our semantic identities (see, for example, [Ku65]). A

well known theorem states that any group (ring) can be defined in this way. One has

to keep in mind that, when objects are defined via factorization w.r.t. a congruence,

the problem of equality of these objects may become undecidable (this problem is
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known as the word problem). We will address this issue by imposing the requirement

of finiteness on the corresponding equivalence classes and study the consequences of

this requirement.

A fixed set of primitives and a set of semantic identities can be considered as a

complete formal specification of the basic representational level. The following section

is devoted to the general properties and examples of such specifications.

Throughout this section, we assume that a set of primitives Π is fixed and closed

under site replacements, and that all composites and formations belong to the sets

ΓΠ and Γ̄Π, respectively.

2.2.1 Formation tuples

Recall that a formation corresponds to a single constructive process. A formation

tuple corresponds to a collection of dependent, or interrelated, constructive processes.

The processes in the collection may be related to each other in various ways. For

example, they can be parts of a larger process, or they can be semantically equivalent

processes. To specify this relation, we first define the collections of process instances

as tuples of composites, where the relation between the composites in a tuple is

uniquely specified by their shared sites, and then consider the equivalence classes of

composite tuples modulo site replacements. The latter are called formation tuples.

Formation 2-tuples are used to define the semantic equivalence relation. Later

on, composable formation tuples are involved in the definition of higher-level repre-

sentations.

The concept of site replacement and the relation ≈ can be extended from com-

posites to tuples of composites as follows:
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Definition 12. For an n-tuple of composites C = 〈γ1, . . . , γn〉, let the following set

sites(〈γ1, . . . , γn〉)
def
=

n⋃

i=1

sites(γi)

be called the set of sites. An injective mapping

h : sites(〈γ1, . . . , γn〉)→ S

is called an n-tuple site replacement. The set

[C]
def
= [γ1, . . . , γn]

def
= {〈γ1〈h

∣
∣
sites(γ1)

〉, . . . , γn〈h
∣
∣
sites(γ1)

〉〉 | h is an n-tuple site replacement}

is called a formation n-tuple. I

There is a difference between a formation tuple [γ1, . . . , γn] and an n-tuple of

formations 〈[γ1], . . . , [γn]〉: If composites γ1 and γ2 have a common site s, then so do

composites γ ′1 and γ′2 for all composite tuples 〈γ ′1, . . . , γ
′
n〉 ∈ [γ1, . . . , γn], whereas this

is not generally the case for arbitrary composites γ ′′1 ∈ [γ1] and γ′′2 ∈ [γ2]. For n = 1,

the concept of a formation 1-tuple coincides with that of formation.

Next, we define the concept of projection, first for a tuple of composites, and

then for a formation tuple.

Definition 13. Let C = 〈γ1, . . . , γn〉 be an n-tuple of composites, and let i =

〈i1, . . . , ik〉 be a subsequence of 〈1, 2, . . . , n〉.

The projection of composite tuple C onto i is defined as the following k-tuple

of composites:

Ci
def
= 〈γi1 , . . . , γik〉.

I
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Definition 14. Let D = [γ1, . . . , γn] be a formation n-tuple, and let i = 〈i1, . . . , ik〉

be a subsequence of 〈1, 2, . . . , n〉.

The projection of formation tuple D onto i is defined as the set of projections

of all composite n-tuples from D onto i:

Di
def
= {Ci | C ∈ D}.

I

The following lemma states that any projection of a formation tuple is a formation

tuple itself.

Lemma 13. (Formation Projection) For any formation n-tuple D = [γ1, . . . , γn]

and any non-empty subsequence i = 〈i1, . . . , ik〉 of 〈1, 2, . . . , n〉, the projection of D

onto i, Di, is a formation k-tuple.

Proof. Let C,C ′ ∈ Di. Then there exist composite tuples C̃, C̃ ′ ∈ D such that C̃i =

C, C̃ ′i = C ′. Since C̃, C̃ ′ ∈ D, there exists a site replacement h : sites(C̃)→ sites(C̃ ′)

such that C̃ ′ = C̃〈h〉. Then

C ′ = C〈h
∣
∣
sites(C)

〉,

so [C] = [C ′], hence Di ⊆ [C].

Vice versa, if C ∈ Di and C ′ = C〈h〉, then take C̃ ∈ D such that C = C̃i and

consider h̃ : sites(C̃) → S such that h̃
∣
∣
sites(C)

= h. Then C ′ = C̃〈h̃〉i, hence C
′ ∈ Di

and [C] ⊆ Di.

Altogether, Di = [C]. ¥

Unlike vectors, formation tuples are not uniquely specified by their single-component

projections. For example, there exist 26 different formation tuples (Fig. 2.9a) having
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,

( i, j ) ∈ { (1,2),(1,3),(1,4),(1,5),(1,6),
  (2,1),(2,3),(2,4),(2,5),(2,6),
  (3,1),(3,2),(3,4),(3,5),(3,6),
  (4,1),(4,2),(4,3),(4,5),(4,6),
  (5,1),(5,2),(5,3),(5,4),(5,6),
  (6,7)  }

(a) (b)

c
j

Figure 2.9: Two formations (a), which are single-component projections of 26 different
formation pairs (b).

projections shown in Fig. 2.9b. However, the number of formation tuples having a

given set of projections is always finite:

Theorem 1. For any formations ᾱ1, . . . , ᾱn, the following set of formation n-tuples

S = {[α1, . . . , αn] | α1 ∈ ᾱ1, . . . , αn ∈ ᾱn}

is finite.

Proof. The proof is by induction on n. For n = 1, S consists of one element, [α1].

Assume that the set

Sn−1 = {[α1, . . . , αn−1] | α1 ∈ ᾱ1, . . . , αn−1 ∈ ᾱn−1}

is finite. For each formation tuple Dn−1 ∈ Sn−1, select one (n−1)-tuple of composites

C0
n−1 ∈ Dn−1, and let C0

n−1 be the set of these selected tuples. Then, by Formation

Projection Lemma,

Sn = {[C0
n−1, αn] | C

0
n−1 ∈ C

0
n−1, αn ∈ ᾱn} =

⋃

C0n−1∈C
0
n−1

{[C0
n−1, αn] | αn ∈ ᾱn}.

The set C0
n−1 finite, hence it remains to show that each of the sets {[C0

n−1, αn] | αn ∈

ᾱn} is finite. If ᾱn is finite, which can only be the case when the set of primitives
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Π is finite, since Π is closed under site replacements, then {[C0
n−1, αn] | αn ∈ ᾱn}

is obviously finite as well. Otherwise, Π is infinite and, since it is closed under site

replacements, there exists α0
n ∈ ᾱn such that

sites(α0
n) ∩ sites(C0

n−1) = ∅.

Let S = sites(α0
n) ∪ sites(C0

n−1). Then,

{[C0
n−1, αn] | αn ∈ ᾱn} = {[C

0
n−1, αn] | αn ∈ ᾱn, sites(αn) ⊂ S},

and the latter set is finite. ¥

2.2.2 Direct convertibility and equivalence

As mentioned above, the postulated requirement for the semantic equivalence relation

to be a congruence with respect to composition implies that this relation can be

induced, or generated, by a fixed set of formation pairs. Here we define a relation

induced by a single formation pair, applying the idea of rewriting (see, for example,

[Bo93, Ro97]). The direct convertibility relation defined here corresponds to the

single-step reduction relation from the rewriting theory. As before, it will be first

defined for composites, and then extended to formations. An equivalence relation on

formations is obtained as the reflexive and transitive closure of the direct convertibility

relation.

Definition 15. Composites α and β are called directly convertible via a composite

pair c, denoted α
c
↔ β, if there exist composites γ1, γ2 such that

α = γ1 C γ C γ2

β = γ1 C γ′ C γ2,

where either c = 〈γ, γ ′〉, or c = 〈γ ′, γ〉. I
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An example of directly convertible composites, each of which represents a con-

structive process for a string, is shown in Fig. 2.10.
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,
c =

Figure 2.10: Directly convertible composites.

Obviously, relation
c
↔ is symmetric.

The extension of the direct convertibility relation to formations is straightfor-

ward:

Definition 16. For a formation pair c̄ and two formations ᾱ, β̄, we say that ᾱ is

directly convertible to β̄ with respect to c̄ and write ᾱ
c̄
↔ β̄, if there exist

composites α ∈ ᾱ, β ∈ β̄, and a composite pair c ∈ c̄ such that α
c
↔ β. I

The following lemma states that direct convertibility of two formations implies

a stronger statement: namely, in the above definition, one of the composites α ∈ ᾱ,

β ∈ β̄, or the composite pair c ∈ c̄ can be chosen arbitrarily.

Lemma 14. If ᾱ
c̄
↔ β̄, then

1. For all c ∈ c̄, there exist α ∈ ᾱ, β ∈ β̄ such that α
c
↔ β.

2. For all α ∈ ᾱ, there exist β ∈ β̄, c ∈ c̄ such that α
c
↔ β.
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Proof. According to the definition of ᾱ
c̄
↔ β̄, there exist α0 ∈ ᾱ, β0 ∈ β̄, c0 ∈ c̄ such

that α0
c0↔ β0.

Depending on the case of the lemma statement, find a site replacement h such

that

1. h : sites(c0)→ sites(c), c0〈h〉 = c.

2. h : sites(α0)→ sites(α), α0〈h〉 = α.

Extend h to an injective mapping f : sites(α0) ∪ sites(β0) → S (note that

sites(c0) ⊂ sites(α0) ∪ sites(β0). Depending on the case of the lemma statement,

take

1. α = α0〈f
∣
∣
sites(α0)

〉, β = β0〈f
∣
∣
sites(β0)

〉.

2. β = β0〈f
∣
∣
sites(β0)

〉, c = c0〈f
∣
∣
sites(c0)

〉.

Then it follows from the definition of α0
c0↔ β0 and Lemma 9 that α

c
↔ β. ¥

Definition 17. For a set of formation pairs I, define the direct convertibility relation

on formations as follows:

ᾱ
I
↔ β̄ ⇐⇒ ∃ c̄ ∈ I ᾱ

c̄
↔ β̄.

The equivalence relation induced by I, denoted ∼I , is defined as the reflexive and

transitive closure of
I
↔, i.e., a minimal equivalence relation that contains

I
↔. I

2.2.3 Equivalence on formation tuples

The equivalence relation on formation tuples is a straightforward extension of that

on formations.
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It will be used in the formulate the statement about the congruence of the equiv-

alence relation on formations with respect to composition. The equivalence classes

with respect to this relation, called struct tuples, plays the role of the main technical

concept in the definitions of higher representational levels.

Definition 18. Let c = 〈γ, γ ′〉 be a pair of composites. Composite n-tuples C

and C ′ will be called directly convertible via c, denoted C
c
↔ C ′, if there exists

i ∈ {1, . . . , n} such that

Ci
c
↔ C ′i and C{1,...,n}\{i} = C ′{1,...,n}\{i}.

For a formation pair c̄ and two formation n-tuples C̄, C̄ ′, we say that C̄ is

directly convertible to C̄ ′ with respect to c̄ and write C̄
c̄
↔ C̄ ′, if there exist

composite tuples C ∈ C̄, C ′ ∈ C̄ ′, and c ∈ c̄ such that C
c
↔ C ′.

For a set of formation pairs I, define the direct convertibility relation on forma-

tion n-tuples as follows:

C̄
I
↔ C̄ ′ ⇐⇒ ∃ c̄ ∈ I C̄

c̄
↔ C̄ ′.

The equivalence relation induced by I, denoted ∼I , is defined as the reflexive and

transitive closure of
I
↔, i.e., the minimal equivalence relation that contains

I
↔. I

The following generalization of Lemma 14 to formation tuples is obvious:

Lemma 15. If C̄
c̄
↔ C̄ ′, then

1. For all c ∈ c̄, there exist C ∈ C̄ and C ′ ∈ C̄ ′ such that C
c
↔ C ′.

2. For all C ∈ C̄, there exist C ′ ∈ C̄ ′ and c ∈ c̄ such that C
c
↔ C ′.
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2.2.4 Semantic identities and semantic equivalence

Here we formulate a condition on formation pairs in I, necessary and sufficient for

the equivalence relation ∼I to be a congruence with respect to composition. We

also prove that congruence implies compatibility of equivalence relation with the

part/whole relation.

Consider a composite pair c = 〈γ, γ ′〉 and the corresponding direct convertibility

relation
c
↔. The statement that

c
↔ is a congruence with respect to composition on

composites requires that if α and β satisfy the composition condition and, say, α
c
↔α′,

then α′ and β must satisfy the composition condition as well, and (α C β)
c
↔(α′ C β).

Similarly, if β
c
↔ β′, then (α C β)

c
↔ (α C β ′).

The composition criterion (Lemma 6)

sites(α) ∩ sites(β) = term(α) ∩ init(β)

implies that the following requirement

init(γ) = init(γ ′), term(γ) = term(γ ′), sites(γ) = sites(γ ′) (∗)

is sufficient, in order for
c
↔ to be a congruence. Indeed, if equalities (∗) hold for

c = 〈γ, γ ′〉 and α
c
↔ α′ or β

c
↔ β′, then they also hold for composite pairs 〈α, α′〉 and

〈β, β ′〉, hence the composition condition still holds for 〈α′, β〉 and 〈α, β ′〉. Vice versa,

assume that one of the above equalities does not hold for 〈γ, γ ′〉. Then we can choose

α, β, α′, β′ to show that the congruence property is violated as follows. Consider two

special composites, δs and δs shown in Fig. 2.11.

Due to the symmetry of the relation
c
↔, without loss of generality, we can assume

that one of the following cases applies:
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δ δ
s

s

δs δs

Figure 2.11: Composites δs and δs.

1. There exists s ∈ init(γ) \ init(γ ′), s ∈ sites(γ ′). Then, if β
c
↔ β′, we obtain that

δs a β but δs 6a β
′.

2. There exists s ∈ init(γ) \ init(γ ′), s 6∈ sites(γ ′). Then, if α
c
↔ α′, we obtain that

α′ a δs but α 6a δs.

3. The case when term(γ) 6= term(γ ′) is symmetric to the case of init(γ) 6= init(γ ′)

considered above.

4. init(γ) = init(γ ′), term(γ) = term(γ ′), s ∈ sites(γ) \ sites(γ ′). Then, if β
c
↔ β′,

due to s 6∈ init(γ), we have δs 6a β but δs a β
′.

In all four cases, congruence with respect to composition is violated.

Conditions (∗) are too restricting, because in most cases they mean that com-

posites γ and γ ′ have to consist of the same primitives, perhaps arranged in different

orders, or, at least, that α
c
↔ α′ implies that α and α′ must have the same number

of sites. Intuitively, one would like to give more flexibility in defining the equiv-

alence relation and, in particular, to allow composite pairs like the ones shown in

Fig. 2.12. And indeed, we will show that, in order for the equivalence relation on

formations to be a congruence, it is sufficient to impose the first two conditions only:
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Figure 2.12: A pair of composites that violates the condition sites(γ) = sites(γ ′).

init(γ) = init(γ ′), term(γ) = term(γ ′).

First, we need a definition of composition on formation pairs:

Definition 19. A formation pair c̄ satisfies the composition condition, if there

exists a composable composite pair 〈α, β〉 ∈ c̄. Then the composition of c̄ is the

formation [α C β]. I

It follows from Lemma 9 that if a formation c̄ satisfies the composition condition,

then every composite pair 〈α, β〉 ∈ c̄ satisfies the composition condition, and the

composition [α C β] does not depend on the choice of 〈α, β〉 ∈ c̄.

Next, we would like to relax the formulation of congruence with respect to com-

position, by requiring it to hold for formation pairs that satisfy the composition con-

dition only. That is, relation ∼I is congruent with respect to composition, if for all

formation pairs [α, β], [α′, β′] satisfying the composition condition, [α, β] ∼I [α′, β′]

implies [α C β] ∼I [α′ C β′].

Before we impose conditions init(γ) = init(γ ′), term(γ) = term(γ ′) on forma-

tion pairs [γ, γ ′] ∈ I, we would like to explain why, in general, these conditions are
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necessary.5 In Fig. 2.13, we show an example of a typical situation when congruence

of ∼I does not hold, because one of the conditions (namely, term(γ) = term(γ ′)), is

violated. Indeed, for composites β and δ shown in this figure, we have [β] ∼I [δ],

since one can transform β to δ by applying semantic identities from I as shown at the

bottom of the figure, but we cannot apply any identity to α C β that would discon-

nect πc from πa, thus [α C β] 6∼I [α C δ]. An example, in which violation of condition

init(γ) 6= init(γ ′) leads to non-congruence of ∼I can be constructed symmetrically.

b
a
a ,

a

b
a
a

e

b
a

d,I:

c
a
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a

β =
d a

e
δ =

β

c1= c2=
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b
a
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a

c2

b
a
a

e

d

δc1

Figure 2.13: A set of formation pairs I = {c̄1, c̄2}, for which condition term(γ) =
term(γ ′) is violated and equivalence relation ∼I is not a congruence with respect to
concatenation.

Definition 20. A formation pair c̄ is called a semantic identity, if for every com-

posite pair 〈γ, γ ′〉 ∈ c̄,

init(γ) = init(γ ′)

term(γ) = term(γ ′).

I

5In fact, for some particular sets of primitives, the conditions may be relaxed even further, but
we shall leave it beyond the scope of the present thesis.
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Note that the above conditions are invariant with respect to site replacements,

hence, if [γ, γ ′] contains at least one composite pair satisfying these conditions, then

it is a semantic identity.

The set of semantic identities for strings is shown in Fig. 2.14. The family of
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Figure 2.14: Semantic identities for strings.

identities on the left means that insertion of character x, and then of character y

after x, into a string has the same result as insertion of character y first, and then of

character x before y. The identity on the right allows the permutation of disconnected

characters.

Lemma 16. If c̄ is a semantic identity and α
c
↔ β for some c ∈ c̄, then

init(α) = init(β)

term(α) = term(β),

i.e., [α, β] is a semantic identity.

Proof. The proof directly follows from the definition of semantic identity and Lemma 5.

¥

From now on, we will assume that the equivalence relation ∼I is generated by a

set I of semantic identities. As it will be shown in the remaining part of this subsec-

tion, this implies congruence of ∼I with respect to concatenation and compatibility

with the part/whole relation.
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First, we need three auxiliary definitions and a lemma.

Definition 21. For a composite α, define the set of external sites as

ext(α)
def
= init(α) ∪ term(α),

and the set of internal sites as

int(α)
def
= sites(α) \ ext(α).

I

Definition 22. A pair of composites 〈α, β〉 satisfies the weak composition condi-

tion, if

ext(α) ∩ ext(β) = term(α) ∩ init(β).

I

If a pair of composites only satisfies the weak composition condition, but violates

the (ordinary) composition condition, their composition is undefined. Moreover, there

seems to be no meaningful relaxation of the composition condition for this case.

However, for the corresponding formation pair [α, β], one can define the result of

composition. Note that if a pair of composites 〈α, β〉 ∈ [α, β] satisfies the weak

composition condition, then so does every other pair 〈α′, β′〉 ∈ [α, β], so it is correct

to say that a formation pair [α, β] satisfies the weak composition condition.

Definition 23. Let [α, β] be a formation pair satisfying the weak composition con-

dition. Take any two site replacements f : sites(α) → S and g : sites(β) → S such

that

f |ext(α) = id, g|ext(β) = id
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and the pair 〈α〈f〉, β〈g〉〉 satisfies the composition condition, i.e.,

sites(α〈f〉) ∩ sites(β〈g〉) = term(α〈f〉) ∩ init(β〈g〉).

Then, the weak composition of [α, β] is defined as

[α C· β]
def
= [α〈f〉, β〈g〉].

I

Lemma 17. Let c̄ be a semantic identity. If [α, β]
c̄
↔ [α′, β′] and [α, β] satisfies the

weak composition condition, then so does [α′, β′] and

[α C· β]
c̄
↔ [α′ C· β ′].

Proof. Since [α, β] satisfies the weak composition condition, take any site replace-

ments f and g such that

f |ext(α) = id, g|ext(β) = id

and the pair 〈α〈f〉, β〈g〉〉 satisfies the composition condition. Then, so does every

composite pair from [α〈f〉, β〈g〉]. According to the Formation Projection Lemma

(L. 13), one can find among these pairs a pair of the form 〈α1, β〉 and obtain

[α C· β] = [α1 C β].

By definition, if [α, β]
c̄
↔ [α′, β′], then there exist composite pairs 〈α, β〉 ∈ [α, β],

〈α′, β′〉 ∈ [α′, β′], and c0 ∈ c̄ such that either α
c0↔α′ and β = β ′ or β

c0↔β′ and α = α′.

Due to the symmetry of these two cases, we will only consider the first one. Since

α1 ∈ [α] and due to Lemma 14, there exists c ∈ c̄ and α′′ ∈ [α′] such that α1
c
↔α′′. By
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definition of direct convertibility, this means that there exist composites γ1, γ2 such

that

α1 = γ1 C γ C γ2

α′′ = γ1 C γ′ C γ2,

where c = 〈γ, γ ′〉 or c = 〈γ ′, γ〉. It follows from Lemma 16 that

ext(α1) = ext(α′′), term(α1) = term(α′′),

hence 〈α′′, β〉 satisfies the weak composition condition. Note that the ordinary com-

position condition may be violated, if int(α′′) ∩ sites(β) 6= ∅. In this case, take any

s ∈ int(α′′)∩ sites(β). Since 〈α1, β〉 satisfies the composition condition, s 6∈ sites(α1),

hence s ∈ sites(γ ′) \ sites(γ). Therefore, one can replace s in γ ′ and α′′ by another

site s′ such that s′ 6∈ sites(β). By doing it for all sites s ∈ int(α′′)∩sites(β), we obtain

composites γ ′1 and α′′1 such that c′ = 〈γ, γ ′1〉 ∈ c̄, α′′1 = α′′〈f〉, where f
∣
∣
ext(α′′)

= id,

α1
c′

↔ α′′1, and, finally, 〈α
′′
1, β〉 satisfies the composition condition

sites(α′′1) ∩ sites(β) = term(α′′1) ∩ init(β).

Moreover, due to the associativity of composition, we have

α1 C β
c′

↔ α′′1 C β,

hence

[α C· β] = [α1 C β]
c̄
↔ [α′′1 C β] = [α′ C· β].

¥

Now we are ready to prove the main result of this subsection. Note that it is a

slightly stronger statement than the one of congruence with respect to composition.
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Lemma 18. If I is a set of semantic identities, then relation ∼I on formations is a

congruence with respect to composition, i.e., if [α, β] ∼I [α′, β′] and [α, β] satisfies

the weak composition condition, then so does [α′, β′] and [α C· β] ∼I [α′ C· β ′].

Proof. Consider a relation R on the set of formation pairs defined as follows:

〈[α, β], [α′, β′]〉 ∈ R if and only if either both [α, β] and [α′, β′] satisfy the weak

composition condition and [α C· β] ∼I [α′ C· β ′], or none of them does so.

Relation R is reflexive, symmetric, and transitive, hence an equivalence relation.

Moreover, according to Lemma 17, R contains all pairs 〈[α, β], [α′, β′]〉 such that

[α, β]
I
↔[α′, β′]. Since ∼I is, by definition, the minimal equivalence relation containing

these pairs, ∼I is contained in R, which implies the statement of the lemma. ¥

Definition 24. If I is a set of semantic identities, relation ∼I will be called a se-

mantic equivalence relation. I

Compatibility of the semantic equivalence relation with the part/whole relation

follows directly from its congruence with respect to composition:

Lemma 19. Let I be a set of semantic identities. If ᾱ ∼I ᾱ
′, then for all β̄ º ᾱ there

exists a formation β̄′ º ᾱ′ such that β̄′ ∼I β̄.

Proof. By definition of the part/whole relation, β̄ º ᾱ implies that there exist

composites β ∈ β̄, α ∈ ᾱ such that β º α. By definition of the part/whole relation on

composites, this means that there exist composites α1, α2 such that β = α1 C α C α2.

Since ᾱ ∼I ᾱ′, we also have [α1, α] ∼I [α1, α
′] for some composite α′ ∈ ᾱ′,

as a trivial consequence of the definition of equivalence on formation tuples. Due

to the congruence of the semantic equivalence relation with respect to composition

(Lemma 18), we obtain that formation pair [α1, α
′] satisfies the weak composition
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condition and [α1 C α] ∼I [α1 C· α
′]. As in the proof of Lemma 17, pick a composite

α′1 ∈ [α1] such that [α′1 C α′] = [α1 C· α
′].

Now, since [α1 C α] ∼I [α′1 C α′], we also have [α1 C α, α2] ∼I [α′1 C α′, α′2] for

some α′2 ∈ ᾱ2 and hence, due to congruence of semantic equivalence relation,

[α1 C α C α2] ∼I [(α′1 C α′) C· α′2].

Again, pick a composite α′′2 ∈ [α2] such that [(α′1 C α′) C· α′2] = [(α′1 C α′) C α′′2] and,

using associativity of composition, take

β′ = α′1 C α′ C α′′2.

Then, by construction, β̄′ º ᾱ′ and β̄ ∼I β̄
′. ¥

2.2.5 Structs

Now that we have defined the semantic equivalence relation on formations, we are

ready to introduce structs. A struct is a formal concept that corresponds to a sin-

gle object representation. It is defined as an equivalence class of formations with

respect to to the semantic equivalence relation. In other words, we think of an object

representation as an equivalence class of constructive processes.

Definition 25. Let I be a set of semantic identities, and let ∼I be the semantic

equivalence relation induced by I on the set of formations Γ̄Π. For a formation

γ̄ ∈ Γ̄Π, the struct containing γ̄, γ, is defined as

γ
def
= [γ̄]∼I

def
= [[γ]]∼I

def
= {γ̄ ′ ∈ Γ̄Π | γ̄

′ ∼I γ̄}.

The set of all structs is denoted ΘI . I
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aaba

a

b
a

a

Figure 2.15: Struct corresponding to string “aaba”.

An example of a struct corresponding to a string is shown in Fig. 2.15.

Whenever it does not create ambiguity, we will use the notation [[γ]] for the union

of all formations in [[γ]], i.e. the following set of composites:

∪γ̄∈γγ̄.

Whereas a non-empty formation usually contains infinitely many composites, the

number of formations in a struct can be finite or infinite. This number stands for

the number of constructive processes that could possibly have constructed a given

representation. Denote the number of formations in a struct γ by |γ|. The number

of formations in a struct corresponding to a string of length n is n!.

2.2.6 Part/whole relation on structs

The part/whole relation on structs is obtained from that on formations. As it is the

case with formations, we expect the part/whole relation on structs to be a partial

ordering. We shall see that, in general, this is not the case, hence an additional

restriction on the set of semantic identities will be imposed. Also, following Zeno, we

assume that each object has finitely many parts (or finitely many ancestors, which
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turns out to be equivalent). This imposes yet another restriction on the set of semantic

identities, which is proved to be equivalent to the finiteness of structs as sets of

formations.

The above two restrictions also imply decidability of the semantic equivalence

relation (see Section 2.3.7).

Assume that a set of primitives Π and a set of semantic identities I are fixed.

All composites, formations, and structs in this section are assumed to belong to the

sets ΓΠ, Γ̄Π, and ΘI , respectively.

Definition 26. A struct α is called a part (an ancestor) of a struct β, denoted

α ¹ β, if there exist formations ᾱ ∈ α and β̄ ∈ β such that ᾱ is a part (an ancestor)

of β̄. We use the same notation, Anc(α) and Parts(α), for structs. I

The part/whole relation on structs is reflexive. To make sure that relation ¹ on

structs is antisymmetric, we have to impose the following restriction on the semantic

equivalence relation:

Definition 27. Semantic equivalence relation ∼I satisfies the part/whole distin-

guishability condition, if for all formations ᾱ, β̄,

ᾱ ∼I β̄ and ᾱ ¹ β̄ ⇒ ᾱ = β̄.

I

The above condition can be reformulated as follows: no formation is equivalent

to any of its proper parts.

Lemma 20. If ∼I satisfies the part/whole distinguishability condition, then the part/-

whole relation on structs is antisymmetric.
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Proof. Let α, β be two structs such that α ¹ β and β ¹ α. Then, by definition,

there exist formations ᾱ1, ᾱ2 ∈ α and β̄1, β̄2 ∈ β such that

ᾱ1 ¹ β̄1, β̄2 ¹ ᾱ2.

Since ᾱ2 ∼I ᾱ1, by compatibility of semantic equivalence with the part/whole relation

on formations (Lemma 19), there exists formation β̄′2 ∈ β such that ᾱ2 ¹ β̄′2. By

transitivity of ¹ on formations (Lemma 11), we obtain β̄2 ¹ β̄′2. Now, the part/whole

distinguishability condition implies that β̄2 = β̄′2.

By antisymmetry of ¹ on formations, we obtain β̄2 = ᾱ2 = β̄′2, which implies

α = β. ¥

Lemma 21. The part/whole relation on structs is transitive.

Proof. Let α,β,γ be three structs such that α ¹ β and β ¹ γ. Then, there exist

formations ᾱ ∈ α, β̄1, β̄2 ∈ β, γ̄ ∈ γ such that ᾱ ¹ β̄1 and β̄2 ¹ γ̄.

By Lemma 19, there exists formation γ̄ ′ such that β̄1 ¹ γ̄′ and γ̄′ ∼I γ̄. By

transitivity of ¹ on formations, we have ᾱ ¹ γ̄ ′, which implies α ¹ γ. ¥

The following theorem justifies, at least to some extent, the introduction of the

struct finiteness condition.

Theorem 2. Let Π be a set of primitives specified by a finite set of primitive types Π̄.

Let I be a set of semantic identities such that part/whole distinguishability condition

holds for the semantic equivalence relation ∼I. Then for any struct γ, the following

are equivalent:

• the number of formations |γ| is finite

• the set Parts(γ) is finite
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• the set Anc(γ) is finite.

Proof.

1. Suppose, |γ| is finite. If α1,α2 ∈ Parts(γ), α1 6= α2, then for all formations

ᾱ1 ∈ α1, ᾱ2 ∈ α2, we have ᾱ1 6= ᾱ2. It follows from the definition of the

part/whole relation on structs that for every struct α ∈ Parts(γ) and every

formation ᾱ ∈ α, there exists a formation γ̄ ∈ γ such that ᾱ ¹ γ̄. Since |γ| is

finite and for each γ̄ ∈ γ, Parts(γ̄) is finite (by Lemma 12), the set

Parts(γ) =
⋃

γ̄∈γ

{[ᾱ] | ᾱ ∈ Parts(γ̄)}.

is also finite, and so is its subset Anc(γ).

2. Suppose, |γ| is infinite. Since the set of primitive types Π̄ is finite, there exists a

primitive type π̄1 and an infinite set subset {γ̄1i }i∈N ⊂ γ such that π̄1 ∈ Anc(γ̄1i )

for all i ∈ N. Hence, every γ̄1i contains a composite γi of the form γi = π1 C δ1i ,

where π1 is a fixed primitive from π̄1 and δ1i ’s are some composites. In the

infinite set of formations {γ̄1i }i∈N, we can find an infinite subset {γ̄2i }i∈N such

that each formation in this subset contains a composite γ2i = π(1) C π2 C δ2i .

Continuing this process, we obtain an infinite sequence of formations

[π(1)], [π(1) C π(2)], . . . ,

each of which is an ancestor of a formation from γ. Moreover, neither two of

them belong to the same struct. Indeed, any two formations from the above

sequence have the form [α] and [α C β]. If they belong to the same struct, then

formations [α] and [α C β] are semantically equivalent. Since [α] is a part of



CHAPTER 2. BASIC REPRESENTATIONAL LEVEL 71

[α C β], the part/whole distinguishability condition implies that [α] = [α C β],

hence β is an empty composite, which is not the case for any two distinct

composites from the above sequence.

¥

Consider an example of a set of semantic identities, for which the conditions of the

above lemma do not hold and, as a consequence, obtain a struct with infinitely many

ancestors and formations. The specifying set of primitives is shown in Fig. 2.16a.

Using this set of primitives, one can build formations that correspond to the strings

over the alphabet {a, b, c, d, e}. For example, the formation shown in Fig. 2.16b corre-

sponds to the string abd.6 For simplicity, we denote composites by the corresponding

strings in this example, assuming that the sites are chosen appropriately. Choose the

a
2

1

b
2

1

c
2

1

d
2

1

e
2

1

a
2

1

b

2

d
4

33

(a) (b)

Figure 2.16: A set of specifying primitives and an example of a composite.

following formation pairs for semantic identities:

I = {[baa, bc], [ca, ac], [cd, ed], [ea, ae], [be, ba]}.

6This representation of strings is different from the one constructed before in our running example.
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Then for any k ≥ 1, we have bakd ∼I bad, since

bak+1d = baaak−1d
[baa,bc]
↔ bcak−1d

[ca,ac]
↔ . . .

[ca,ac]
↔ bak−1cd

[cd,ed]
↔

bak−1ed
[ea,ae]
↔ . . .

[ea,ae]
↔ beak−1d

[be,ba]
↔ bakd.

Therefore, struct [bad] has infinitely many formations. It has infinitely many ancestors

as well:

{[bak] | k ≥ 1} ⊂ Anc([bad]).

Note that the elements of the above set are also ancestors of each other. Therefore,

if we show that the semantic equivalence relation ∼I satisfies the part/whole distin-

guishability condition, this will guarantee that all elements of this set are distinct.

Indeed, assume that there exist strings u and u′ such that u ∼I u
′ and u ¹ u′,

which means that u′ = xuy for some strings x and y. Note that ∼I preserves b’s and

d’s, since none of the semantic identities affects them. Hence, x and y are free of b’s

and d’s. Now observe that relation
I
↔ has the following invariants: given u

I
↔ u′,

1. if u = u1u2 and u′ = u′1u
′
2, where u1,u

′
1 are free of b, and u2,u

′
2 begin with b or

are empty, then |u1| = |u
′
1|.

2. denote by #l(u) the number of entries of a letter l ∈ {a, b, c, d, e} in u. If

u = u3u4 and u′ = u′3u
′
4, where u3,u

′
3 end in d or are empty, and u4,u

′
4 are free

of d, then

#a(u4) + 2(#c(u4) + #e(u4)) = #a(u
′
4) + 2(#c(u

′
4) + #e(u

′
4)).

These invariants also hold for the reflexive and transitive closure of
I
↔, which is ∼I .

Given u ∼I u
′ and u′ = xuy, we obtain that

1. u′1 = xu1 and, due to the first invariant, x is empty.
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2. u′4 = u4y and, due to the second invariant, y is empty.

Hence, u ∼I u′ and u ¹ u′ imply u = u′, and the part/whole distinguishability

condition holds.

As mentioned above, we assume (and postulate) that each physical object and,

correspondingly, each representation have finitely many parts. Perhaps, the statement

that every object has finitely many ancestors can be justified even better based on

evolutionary considerations. The above theorem asserts that both of these assump-

tions are equivalent to the assumption that there are finitely many processes that can

construct an object. Of course, the equivalence of the assumptions does not justify

them fully, but it raises our level of confidence in them. After all, the Church-Turing

thesis was accepted on similar grounds.

Definition 28. Semantic equivalence ∼I satisfies the struct finiteness condition,

if for every struct γ, the number of formations |γ| is finite. I

In Section 2.4.1, we will prove that struct finiteness also implies part/whole

distinguishability.

To summarize this section:

• a semantic identity is a formation pair corresponding to a pair of equivalent

constructive processes, which construct the same representation;

• a set of semantic identities induces a semantic equivalence relation on the set

of formations; this relation is a congruence with respect to composition and is

compatible with the part/whole relation;
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• a struct is an equivalence class of formations with respect to semantic equiva-

lence; a struct corresponds to a single object representation;

• the part/whole relation is extended from formations to structs and is a partial

ordering relation, if the part/whole distinguishability condition is imposed;

• the struct finiteness condition means that the number of formations in a struct

is finite; struct finiteness is equivalent to the finiteness of the sets of parts and

ancestors of the struct.
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2.3 Inductive structures

An inductive structure is specified by a set of primitives and a set of semantic identities

satisfying the struct finiteness condition:

Let Π be set of primitives and let I be a set of semantic identities. Suppose

that the semantic equivalence relation induced by I satisfies the struct finiteness

conditions. An inductive structure induced by I and Π is loosely defined as the

collection of all sets and relations that can be derived from Π and I and denoted

by 〈Π, I〉 The above sets and relations include the set of composites ΓΠ, the set of

formations Γ̄Π, the semantic equivalence relation ∼I , the set of structs ΘI , and the

part/whole relations on formations and structs which are all denoted by ¹.7

Consider several examples of inductive structures, corresponding to the conven-

tional representations, such as natural numbers, binary sequences, strings, trees, and

graphs. These examples illustrate the concept of inductive structure and its com-

ponents: primitives, composites, formations, semantic identities, and structs. It will

also become clear, which constructive processes are hidden in the conventional repre-

sentations.

Conventional representations such as strings or graphs are considered as ambigu-

ous from the ETS point of view, since they do not specify explicitly the constructive

processes that generate them. In fact, very different processes can be assumed. For

example, two different ways to generate strings are considered in this thesis, but by

no means are these two exhaustive.

Take the string data structure. The constructive processes that, I claim, are

7The rest of the concepts that constitute an inductive structure will be introduced in Section 3.1.
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always implicitly assumed, whenever a string is used to represent an object, are

different for different kinds of objects:

(a) if a string of 1’s represents a heap of stones, which can be thought of as con-

structed by adding stones one by one, the corresponding process that constructs

the string appends 1’s at the end of it;

(b) if a string represents a natural language sentence, it can be thought of as gen-

erated by a formal grammar;

(c) if a string represents an utterance, or sometimes a gene, it can be thought of as

produced by a Hidden Markov model.

It is important to note that the difference between these constructive processes is not

reflected in the string representation itself. In other words, the string representation

hides the constructive processes behind it, and in this sense is ambiguous. Even

more ambiguous in this respect are graphs, since they can be associated with an even

greater variety of constructive processes.

Once the constructive processes for strings (or graphs) are made explicit, it often

turns out that there are exponentially many processes that can construct a given string

(or graph). We shall argue that the exponential number of constructive processes

results in the exponential complexity of the problems that involve reconstruction of

these processes. One important case of such problems is the grammatical inference

problem, which is known to be intractable [Gold78].

Due to the above reasons, conventional data structures (or the corresponding

inductive structures) do not provide a good starting point for representing real-world

objects of any kind. Rather, it is more feasible to start with a simpler data structure,
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with fewer constructive histories, and then gradually increase the complexity and

representational power by constructing higher representational levels (see Chapter 3)

with the help of the inductive learning process (see Section 5.4).

Every particular area of application requires a specific inductive structure de-

signed according to the existing scientific knowledge about the actual processes that

construct the objects. I will give some suggestions on how to select an inductive

structure, although I realize that a single successful application of the model would

have explained it much better. Anyway, this initial step, the choice of the inductive

structure, is inevitable. Any other approach, including those based on numeric rep-

resentations, requires a similar initial step, with the only difference that it may be

hidden behind the choice of “good representational features” or even the design of

measurement devices.

2.3.1 Inductive structure of natural numbers

For this and the following inductive structures, assume that an infinite set S of sites,

is fixed. For simplicity of notation, also assume that S contains the set N of natural

numbers.8

The only specifying primitive from ΠN with one input and one output site is

shown in Fig. 2.17. The set of semantic identities IN is empty. The concept of a

π|

1

2

Figure 2.17: Specifying primitive π| for the inductive structure of natural numbers.

8The latter assumption is only used in the examples, but not in the definitions of inductive
structures.
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natural number, conventionally defined by Peano axioms [La51], implies that for each

natural number n, there is a construction process consisting of a sequence of n − 1

applications of the successor mapping

succ(succ(. . . succ(1) . . .))

to the initial element 1 ∈ N. In the inductive structure of natural numbers, the

following formation corresponds to this process:

γ̄n = [π|〈1, 2〉, π|〈2, 3〉, . . . , π|〈n, n+ 1〉].

For every n ∈ N, the struct γn = [γ̄n] consists of only one formation, γ̄n, since the set

of semantic identities is empty.

Technical note. Alternatively to the Peano axiomatics, the concept of a natural

number can be defined as a struct in the above inductive structure. This definition is

not circular, since we have never relied on natural numbers or any other depending

concepts in our definitions. In fact, all we have used are sets, although the existence of

infinite sets is necessary. Let us compare this definition with the axiomatic definition

based on Peano axioms and the Von Neumann’s construction of finite ordinals based

on the axiomatic set theory.

On the one hand, both of these definitions are preferable to ours, because they

do not assume the existence of infinite sets. On the other, it seems possible to come

up with an axiomatic definition of an inductive structure and avoid postulation of

existence of infinite sets. This definition will, of course, be a generalization of the

Peano axioms.

Regarding the von Neumann’s construction of natural numbers as finite ordinals

1 = {0}, 2 = {0, {0}}, 3 = {0, {0}, {0, {0}}}, . . . ,
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This construction is quite unnatural in the representational sense, i.e., it does not sug-

gest the right way of thinking about the constructive processes for natural numbers.

For this reason, I do not think that an axiomatic definition of inductive structures

should be generalized from this construction.

The inductive structure 〈ΠN, IN〉 is only one of the possible ways to represent

natural numbers. Others may be based on the decimal encoding or decomposition into

prime factors and will result in completely different inductive structures. Representing

constructive histories of the same number differently may give interesting illustrations

to known properties of numbers or even suggest new theorems about them.9

2.3.2 Inductive structure of binary sequences

Consider an inductive structure, whose structs correspond to finite binary sequences.

We would like to note that by introducing a topology on the set of structs and

considering its compactification, one can obtain infinite binary sequences as well,

which results in an ETS structure corresponding to the real segment [0, 1]. The

interested reader is referred to [Golub03].

The set of specifying primitives for the inductive structure of binary sequences,

ΠB, is shown in Fig. 2.18. Primitives π0 and π1 correspond to the binary digits. The

π0

1

2

π1

1

2

0 1

Figure 2.18: Specifying primitives for the inductive structure of binary sequences.

9I cannot justify this claim particularly for natural numbers, but it is already the case for strings
(see [Golub03]).
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only semantic identity from IB is shown in Fig. 2.19.

1

0

1

2
3

4

,
1

0

1

2

3

4

Figure 2.19: Semantic identity for the inductive structure of binary sequences.

An example of a binary sequence and of the corresponding struct is shown in

Fig. 2.20. Note that the struct contains only one formation (shown inside the brackets

that denote the equivalence class), since the only identity from IB does not apply to

it. If we consider this binary sequence as a representation for binary fraction

0.01001 = 0 · 2−1 + 1 · 2−2 + 0 · 2−3 + 0 · 2−4 + 1 · 2−5,

where the sum, computed from left to right, describes the process of construction of

the binary fraction. The formation in Fig. 2.20 corresponds to this process as well.

0

1

0

0

1

01001

Figure 2.20: A binary sequence and the corresponding formation.

A process that constructs a binary sequence can also be thought of as a process

that constructs a natural number or, more precisely, its binary encoding:

9 = 010012 = (((0 · 2 + 1) · 2 + 0) · 2 + 0) · 2 + 1.
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This is the second example of a construction process for natural numbers (the first

one was introduced in Section 2.3.1).

2.3.3 Inductive structure of trees

Consider an inductive structure, whose structs correspond to k-ary labeled trees. Let

T(k) be the set of rooted k-ary trees, whose nodes are labeled by characters from

the alphabet {a, b}. The set of specifying primitives for the corresponding inductive

structure, ΠT(k), is shown in Fig. 2.21.

πa

1

2

πb

3

a

... k+1

1

2 3

b

... k+1

k k

Figure 2.21: Primitives for the inductive structure of k-ary trees.

The set of semantic identities IT(k) is similar to IB (see Fig. 2.22). Every struct

1

2

3

a

... k+1
κ+2

κ+3
κ+4

b

... 2k+2

, 1

2
a

k+1

κ+2

κ+3
κ+4

b

... 2k+2

3 ...

Figure 2.22: Semantic identity for the inductive structure of trees.

corresponding to a tree contains one formation. An example of a tree and the corre-

sponding struct is shown in Fig. 2.23.
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a

b
a

b

a

bb

b
a

a

a a

a
b

Figure 2.23: A tree and the corresponding struct.

2.3.4 Inductive structure of insertion strings

The inductive structure of insertion strings has been defined in our running example

throughout Sections 2.1 and 2.2. Alternatively, it can be obtained from the the

inductive structure of binary trees (restrict the construction in the previous section

to k = 2) by adding the semantic identities shown on the left of Fig. 2.14. This

implies that the number of constructive processes for a tree is less than or equal to

that for the corresponding insertion string (although, both numbers are exponential

in general).

So far, representation of deletion and substitution operations has been deliber-

ately avoided in the definitions of inductive structures. Moreover, this representa-

tion is not be possible, since the introduction of the corresponding primitives and

identities would violate the part/whole distinguishability condition and result in an

infinite number of constructive histories. Given the relationship between the number

of constructive histories and the complexity of inductive inference discussed above,

it becomes clear while modeling of deletions and substitutions in the same way as

constructive operations is undesirable.

On the other hand, without deletions and substitutions, the descriptive power
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of generating mechanisms on strings is clearly too low to be practical for most appli-

cations. Moreover, one may even claim that these operations are observed practice,

e.g., as point mutations in genes. Thus, it is worthwhile to make a digression here

and show how the processes modeled by deletions and substitutions on strings are

described in the ETS formalism.

First of all, we model not all of these processes, but only those that are irre-

versible. The importance of irreversible processes (and of the models that account for

irreversibility) has been emphasized by many scientists (see, for example, [Sch93]).

In particular, thermodynamic processes are irreversible according to the second law

of thermodynamics [Pr80]. Developmental processes in biological organisms are also

irreversible (it is really inconceivable how one could possibly reverse, say, the process

of development of a chicken from an egg). Finally, the process of evolution of species

is (or has been so far) irreversible, since the complexity of species has been, generally,

rising with time. It is these evolutionary and developmental processes that were kept

in mind as a metaphor for the design of the ETS model.10

To simplify the concept of irreversibility, I reformulate it as follows: a process is

irreversible, if it cannot, in principle, be in the same state twice. If an irreversible

process generates objects, i.e., if objects are its states, then it is not allowed to

produce a part of an object from the whole object, since otherwise it could continue

and rebuild the object from the part and return to the same state. Thus, for processes

that generate objects, irreversibility is equivalent to the property that we call strong

acyclicity: an object cannot transform into one of its proper parts.

Strong acyclicity does not imply the absence of substitutions (although, deletions

10The thermodynamic irreversibility is of a very different nature (see [Pr80]).
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are excluded, since a deletion immediately transforms an object into its proper part).

A composition of a deletion with a substitution, considered as one operation (e.g.,

abc→ bd), also does not violate the strong acyclicity requirement. In particular, the

class of strongly acyclic string-rewriting systems is quite broad. And, it turns out,

all strongly acyclic string-rewriting systems can be simulated in the ETS model (see

Section 4.1) and, quite clearly, this construction can be extended to graphs. The idea

of the construction is simple: one can look at a substitution operation as a composition

of a constructive transformation with a semantic identity (see Fig. 4.1). The roles of

them is very different: the constructive transformation changes the object and the

semantic identity just reflects the fact that an object has several possible constructive

histories.

2.3.5 Inductive structure of graphs

The inductive structure of graphs completes our brief overview of the relationship

between conventional data structures and inductive structures. The inductive struc-

ture of graphs is also interesting for us in that its structs turn out to “grow fast”,

which results in the fact that the generating processes (see Chapter 5) in the inductive

structure of graphs , as opposed to all previously considered inductive structures, can

construct infinite structs in a finite time (see [Golub02] for the details).

Consider the set G of directed multigraphs without loops and isolated vertices,

and with edges labeled by characters a, b.11

The set of specifying primitives, ΠG, is shown in Fig. 2.24. Primitives σa and

11This particular type of graphs has been chosen for no particular reason, mostly because the
corresponding inductive structure is simple. Disconnected vertices, loops, undirected edges, and
simple edges can be described by the corresponding inductive structures as well, but this is not our
purpose now.
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Figure 2.24: Primitives for the inductive structure of graphs.

σb correspond to the edges with labels a and b. The semantic identities from IG

are shown in Fig. 2.25. Example of graphs and corresponding structs are shown in
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Figure 2.25: Semantic identities for the inductive structure of graphs.

Fig. 2.26.

There is no direct relationship between the number of vertices or edges in the

graph and the number of formations in the corresponding struct, since symmetries of

the graph may reduce the number of formations. For a general “asymmetric” graph

with m edges, the number of formations is exactly m!. The question of how the

number of formations depends on graph symmetries is yet another direction of study,

which may reveal an further connection between the ETS model and graph theory.
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Figure 2.26: Examples of graphs and corresponding structs.

2.3.6 How to select and evaluate an inductive structure for
a given real world problem?

The process of selection of the appropriate inductive structure for a given problem

reduces to the selection of the appropriate primitives and semantic identities. This

selection is guided by our intuitive understanding of the part/whole relation between

the physical objects in question and of the admissible transformations for them. For

example, in chemistry, atoms and bonds can be considered as primitive parts of

molecules, and chemical reactions can indicate the admissible transformations. The

first attempt to describe the corresponding inductive structure has been made in

[Ko03].

Another criterion for the evaluation of an inductive structure is the number of

formations in its structs, which, as it follows from the above discussions, should be

reduced as much as possible.

Still, it is quite evident that the above two criteria give only a vague mecha-

nism of design of the inductive structures. The main advantage of the ETS model
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is yet to be described in Chapter 3. In short, it is its hierarchy of representational

levels, of which only the basic level has been defined so far, that allows to see the

far-reaching consequences of the chosen primitives and identities at the higher repre-

sentational levels and evaluate them according to the existing scientific knowledge of

the corresponding objects and their classes.

2.3.7 Decidability of the semantic equivalence relation

Here, we prove that semantic equivalence relation is undecidable in general. Moreover,

we conjecture that the part/whole distinguishability condition does not imply decid-

ability. However, if the struct finiteness condition is imposed, semantic equivalence

becomes decidable.

The first result will be obtained by reducing the word problem to the problem of

semantic equivalence checking, which we shall call the semantic equivalence problem.

Consider the set of strings over a finite alphabet Σ, and let I = {(l1, r1), . . . , (lk, rk)}

be a finite set of string pairs, which are called rewriting rules. A string u can be

rewritten in one step into a string v, denoted u → v, if there exists a rewriting rule

(li, ri) ∈ I and strings x, y such that

u = xliy and v = xriy.

Let ↔I be the reflexive symmetric transitive closure of the relation →. The word

problem for the set I is formulated as follows: given two strings u, v, determine

whether u ↔I v. There exists a set I, for which the word problem is undecidable

[RS97, Theorem 2.2, p. 444].

To reduce the word problem to the semantic equivalence problem, consider the

inductive structure of sequences over Σ. This inductive structure is a straightfor-
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ward generalization of the inductive structure of binary sequences introduced in Sec-

tion 2.3.2 above.12 Add to it the following set of semantic identities:

I = {[l̃i, r̃i] | (li, ri) ∈ I},

where ũ denotes the composite corresponding to the string u in the inductive structure

of sequences over Σ. Then, u↔I v if and only if [ũ] ∼I [ṽ], where ∼I is the semantic

equivalence relation induced by I. This concludes the proof of the following result:

Theorem 3. There exists an undecidable semantic equivalence relation induced by a

finite set of semantic identities.

We conjecture that there exists an undecidable semantic equivalence relation

satisfying the part/whole distinguishability condition as well and leave the verification

of this conjecture for future research.

However, if the struct finiteness condition is imposed on the set of semantic

identities, then the semantic equivalence relation becomes decidable. Indeed, let I be

a finite set of semantic identities. Given a formation γ̄, one can compute the following

set of formations:

N(γ) = {γ̄ ′ | γ̄
I
↔ γ̄′}.

Now, one can decide whether two formations ᾱ and β̄ are semantically equivalent by

constructing a chain of nested sets

B1 ⊂ B2 ⊂ B3 ⊂ . . . (∗)

as follows: set B1 = {ᾱ}, and let

Bi+1 = Bi ∪
⋃

γ̄∈Bi

N(γ̄).

12This generalization is not even necessary, since the word problem for strings over a two-letter
alphabet is undecidable.
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Since each Bi is a subset of the struct [ᾱ], and the latter, according to the struct

finiteness condition, is a finite set of formations, the chain (∗) is also finite. Let the

last set in it be Bm, also denote it B(ᾱ). We will show that B(ᾱ) = [ᾱ].

In fact, consider the relation

R = {(ᾱ, ᾱ′)) | α′ ∈ B(ᾱ)}

on the set of formations. By definition of B(α), we have that for all composites α, β,

α 7→C β =⇒ (ᾱ, β̄) ∈ R.

Since the semantic equivalence relation ∼I is the minimal equivalence relation satis-

fying the above property, we have R ⊇∼I . Hence, B(ᾱ) ⊇ [ᾱ].

Finally, to check whether ᾱ ∼I β̄, it is sufficient to check whether β̄ ∈ B(ᾱ).

Thus, the following result is proved.

Theorem 4. There exists an algorithm that, given a set of semantic identities I that

induces a semantic equivalence relation satisfying the struct finiteness condition and

two formations ᾱ and β̄, determines whether ᾱ ∼I β̄.

It is important to note that the above algorithm may be very inefficient. The

reason for this becomes clear, once we notice that many of the difficult problems

in computer science reduce to the semantic equivalence problem in an appropriate

inductive structure. For example, the semantic equivalence problem in the inductive

structure of graphs (Section 2.3.5) is equivalent to the graph isomorphism problem.

In what follows, we will not only need to check semantic equivalence of formations,

i.e. equality of structs, but also solve a more general problem of whether one struct
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is a part of another. In the inductive structure of graphs, this is equivalent to the

subgraph isomorphism problem, which is known to be NP-complete [Ga79].

One could try to remedy this situation by imposing further restrictions on se-

mantic identities. In general, the nature of semantic identities is not yet completely

clear, since we do not have a good explanation so far of how the identities are con-

structed (it has been said that identities reflect the fact that certain constructive

histories produce the same object, by no account has been given to why and how

this happens). Once this will be clarified, further useful restrictions on the form of

semantic identities should appear.

2.3.8 Undecidability of the part/whole distinguishability and
struct finiteness conditions

Consider the following problems: given a set of semantic identities, determine whether

the corresponding semantic equivalence relation satisfies the part/whole distinguisha-

bility condition or the struct finiteness condition. Both of these problems are unde-

cidable in general.

Consider strings over a finite alphabet Σ. As above, a finite set of rewriting rules

I = {(l1, r1), . . . , (lk, rk)} corresponds to the set of identities I = {[l̃i, r̃i] | (li, ri) ∈

I}, which, together with the primitives for sequences over Σ, induces an inductive

structure. We shall prove that the above questions about these inductive structure

are undecidable in general.

A finite set of string pairs I over a finite alphabet Σ specifies a finitely presented

monoid M = Σ∗/↔I
. The pair 〈Σ, I〉 is called a presentation of M. We will say

that presentation 〈Σ, I〉 of M satisfies the part/whole distinguishability (or struct



CHAPTER 2. BASIC REPRESENTATIONAL LEVEL 91

finiteness) condition, if so does the corresponding inductive structure. We will first

show that the part/whole distinguishability and the struct finiteness properties are

invariant [Bo93, §7.3] monoid properties, i.e. they are independent of the presenta-

tion.

Lemma 22. If 〈Σ1, I1〉 and 〈Σ2, I2〉 are two presentations of the same monoidM, then

1. 〈Σ1, I1〉 satisfies the part/whole distinguishability condition if and only if 〈Σ2, I2〉

does.

2. 〈Σ1, I1〉 satisfies the struct finiteness condition if and only if 〈Σ2, I2〉 does.

Proof.

1. The part/whole distinguishability condition can be equivalently rewritten as a

property of monoid M as follows:

∀u, v, w ∈M (v 6= 1 or w 6= 1) =⇒ vuw 6= u.

Clearly, the fact whether this property holds is independent of the presentation

of M.

2. The struct finiteness condition can be rewritten as an invariant property as

follows:

∀u ∈M |{v ∈M | ∃x, y ∈M u = xvy}| <∞.

¥

Next, we show that these two properties are hereditary [Bo93, §7.3], i.e., if any

of them holds for the monoid M, it will also hold for every submonoid of M.
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Lemma 23. 1. If M is a monoid satisfying the part/whole distinguishability con-

dition, then this condition holds for every submonoid M′ of M.

2. If M is a monoid satisfying the struct finiteness condition, then this condition

holds for every submonoid M′ of M.

Proof.

1. Suppose that

∀u, v, w ∈M (v 6= 1 or w 6= 1) =⇒ vuw 6= u.

Then, clearly,

∀u, v, w ∈M′ (v 6= 1 or w 6= 1) =⇒ vuw 6= u.

2. Suppose that

∀u ∈M |{v ∈M | ∃x, y ∈M u = xvy}| <∞.

Then for all u ∈M′,

{v ∈M′ | ∃x, y ∈M′ u = xvy} ⊆ {v ∈M | ∃x, y ∈M u = xvy},

hence the former set is finite.

¥

Finally, for each of the two conditions, there exists at least one monoid that

satisfies it, and also there exist at least one monoid that does not. Properties of

monoids that are invariant, hereditary, and for which there exist monoids that satisfy

them, as well as monoids that do not satisfy them, are called Markov properties.
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According to [Bo93, Theorem 7.3.7], the question whether a Markov property holds

for a monoid specified by a finite presentation 〈Σ, I〉 is undecidable in general. Thus,

we have proved the following result:

Theorem 5. The questions whether a semantic equivalence relation satisfies

(a) the part/whole distinguishability condition

(b) the struct finiteness condition

are undecidable in general.
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2.4 Struct tuples

The concept of a struct tuple plays a technical role in the definition of the next

representational level (see Section 3.1.2). Here, we define struct tuples and prove sev-

eral lemmas about them, most of which are level-invariant, i.e., their statements and

proofs can be carried over to the higher representational levels without any changes.

Throughout this section, we assume that an inductive structure 〈Π, I〉 is fixed.

Definition 29. An equivalence class of formation n-tuples w.r.t. ∼I is called a

struct n-tuple. A struct n-tuple containing formation tuple D = [α1, . . . , αn] will

be denoted [D] or [[α1, . . . , αn]]. I

By definition, when n = 1, the concept of a struct n-tuple coincides with that of

a struct. When n > 1, a struct n-tuple is not the same thing as an n-tuple of structs,

since a struct n-tuple consists of formation n-tuples, each of which is different from

a tuple of n formations, as it was pointed out in Section 2.2.1.

2.4.1 Projections of struct tuples

Next, we introduce the concept of projection for struct n-tuples, similarly to the case

of formation tuples:

Definition 30. Let S = [[γ1, . . . , γn]] be a struct n-tuple, and let i = 〈i1, . . . , ik〉 be a

subsequence of 〈1, 2, . . . , n〉.

The projection of struct tuple S onto i is defined as the set of projections of

formation n-tuples from S onto i:

Si
def
= {Di | D ∈ S}.

I
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Lemma 24. (Struct Projection) For any struct n-tuple S and any non-empty sub-

sequence i = 〈i1, . . . , ik〉 of 〈1, 2, . . . , n〉, the projection of S onto i, Si, is a struct

k-tuple.

Proof.

• Consider relation ∼i on the set of formation n-tuples defined as

D ∼i D
′ ⇐⇒ Di ∼I D

′
i.

Relation ∼i is an equivalence relation and satisfies the following property:

D
I
↔D′ =⇒ D ∼i D

′.

Since ∼I is the minimal equivalence relation satisfying the above property, we

have ∼I⊆∼i.

Let D,D′ ∈ Si. Then, by definition of struct projection, there exist formation

tuples D̃, D̃′ ∈ S such that D̃i = D, D̃′
i = D′. Since D̃, D̃′ ∈ S, D̃ ∼I D̃

′, which

implies, according to the fact that ∼I⊆∼i, that D̃ ∼i D̃
′. By definition of ∼i,

this is equivalent to Di ∼I D
′
i. Hence, Si ⊆ [D].

• Vice versa, let D ∈ Si and D′ ∼I D. Let j = 〈1, 2, . . . , n〉 \ i. By definition of

struct projection, there exists formation D̃ ∈ S such that D̃i = D. Take any

composite tuple C̃ = 〈α1, . . . , αn〉 ∈ D̃, and let C = C̃i be its projection onto

i. For any k-tuple of composites C ′ = 〈α′1, . . . , α
′
k〉, denote by C̃/C ′ the n-tuple

of composites such that

(C̃/C ′)i = C ′ and (C̃/C ′)j = C̃j,
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i.e. C̃/C ′ is obtained from C̃ by replacing all i-components in C̃ with the

corresponding composites from C ′; obviously, since C = C̃i, we have C̃/C = C̃.

Consider the following relation R on the set of formation k-tuples:

R
def
= {(E,E ′) | ∀ C ∈ E ∃ C ′ ∈ E ′ [C̃/C] ∼I [C̃/C ′] and

∀ C ′ ∈ E ′ ∃ C ∈ E [C̃/C] ∼I [C̃/C ′]}.

Relation R is an equivalence relation. Moreover, if E
I
↔ E ′, then, according to

Lemma 15, (E,E ′) ∈ R. Since, by definition of semantic equivalence, relation

∼I on formation k-tuples is the minimal equivalence relation containing
I
↔, we

obtain ∼I⊆ R, which implies that (D,D′) ∈ R. Now, apply the part

∀ C ∈ E ∃ C ′ ∈ E ′ [C̃/C] ∼I [C̃/C ′]

of the definition of R to E = D, E ′ = D′ and obtain that there exists C ′ such

that [C̃/C ′] ∈ S = [[C̃/C]] and [C̃/C ′]i = D′. Which implies that D′ ∈ Si and

[D] ⊆ Si.

Altogether, Si = [D]. ¥

In particular, the above lemma implies that projection of a struct n-tuple onto

a single coordinate i ∈ [1, n] is a struct. The following lemma establishes a connec-

tion between a struct n-tuple S and the n-tuple of its projections onto coordinates

〈S1, . . . , Sn〉.

Lemma 25. For any struct n-tuple S,

S1 × · · · × Sn = {〈D1, . . . , Dn〉 | D ∈ S}.13

13Note that a similar lemma for formation n-tuples would not hold.
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Proof. The inclusion

S1 × · · · × Sn ⊇ {〈D1, . . . , Dn〉 | D ∈ S}

follows from the definition of projection, according to which for all i ∈ [1, n], Si =

{Di | D ∈ S}.

The inverse inclusion can be reformulated as follows: for any formations ᾱ1 ∈

S1, . . . , ᾱn ∈ Sn, there exist composites αi ∈ ᾱi (i ∈ [1, n]) such that [α1, . . . , αn] ∈ S.

Since ᾱ1 ∈ S1, by definition of projection, there exists formation n-tuple [C] ∈ S,

where C = 〈β1, . . . , βn〉 is an n-tuple of composites, such that β̄1 = ᾱ1. Set α1 = β1,

then

C = 〈β1, . . . , βn〉 = 〈α1, β2, β3, . . . , βn〉.

Consider projection of C onto the second component, and for any composite α2,

let C/α2 = 〈α1, α2, β3, . . . , βn〉 as in the proof of the previous lemma, in which we

have also shown that there exists α2 ∈ ᾱ2 such that [C/α2] ∼I [C].

Continuing this process, consider projections of C onto the third, . . . , n-th com-

ponents and construct a formation n-tuple [α1, . . . , αn] such that αi ∈ ᾱi for all

i ∈ [1, n] and [α1, . . . , αn] ∼I [C], which implies that [α1, . . . , αn] ∈ S. ¥

The above lemma admits the following generalization: if i1 t . . . t ik = [1, n],

then

Si1 × . . .× Sik = {〈Di1 , . . . , Dik〉 | D ∈ S}.

Lemma 26. If ∼I satisfies the struct finiteness condition, then it also satisfies the

part/whole distinguishability condition.

Proof. Suppose, the part/whole distinguishability does not hold, i.e., there exist

formations ᾱ 6= β̄ such that ᾱ ∼I β̄ and ᾱ ¹ β̄.
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By definition of ¹, there exist α ∈ ᾱ, β ∈ β̄ and γ1, γ2, not both empty, such

that β = γ1 C α C γ2. Since ᾱ ∼I β̄, we obtain [[α]] = [[γ1 C α C γ2]].

According to the Struct Projection lemma, there exists γ ′1 such that

[[γ1, α]] = [[γ ′1, γ1 C α C γ2]].

Since 〈γ1, α〉 satisfies the composition condition, by Lemma 18, 〈γ ′1, γ1 C α C γ2〉

must satisfy the weak composition condition, which implies that there exists a site

replacement h1 : sites(γ
′
1)→ S such that 〈γ ′1〈h1〉, γ1 C α C γ2〉 satisfies the composi-

tion condition and

[[γ1 C α]] = [[γ ′1〈h1〉 C γ1 C α C γ2]].

Similarly, there exists composite γ ′2 and a site replacement h2 : sites(γ ′2) → S

such that

[[γ1 C α C γ2]] = [[γ ′1〈h1〉 C γ1 C α C γ2 C γ′2〈h2〉]].

Note that γ ′1 and γ′2 cannot be both empty, therefore,

[γ′1〈h1〉 C γ1 C α C γ2 C γ′2〈h2〉] 6= [γ1 C α C γ2].

The process can be continued and, as a consequence, we have an infinite sequence

of distinct formations

[α], [γ1 C α C γ2], [γ
′
1〈h1〉 C γ1 C α C γ2 C γ′2〈h2〉], . . . ,

each of which belongs to the struct [[α]], which contradicts the struct finiteness con-

dition. ¥
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2.4.2 Finiteness of struct tuples

The next theorem shows that the struct finiteness condition can be automatically

extended to struct n-tuples.

Theorem 6. If the struct finiteness condition holds, then the number of formation

n-tuples in any struct n-tuple is finite.

Proof. According to Lemma 25,

{〈D1, . . . , Dn〉 | D ∈ S} = S1 × · · · × Sn,

and the Cartesian product on the right is finite due to the struct finiteness condition.

According to Theorem 1, for any set of formations ᾱ1, . . . , ᾱn, the following set

{D | D1 = ᾱ1, . . . , Dn = ᾱn}

is also finite, which concludes the proof. ¥

Theorem 7. For any structs γ1, . . . ,γn, the following set of struct n-tuples

{S | S1 = γ1, . . . , Sn = γn}

is finite.

Proof. Fix any formations γ̄1 ∈ γ1, . . . , γ̄n ∈ γn. For every struct tuple S such that

S1 = γ1, . . . , Sn = γn, according to Lemma 25, there exists a formation tuple D ∈ S

such that D1 = γ̄1, . . . , Dn = γ̄n.

Since distinct struct tuples, as equivalence classes of formation tuples, do not

intersect, and since, by Theorem 1, the set of projection tuples D having given
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projections γ̄1, . . . , γ̄n is finite, we obtain that the set of struct tuples S such that

S1 = γ1, . . . , Sn = γn is also finite. ¥

Note that the above theorem remains true even if the struct finiteness condition

is not imposed.

2.4.3 Part/whole relation on struct tuples

The part/whole relation can be extended to composite, formation, and struct tuples

as follows:

Definition 31. For two composite n-tuples 〈α1, . . . , αn〉 and 〈α
′
1, . . . , α

′
n〉, we shall

write

〈α1, . . . , αn〉 ¹ 〈α
′
1, . . . , α

′
n〉,

if for all i ∈ [1, n], αi ¹ α′i.

For two formation n-tuples D and D′, we shall write D ¹ D′, if there exist

composite n-tuples C ∈ D, C ′ ∈ D′ such that C ¹ C ′.

Finally, for two struct n-tuples S and S ′, we shall write S ¹ S ′, if there exist

formation n-tuples D ∈ S, D′ ∈ S ′ such that D ¹ D′. I

Theorem 8. If the struct finiteness condition holds, then for any struct n-tuple S,

the set of its parts

Parts(S)
def
= {S ′ | S ′ ¹ S}

is finite.

Proof. If S ′ ¹ S, then for all i ∈ [1, n], S ′i ¹ Si. According to Theorem 2, for every

i ∈ [1, n], the set Parts(Si) is finite. Hence, by Theorem 7, Parts(S) is finite as well.

¥
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2.4.4 Composable formation tuples and struct tuples

Consider composable struct n-tuples, i.e., the ones whose components can be com-

posed into a single struct. For composable tuples, we define the concept of result of

composition and prove its basic properties. Later on, composable struct n-tuples will

serve as a basis for the definition of first level composites.

We begin our definitions with the auxiliary concepts of 1-composable composite

and formation n-tuples.

Definition 32. A composite n-tuple C = 〈α1, . . . , αn〉 will be called 1-composable,

if α1 and α2 satisfy the composition condition (see Def. 4). The 1-composition of C

is defined as the following composite (n− 1)-tuple:

K(C)
def
= 〈α1 C α2, α3, . . . , αn〉.

A formation n-tupleD will be called 1-composable, if there exists a 1-composable

composite n-tuple C ∈ D. Then, the 1-composition of D, K(D) is the formation

(n− 1)-tuple [K(C)]. I

The correctness of the above definition for formation n-tuples is justified by the

following lemma:

Lemma 27. IfD is 1-composable, then every composite n-tuple C ∈ D is 1-composable

and for all C,C ′ ∈ D, [K(C)] = [K(C ′)].

Proof. The statement of the lemma directly follows from Lemma 9. ¥

Next, define 1-composable struct n-tuples.
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Definition 33. A struct n-tuple S will be called 1-composable, if there exists a

1-composable formation n-tuple D ∈ S. Then, the 1-composition of S, K(S), is

defined as the struct (n− 1)-tuple [K(D)]. I

For the correctness of the above definition, we have to show thatK(S) is uniquely

specified by S:

Lemma 28. IfD,D′ are 1-composable formation n-tuples andD ∼I D
′, thenK(D) ∼I

K(D′).

Proof. This lemma is a slight extension of Lemma 18, which consists in the replace-

ment of formation pairs by arbitrary formation n-tuples. So, we will only highlight

the consequent changes in the proof.

First, we extend the definition of weak composition to arbitrary formation tuples:

a formation tuple D = [α1, α2, . . . , αn] is weakly 1-composable, if the pair [α1, α2]

is weakly composable. The weak 1-composition of D, denoted K̃(D) is defined as

the following formation n-1 tuple:

K̃(D)
def
= [α1〈f〉, α2〈g〉, α3, . . . , αn],

where f and g are site replacements such that 〈α1〈f〉, α2〈g〉〉 is composable,

f
∣
∣
ext(α1)

= id, g
∣
∣
ext(α2)

= id,

and

[int(α1〈f〉) ∪ int(α2〈g〉)] ∩ [sites(α3) ∪ . . . ∪ sites(αn)] = ∅.

The existence of such site replacements follows from the definition of weak composi-

tion, and the last condition ensures that formation tuple

[α1〈f〉, α2〈g〉, α3, . . . , αn]
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does not depend on the choice of f and g.

Now, Lemma 17 can be reformulated for arbitrary formation tuples: Let c̄ be a

semantic identity. If D
c̄
↔D′ and D satisfies the weak composition condition, then so

does D′ and D
c̄
↔D′. The proof is similar and for this reason omitted.

Now, consider a relation R on the set of formation n-tuples defined as follows:

〈D,D′〉 ∈ R if and only if either both D and D′ are weakly 1-composable and

K̃(D) ∼I K̃(D), or none of them is weakly 1-composable.

Relation R is an equivalence relation and contains
I
↔, hence it must also contain

∼I , which implies the statement of our lemma. ¥

Composable struct n-tuples are introduced via the following recurrent definition:

Definition 34. A struct n-tuple S will be called composable, if either n = 1 (i.e.

S is a struct) or S is 1-composable and K(S) is composable.

The i-composition of S, Ki(S), is defined recurrently as follows:

K0(S)
def
= S, Ki(S)

def
= Ki−1(K(S)).

I

Note that a composable struct tuple does not necessarily contain any composable

formation tuples (see Fig. 2.27).

Theorem 9. If the struct finiteness condition holds, then for any struct γ, the set

{[[α1, . . . , αn]] | Kn−1([[α1, . . . , αn]]) = γ, αi 6= λ}

is finite.
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Figure 2.27: A composable struct tuple (right) in the inductive structure of sequences
over Σ = {a, b, c, d} with an additional identity (left). The struct tuple consists of
only one formation tuple, which 1-composable but not composable.

Proof. First, show that the set

{[[α1, α2]] | K([[α1, α2]]) = γ} (∗)

is finite. Indeed, by definition, [[α1, α2]] contains a composable formation pair [α1, α2]

such that γ = [[α1 C α2]]. This implies that [[α1]], [[α2]] ∈ Parts(γ), and, due to

Theorem 2, the latter set is finite. Now, according to Theorem 7, set (∗) is finite as

well.

It follows from Theorem 2 that the part/whole relation ¹ on structs is a well-

ordering, hence we can apply the principle of mathematical induction to it.

Assume that for all α ≺ γ, the set

{[[α1, . . . , αn]] | Kn−1([[α1, . . . , αn]]) = α, αi 6= λ}

is finite. For each struct pair [[α1, α2]] such that K([[α1, α2]]) = γ and α2 6= λ, we have,

due to part/whole distinguishability, that [[α1]], [[α2]] ≺ γ. We obtain that

{[[α1, . . . , αn]] | Kn−1([[α1, . . . , αn]]) = γ, αi 6= λ} ⊆

{γ} ∪ {[[α1, α2]] | K([[α1, α2]]) = γ}∪

{[[α1, . . . , αn]] | Kn−2([[α1, . . . , αn−1]]) ≺ γ, αi 6= λ and [[αn]] ≺ γ},

which is finite by inductive assumption and according to the fact that the set {α | α ≺

γ} ⊂ Parts(γ) is finite by Theorem 2. ¥
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2.4.5 Result of composition

For a composite tuple from a composable struct tuple, we also define the result of

composition. First, we do it for a composite pair, and then extend the definition to

arbitrary composite tuples.

Definition 35. For a composite pair 〈α, β〉 such that the struct pair [[α, β]] is com-

posable, define the result of composition as any composite γ such that for all

composites δ,

K([[α, β, δ]]) = [[γ, δ]].

The set of all results for a composite pair 〈α, β〉 will be denoted by res(〈α, β〉). I

Theorem 10. (Result existence) If [[α, β]] is a composable struct pair, then the set

of results res(〈α, β〉) is non-empty.

Proof. Since [[α, β]] is composable, it contains a composite pair 〈α′, β′〉 satisfying the

composition condition.

Applying the Struct Projection lemma (L. 24), we can find a composite γ such

that

[[α, β, γ]] = [[α′, β′, α′ C β′]].

We will prove that for all composites δ,

K([[α, β, δ]]) = [[γ, δ]].

Indeed, for any composite δ, due to the Struct Projection lemma, there exists δ ′ such

that

[[α, β, γ, δ]] = [[α′, β′, α′ C β′, δ′]],
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which implies that

[[α, β, δ]] = [[α′, β′, δ′]] and [[α′ C β′, δ′]] = [[γ, δ]].

Hence,

K([[α, β, δ]]) = K([[α′, β′, δ′]]) = [[α′ C β′, δ′]] = [[γ, δ]].

¥

Definition 36. For a composite n-tuple 〈α1, . . . , αn〉 such that the corresponding

struct tuple [[α1, . . . , αn]] is composable, the set of results is defined recurrently as

res(〈α1, . . . , αn〉)
def
=

⋃

γ∈res(〈α1,α2〉)

res(〈γ, α3, . . . , αn〉).

I

Lemma 29. (Result Criterion) If [[α1, . . . , αn]] is composable, then

res(〈α1, . . . , αn〉) = {γ | ∀ δ Kn−1([[α1, . . . , αn, δ]]) = [[γ, δ]]}.

Proof. The proof is by induction on n. If n = 2, then the statement holds by

definition of res(〈α1, α2〉). Suppose the statement holds for n, prove it for n+ 1:

res(〈α1, . . . , αn+1〉) =

⋃

β∈res(〈α1,α2〉)

res(〈β, α3, . . . , αn+1〉) =

⋃

β∈res(〈α1,α2〉)

{γ | ∀ δ Kn−1([[β, α3 . . . , αn+1, δ]]) = [[γ, δ]]} =

⋃

β∈res(〈α1,α2〉)

{γ | ∀ δ Kn−1(K([[α1, α2, α3 . . . , αn+1, δ]])) = [[γ, δ]]} =

{γ | ∀ δ Kn([[α1, α2, α3 . . . , αn+1, δ]] = [[γ, δ]]} ,

since, as an easy consequence of Def. 36, we have that if β ∈ res(〈α1, α2〉), then for

any δ1, . . . , δk,

K([[〈α1, α2, δ1, . . . , δk〉]] = [[β, δ1, . . . , δk]]).



CHAPTER 2. BASIC REPRESENTATIONAL LEVEL 107

¥

It is straightforward that

res(〈α1, . . . , αn〉) ⊂ Kn−1([[α1, . . . , αn]]).



Chapter 3

Representational hierarchy

This chapter consists of two sections. In Section 3.1, the first representational level

is introduced, and a number of lemmas that ensure the consistency of this level with

the basic one are proved (some of them have been prepared in Section 2.4). The

statements and proofs of these lemmas are level-invariant, which allows to general-

ize the construction of the first representational level to an infinite representational

hierarchy in Section 3.2.

Particularly important are the formation projection lemma (L. 33 in Section 3.1.5),

struct projection lemma (L. 24 in Section 2.4.1), composite reconstruction lemma

(L. 32 in Section 3.1.4), result existence theorem (Th. 10 in Section 2.4.5), and con-

gruence lemmas (L. 18 in Section 2.2.4 and L. 37 in Section 3.1.6). These statements

are meant to be generalized into a formal axiomatic system in future research. In

order to illustrate this body of formal definitions and statements, we also give an

example based on strings—which, however, will clearly go beyond the string data

structure at higher levels.

108
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3.1 First representational level

So far, we have introduced the concept of an inductive structure, which has two

main constituents: formations and structs. Formations correspond to the processes

that construct object representations and structs correspond to the representations

themselves. The constructive processes are understood as sequences of constructive

steps; so far, the steps have been primitive (indivisible) and context-free.

In nature, primitive constructive steps tend to group together, forming larger,

composite, constructive steps. Due to their compositional structure, these construc-

tive steps also become context-dependent. These composite constructive steps are

called transformations.

I see the essence of evolution in nature in the creation of new composite con-

structive steps out of existing primitives. Examples of such creation are ubiquitous:

atoms group into small molecules and ions, which then group into proteins, which

in turn group into cells, followed by tissues, organs, organisms, families, species.1

Similarly, groups of letters form syllables, which, in turn, form words, followed by

sentences and paragraphs. The same kind of construction is very likely to occur with

mental representations, which is the reason why, in my opinion, the term ‘̀language

of thought” [Fo88] is very appropriate.

Each level of grouping is called a representational level; let us also agree to name

a representational level after its primitives. For example, the representational level,

whose primitives correspond to atoms, is called atomic.

Transformations at a particular representational level are composed from primi-

1This list by no means is exhaustive.
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tives at this level. At the same time, these transformations play the role of primitives

at the next representational level. For example, transformations of the atomic level

are small chemical compounds, which, at the same time, play the role of primitives

at the molecular level.

The basic representational level (“level 0”) has been defined in Sections 2.1–2.3.

The concepts of a primitive, composite, formation, and struct, from now on, will be

accompanied by the attribute “basic-level”. Here, we define the first representational

level, i.e., introduce first level primitives (which are also basic-level transformations),

followed by first-level composites, formations, and structs. In Section 3.2, this con-

struction is generalized by induction to an infinite hierarchy of representational levels.

The definitions are illustrated by an example based on the inductive structure of in-

sertion strings.

Throughout this section we assume that an inductive structure 〈Π, I〉 is fixed

and will omit Π and I in the indices of the sets ΓΠ, Γ̄Π, ΘΠ, and ∼I .

3.1.1 Transformations

Definition 37. A pair of composites τ = 〈α, β〉 satisfying the composition condition

and having β 6= λ is called a transformation with the context α and body β,

denoted

context(τ)
def
= α, body(τ)

def
= β.

If α = λ, the transformation is called context free. I

As mentioned above, transformations serve the role of primitives at the next

level and, consequently, form composites. For a sequence of basic level primitives, the

existence of their composition is determined by the attachment condition expressed
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Figure 3.1: Pictorial representation of a transformation τ = 〈〈π16〉, 〈π15, π17〉〉.

in terms of sets of sites. At the first level, things become more complicated, since

first level primitives (i.e., basic level transformations) are context-dependent.

Definition 38. A transformation τ = 〈α, β〉 is applicable to a composite γ, if α ¹ γ

and the pair 〈γ, β〉 satisfies the composition condition. If τ is applicable to γ, the

result of application of τ to γ (Fig. 3.2) is defined as the composite

γ C τ
def
= γ C β.2

I

According to the above definition, application of a transformation τ = (α, β) to

a composite γ can be viewed as composition of γ and β subject to α being a part of

γ. The transformation does not delete any parts from the composite, and therefore

will be called a constructive transformation. The reason of imposing such restriction

is the requirement of strong acyclicity, which has been discussed in Section 2.3.4

in relation with evolutionary processes, and has already resulted in imposing the

2In this formula, the same notation (C) is used for two different operations: application of a
transformation to a composite (left) and composition of two composites (right). This should not
lead to confusion, because composites can be thought of as context-free transformations.
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Figure 3.2: Application of transformation τ from Fig. 3.1 to a composite γ =
〈π18, π16, π19〉. The shaded part of γ is the context of τ .

part/whole distinguishability condition on the semantic equivalence. Another reason

is that non-deleting transformations are easier to learn, since the context and body of

one transformation cannot be erased by other transformations and, therefore, remains

explicitly present in the training set (the learning problem is discussed in Section 5.5).

I am not saying that they are very easy to learn, given that the training set is

represented by structs, which are quite complex, but what I am saying is that if

additive transforms are not efficiently learnable, than it is hard to imagine which

transforms are.

Let me point out some basic distinctions of the transformations from the Chom-

sky production rules. In a production rule (regardless of whether it is based on strings,

graphs, or hypergraphs, and is context-free or context-sensitive), the context is a sub-

string (subgraph) composed of non-terminals. Let us try to understand the meaning

of non-terminals from the representational point of view. I claim that non-terminal

symbols only label (name) certain constructive processes but do not represent them,

because a non-terminal symbol on its own does not contain any information about the
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corresponding constructive process. For example, non-terminal symbol NOUN labels

a constructive process that presumably takes place whenever a mental representation

of a noun is generated, but this non-terminal does not represent this constructive

process. As a consequence, when several constructive processes need to be described,

each requires a separate non-terminal symbol to label it (one symbol will not enable

us to distinguish between the processes). Hence, the number of non-terminals grows

proportionally to the number of constructive processes, which results in excessively

large grammars. This phenomenon has been observed, when context-free grammars

were applied to the description of natural languages (see an example of such gram-

mar at [Car01]). It is this inevitable growth of the number of non-terminals, which

indicates that composite contexts are necessary.

Given this, the deficiency of conventional symbolic representations, such as strings,

trees, and graphs, becomes even more apparent. Indeed, for context-sensitive gram-

mars, even the parsing problem (to say nothing about grammatic inference) is in-

tractable (see [RS97, Section 4.2.2.6] and [Kar72]).

I would like to conclude the argument for the necessity of preserving the con-

structive history (non-deleting transformations) and having composite contexts that

address this history with the following quotation from Noam Chomsky’s ground-

setting paper [Cho65], in which formal grammars were first introduced:
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“We cannot incorporate the rule (26) or anything like it in a grammar

[Σ, F ] of phrase structure, because of certain fundamental limitations

on such grammars. The essential property of rule (26) is that in order

to apply it to sentences S1 and S2 to form the new sentence S3 we must

know not only the actual form of S1 and S2 but also their constituent

structure—we must know not only the final shape of these sentences,

but also their ‘history of derivation’.”

Noam Chomsky, “Syntactic Structures” [Cho65]

This quote can be considered as an indication that explicit representation con-

structive history is indeed important and that transformations need to refer to it via

complex contexts. It is quite surprising to me that, even though “Syntactic Struc-

tures” were published half a century ago, this indication, so far, has not influenced

much the formalisms that followed the line of phrase structure grammars.

3.1.2 First level primitives and composites

From now on, transformations will be called first level primitives; the set of all trans-

formations is denoted Π̇. Next, an attachment condition for a sequence of first level

primitives is introduced, which leads to the definition of the concept of a first level

composite. Note the difference between the attachment of two first level primitives,

which results in a first level composite, and the application of a first level primitive

to a basic level composite, which results in a basic level composite.

Definition 39. Let S = 〈π̇1, π̇2, . . . , π̇n〉 be a sequence of first level primitives π̇i =
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〈αi, βi〉 (i ∈ [1, n]).3 Sequence S satisfies the attachment condition, if there ex-

ists composite γ, called an initial composite, such that the struct (n + 1)-tuple

[[γ, β1, . . . , βn]] is composable and for all i ∈ [1, n],

[[αi, βi]] ¹ Ki−1([[γ, β1, . . . , βi]]).
4

If S satisfies the attachment condition, it is called a first level composite and

denoted by a dotted Greek letter, e.g., γ̇.

The set of all initial composites for γ̇ is denoted by init(γ̇). Also, the following

composite tuple

body(γ̇)
def
= 〈body(π̇1), . . . , body(π̇n)〉

is called the body of first level composite γ̇ = 〈π̇1, . . . , π̇n〉. I

Consider the inductive structure of insertion strings over the alphabet {a, b, c}

(see Section 2.3.4) and the running example in Sections 2.1–2.2. In Fig. 3.3, four

sequences of first level primitives satisfying the attachment condition are shown.

In Fig. 3.4, the results (see Def. 36) of composite tuples 〈γ〉, 〈γ, β1〉, 〈γ, β1, β2〉,

corresponding to the four sequences in Fig. 3.3, are shown. The existence of the

results means that the struct tuple [[γ, β1, . . . , βn]] is composable and for all i ∈ [1, n],

[[αi, βi]] ¹ Ki−1([[γ, β1, . . . , βi]]).

Note that in the example (d) [γ2] ∼ [γ1 C π̇1].

Another example of a first level composite and its i-compositions is shown in

Fig. 3.5. Other sequences of i-compositions can be obtained by changing the initial

composite γ, e.g., by adding other basic level primitives to it (see Fig. 3.6).

3[1, n] = {1, 2, . . . , n}.
4See Def. 34 for the definition of Ki.
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attachment condition.
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Figure 3.5: A first level composite and the corresponding sequence of i-compositions.

The definitions of composition and part/whole relation for first level composites

are straightforward (compare to Lemma. 1 and Def. 8):

Definition 40. A pair of first level composites 〈α̇, β̇〉 satisfies the composition con-

dition, if the concatenation of sequences α̇ and β̇ satisfies the attachment condition.

In this case, the result of this concatenation is a first level composite, which will be
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Figure 3.6: Some initial composites of the first level composite from Fig. 3.5.

called the composition of α̇ and β̇ and denoted α̇ C β̇. I

It is easy to show that first level composition operation is associative.

Definition 41. A first level composite α̇ is a part of a first level composite β̇,

denoted α̇ ¹ β̇, if β̇ = γ̇1 C α̇ C γ̇2 for some composites γ̇1, γ̇2. The set of all parts of

a composite β̇ will be denoted Parts(β̇). I

Again, one can easily show that the part/whole relation is a partial ordering.

3.1.3 Sites of first level composites

In the ETS model, sites, in general, are responsible for the specification of whether

and how two primitives are attachable (see Def. 2) and, also, whether two composites

are composable (Lemma 6). At the basic level, this role is played by sets denoted

init, term, and sites: according to the attachment and composition conditions, these

sets contain all necessary information to specify whether and how primitives can be

attached or composites can be composed. At the first level, a similar role is played by

the contexts and bodies of transformations (these contexts and bodies are basic level

composites). We have already introduced the set init(γ̇) of initial composites for a

first level composite γ̇, which now can be naturally called the set of initial sites of
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γ̇. Let us introduce the set of terminal sites for a first level composite as well:

Definition 42. For a first level composite γ̇ and every γ ∈ init(γ̇), the set

termγ(γ̇)
def
= res(〈γ, body(γ̇)〉)

is called the set of terminal composites of γ̇ corresponding to the initial composite

γ.

The set of site pairs for γ̇ is defined as the following set of composite pairs:

sites(γ̇)
def
= {〈γ, γ ′〉 | γ ∈ init(γ̇), γ ′ ∈ termγ(γ̇)}.

For a site pair 〈γ, γ ′〉, the first component is called an initial composite and

the second a terminal composite. The sets of all initial and terminal composites

for a first level composite γ̇ will be denoted by init(γ̇) and term(γ̇), respectively. I

Lemma 30. If composites α̇ and β̇ satisfy the composition condition, then

sites(α̇ C β̇) = {〈α, γ〉 | ∃ β 〈α, β〉 ∈ sites(α̇), 〈β, γ〉 ∈ sites(β̇)}.

Proof. Let 〈α, γ〉 ∈ sites(α̇ C β̇). Take any β ∈ termα(α̇). Then, it follows from

the definition of termα(α̇) and the Result criterion (L. 29) that β ∈ init(β̇), hence

〈α, β〉 ∈ sites(α̇) and 〈β, γ〉 ∈ sites(β̇).

Vice versa, if 〈α, β〉 ∈ sites(α̇) and 〈β, γ〉 ∈ sites(β̇), then, obviously, 〈α, γ〉 ∈

sites(α̇ C β̇). ¥

Lemma 31. (Composition Criterion) A pair of first level composites 〈α̇, β̇〉 satisfies

the composition condition if and only if

term(α̇) ∩ init(β̇) 6= ∅.
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Proof. Let α̇ = 〈π̇1, . . . , π̇m〉, β̇ = 〈σ1, . . . , σn〉 be a pair of first level composites

satisfying the composition condition. Let γ ∈ init(α̇ C β̇), then, by definition, the

struct tuple [[γ, body(α̇), body(β̇)]] is composable, hence so is [[γ, body(α̇)]]. Take any

γ′ ∈ res(〈γ, body(α̇)〉), then γ ′ ∈ term(α̇). By the definition of result, we have

[[γ′, body(β̇)]] = Km([[γ, body(α̇), body(β̇)]]),

hence γ′ ∈ init(β̇). Therefore, γ ′ ∈ term(α̇) ∩ init(β̇) 6= ∅.

Vice versa, let γ ′ ∈ term(α̇) ∩ init(β̇). Take any γ ∈ init(α̇) such that γ ′ ∈

termγ(α̇). Since

Km([[γ, body(α̇), body(β̇)]]) = [[γ ′, body(β̇)]]),

the struct tuple S = [[γ, body(α̇), body(β̇)]] is attachable and for all i ∈ [1,m], j ∈

[1, n],

[[context(π̇i), body(π̇i)]] ¹ Ki−1(S), [[context(σ̇j), body(σ̇j)]] ¹ Km+j−1(S),

which means that α̇ and β̇ satisfy the composition condition. ¥

For a first level composite, there might exist several “minimal” initial composites,

which is why the set init(γ̇) cannot be replaced by a single composite, or even a single

struct. For example, consider the inductive structure of insertion strings with an ad-

ditional semantic identity shown in Fig. 3.7(a). The first level composite in Fig. 3.7(b)

has at least two different initial composites (the corresponding attachment sequences

are shown in Fig. 3.7(c)). Both of these initials are minimal, i.e., no primitives can

be removed from them, and they also do not belong to the same struct.

The minimal terminal composite may also not be unique, as the example in

Fig. 3.8 shows. Again, take the inductive structure of insertion strings plus two
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Figure 3.7: Different minimal initial composites of a first level composite.

semantic identities shown in Fig. 3.8(a); the first level composite in Fig. 3.8(b) has

at least two different minimal terminal composites, shown in Fig. 3.8(c).

Non-uniqueness of initial and terminal composites, perhaps, reflects quite a nat-

ural phenomenon, which can be explained using the following chemical metaphor.

Suppose that contexts “c” and “d” in Fig. 3.8 represent different catalysts of a chem-

ical reaction, which is represented by the entire first level composite. Suppose that

the reaction occurs, if either catalyst “c” or catalyst “d” is present. For the first rep-

resentational level, which in this case is the molecular level, it only matters whether

the reaction occurs, but the particular catalyst that facilitates it is not important,

hence there is only one representation of the reaction described by the corresponding

first level composite. At the basic, atomic, level, both initial and terminal composites
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Figure 3.8: Different minimal terminal composites for a first level composite.

contain the information about the catalyst, hence they can vary.

3.1.4 First level formations

In the ETS model, a formation corresponds uniquely to a single constructive process.

Thus, first level formations will correspond to the processes, whose steps are described

by first level primitives. Note that multiple first level composites may correspond to a

single constructive process. The reason for this is similar to the one at the basic level,

where, by definition, composites transformable into each other via a site replacement
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corresponded to the same constructive processes.

The role of sites at the first level is played by basic level composites, which

form the contexts and bodies of transformations. Hence, the first level composites

corresponding to the same constructive processes, should be described via some sort

of replacement of these basic level composites. Since the latter have structure (as

opposed to basic level sites), they cannot be replaced arbitrarily; we suggest that they

are replaced by semantically equivalent ones, which implies the following definition.

Definition 43. For first level composites α̇ and β̇, of length n each, we shall write

α̇ ≈ β̇, if [[body(α̇)]] = [[body(β̇)]] and [[α̇i]] = [[β̇i]] (i = 1, . . . , n).

A first level formation is an equivalence class of first level composites modulo

≈. The first level formation containing γ̇ is denoted by [γ̇]. I

Thus, the semantic equivalence relation plays the role of site replacement map-

pings at the first representational level.

In Fig. 3.9, two first level composites from a first level formation are shown.5

This formation contains the composite from Fig. 3.5 as well.

The following lemma asserts that the set of all body-tuples of first level compos-

ites from a first level formation forms a struct n-tuple, as well as, for every i ∈ [1, n],

the set of all i-th first level primitives of these composites forms a struct pair.

Lemma 32. (Composite Reconstruction) For a first level composite γ̇0 of length

n,

{body(γ̇) | γ̇ ∈ [γ̇0]} = [[body(γ̇0)]]

5Note that the only difference between these two composites is in the contexts of their last
transformations.
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Figure 3.9: First level composites from the same first level formation.

and

{γ̇i | γ̇ ∈ [γ̇0]} = [[γ̇0i
]], i = 1, . . . , n.

Proof. By definition of the relation ≈ on first level composites, for all γ̇ ∈ [γ̇0],

[[body(γ̇)]] ⊆ [[body(γ̇0)]],

which implies that

{body(γ̇) | γ̇ ∈ [γ̇0]} ⊆ [[body(γ̇0)]].

To prove the inverse inclusion, take any composite tuple

〈β1, . . . , βn〉 ∈ [[body(γ̇0)]].

For each i = 1, . . . , n, the i-th projection of the struct tuple [[body(γ̇0)]] is a struct,

due to the Struct Projection lemma (L. 24), therefore βi ∈ [[body(γ̇0i
)]]. Also, the

second projection of the struct pair [[γ̇0i
]] is equal to [[βi]], hence there exists composite
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αi such that 〈αi, βi〉 ∈ [[γ̇0i
]]. Then the following sequence of first level primitives

S = 〈〈α1, β1〉, . . . , 〈αn, βn〉〉

satisfies the attachment condition. Indeed, take any γ0 ∈ init(γ̇0). There exists

composite γ such that

[[γ, β1, . . . , βn]] = [[γ0, body(γ̇0)]],

since, by Struct Projection lemma, the projection of the (n+1)-struct tuple [[γ0, body(γ̇0)]]

onto coordinates

i = 〈2, . . . , n+ 1〉

is a struct n-tuple.

Since γ̇0 is a first level composite, struct tuple [[γ0, body(γ̇0)]] is composable, and

so is [[γ, β1, . . . , βn]], because it is the same struct (n + 1)-tuple. Moreover, since

i-composition of a struct n-tuple is uniquely defined (Lemma 28), we have that

[[αi, βi]] = [[γ̇0i
]] ¹ Ki−1([[γ0, body(γ̇0)]][1,i+1]) = Ki−1([[γ, β1, . . . , βi]]).

Thus, 〈〈α1, β1〉, . . . , 〈αn, βn〉〉 is a first level composite, hence

{body(γ̇) | γ̇ ∈ [γ̇0]} ⊇ [[body(γ̇0)]].

To show that for all i ∈ [1, n],

{γ̇i | γ̇ ∈ [γ̇]} = [[γ̇0i
]],

one can observe that, by Struct Projection lemma, for all i ∈ [1, n], βi can be any

composite from the struct [[body(γ̇0i
)]], and then αi can then be chosen arbitrarily so

that [[αi, βi]] = [[γ̇0i
]]. ¥
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One can show that if α̇ ≈ β̇ , then β̇ can be obtained from α̇ through a finite

sequence of direct conversions w.r.t. semantic identities, which are applied to the

contexts and bodies of the first level primitives from α̇ and/or site replacements

consistent across body(α̇) and within each primitive of α̇. That is, relation ≈ at the

first level is decidable.

3.1.5 First level formation tuples

The concept of formation tuple is extended to the first representational level. The

meaning and the technical purpose of this concept are exactly the same as they

were at the basic level, so we refer the reader to Section 2.2.1. This similarity also

will be supported by a first level analogue of the Formation Projection lemma (see

Lemma 13).

Definition 44. For first level composite tuples Ȧ = 〈α̇1, . . . , α̇n〉 and Ḃ = 〈β̇1, . . . , β̇n〉,

we shall write Ȧ ≈ Ḃ, if

1. [[body(α̇1), . . . , body(α̇n)]] = [[body(β̇1), . . . , body(β̇n)]];

2. [[α̇ki
]] = [[β̇ki

]], k ∈ [1, n], i ∈ [1, |α̇k|].

An equivalence class of first level composite tuples w.r.t. ≈ is called a first level

formation tuple. The first level formation tuple containing Ȧ is denoted by [Ȧ]. I

The definition of projection for first level formation tuples repeats the corre-

sponding basic level definition (see Defs. 13,14) literally, so it is omitted here.

Lemma 33. For any first level formation tuple Ḋ = [γ̇1, . . . , γ̇n] and any non-empty

subsequence i = 〈i1, . . . , ik〉 of 〈1, 2, . . . , n〉, the projection of Ḋ onto i, Ḋi, is a

formation k-tuple.
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Proof. Take a composite tuple

Ȧ = 〈α̇1, . . . , α̇n〉 ∈ Ḋ

and let Ȧ′ = Ȧi.

1. First, prove that Ḋi ⊆ [Ȧ′]. Take any composite tuple Ḃ′ ∈ Ḋi, then, by

definition of projection, there exists Ḃ ∈ Ḋ such that Ḃi = Ḃ′. Since both Ȧ

and Ḃ belong to Ḋ, Ȧ ≈ Ḃ. Let

Ḃ = 〈β̇1, . . . , β̇n〉,

then by definition of the relation ≈ on composite tuples (Def. 44),

[[body(α̇1), . . . , body(α̇n)]] = [[body(β̇1), . . . , body(β̇n)]]

and

[[α̇pj
]] = [[β̇pj

]], p ∈ [1, n], j ∈ [1, |α̇p|].

According to the Struct Projection lemma (L. 24),

[[body(α̇i1), . . . , body(α̇ik)]] = [[body(β̇i1), . . . , body(β̇ik)]],

hence, by definition of relation ≈,

〈α̇i1 , . . . , α̇ik〉 ≈ 〈β̇i1 , . . . , β̇ik〉.

It remains to observe that

Ȧ′ = 〈α̇i1 , . . . , α̇ik〉

Ḃ′ = 〈β̇i1 , . . . , β̇ik〉,

hence Ḃ′ ∈ [Ȧ′].
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2. Second, prove that [Ȧ′] ⊆ Ḋi. Take any Ḃ′ ∈ [Ȧ′], i.e., Ḃ′ ≈ Ȧ′. Let

Ḃ′ = 〈β̇′1, . . . , β̇
′
k〉.

Then, by definition of ≈ on composite tuples,

[[body(α̇i1), . . . , body(α̇ik)]] = [[body(β̇1), . . . , body(β̇k)]]

and

[[α̇ipj
]] = [[β̇pj

]], p ∈ [1, k], j ∈ [1, |α̇ip |].

Note that

[[body(α̇i1), . . . , body(α̇ik)]] = [[body(α̇1), . . . , body(α̇n)]]j,

where j is the set of indices of elements in the composite tuple

body(α̇1), . . . , body(α̇n)

that are occupied by

body(α̇i1), . . . , body(α̇ik),

i.e.,

j =
k⋃

j=1

[q(ij), q(ij + 1)− 1], q(i) =
i−1∑

j=1

|α̇j|, i ∈ [1, n].

Let

q =
n∑

j=1

|α̇j|.

According to the Struct Projection lemma, there exists a basic level composite

tuple

〈β1, . . . , βq〉 ∈ [[body(α̇1), . . . , body(α̇n)]]
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such that

〈β1, . . . , βq〉j = 〈body(β̇1), . . . , body(β̇k)〉.

For i ∈ [1, n] \ {i1, . . . , ik}, applying the Struct Projection lemma again, we

obtain that

〈βq(i), . . . , βq(i+1)−1〉 ∈ [[body(α̇i)]].

Hence, due to the Composite Reconstruction lemma (L. 32), there exists a first

level composite β̇i ∈ [α̇i] such that

body(β̇i) = 〈βq(i), . . . , βq(i+1)−1〉.

For j ∈ {1, . . . , k}, let β̇ij
def
= β̇′j. For the constructed composite tuple Ḃ =

〈β̇1, . . . , β̇n〉, we have Ḃ ≈ Ȧ, therefore Ḃ ∈ Ḋ, as well as Ḃi = Ḃ′. Hence,

Ḃ′ ∈ Ḋi.

¥

Lemma 34. If 〈α̇0, β̇0〉 ≈ 〈α̇, β̇〉 and sites(α̇0) = sites(β̇0), then sites(α̇) = sites(β̇).

Proof. By definition of relation ≈,

[[body(α̇0), body(β̇0)]] = [[body(α̇), body(β̇)]].

Let 〈γ, γ ′〉 ∈ sites(α). According to the Struct Projection lemma, there exist com-

posites γ0, γ
′
0 such that

[[γ0, γ
′
0, body(α̇0), body(β̇0)]] = [[γ, γ ′, body(α̇), body(β̇)]],

which implies that

[[γ0, γ
′
0, body(α̇0)]] = [[γ, γ ′, body(α̇)]]
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and, hence, 〈γ0, γ
′
0〉 ∈ sites(α̇0). Since sites(α̇0) = sites(β̇0), we obtain that 〈γ0, γ

′
0〉 ∈

sites(β̇0). Now the equality

[[γ0, γ
′
0, body(β̇0)]] = [[γ, γ ′, body(β̇)]]

implies that 〈γ, γ ′〉 ∈ sites(β̇).

Hence, sites(α̇) ⊆ sites(β). The opposite inclusion can be shown symmetrically,

hence sites(α̇) = sites(β̇). ¥

The following lemma expresses the fact that relation ≈ is a congruence w.r.t.

composition.

Lemma 35. If 〈α̇, β̇〉 satisfies the composition condition and 〈α̇, β̇〉 ≈ 〈α̇′, β̇′〉, then

〈α̇′, β̇′〉 satisfies the composition condition as well and α̇ C β̇ ≈ α̇′ C β̇′.

Proof. Take any γ ∈ init(α̇ C β̇). According to the definition of 〈α̇, β̇〉 ≈ 〈α̇′, β̇′〉,

[[body(α̇), body(β̇)]] = [[body(α̇′), body(β̇′)]]. (∗)

Hence, by Struct Projection lemma, there exists γ ′ such that

[[γ, body(α̇), body(β̇)]] = [[γ ′, body(α̇′), body(β̇′)]],

which implies that concatenation of sequences α̇′ and β̇′ is a first level composite, i.e.,

α̇ and β̇ satisfy the composition condition. The relation α̇ C β̇ ≈ α̇′ C β̇′ also follows

from the equality (∗). ¥

3.1.6 First level semantic identities and equivalence

The concepts of a semantic identity and semantic equivalence relation are also gen-

eralized to the first representational level. The basic logic of the definitions remains,

unchanged, however, the few minor differences that occur are made explicit here.
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For the basic level, we have defined a semantic identity as a formation pair [α, β]

satisfying the following condition: for every composite pair 〈α, β〉 ∈ [α, β],

init(α) = init(β), term(α) = term(β).

For the same reasons (see Section 2.2.4), the same condition is imposed on the first

level semantic identities, which now acquires the following form:

Definition 45. A first level formation pair [α̇, β̇] will be called a first level semantic

identity, if for every composite pair 〈α̇, β̇〉 ∈ [α̇, β̇], sites(α̇) = sites(β̇). I

Note that, according to Lemma 34, the above condition is invariant w.r.t. relation

≈, hence, if [α̇, β̇] contains at least one composite pair with the equal sets of site pairs,

then it is a semantic identity.

In order to define semantic equivalence, fix a set of semantic identities İ, define

the corresponding direct convertibility relation
İ
↔ and take its reflexive transitive

closure to obtain the semantic equivalence relation ∼İ . These definitions repeat

Defs. 15,16,17 literally, so I refer the reader to Sections 2.2.2–2.2.4. Here I only give

an example and reprove the key lemmas.

In Fig. 3.10, five semantically equivalent first level formations are shown. The

corresponding set of first level semantic identities İ contains all possible identities

(this will be the case for all subsequent examples at the first representational level).

The formations differ in the orders of attachments of first level primitives B1, C,

and B2 (schematically shown on the right of each formation). These formations look

exactly as basic level primitives of the insertion string inductive structure. There

exist no other semantically equivalent formations composed of the same five first level
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primitive types.6. Although, semantically equivalent first level formations composed

of other first level primitive types do exist, for example, the one in Fig. 3.11.

Lemma 36. If α̇
ċ
↔ β̇, where [ċ] is a semantic identity, then [α̇, β̇] is a semantic identity

as well, i.e., sites(α̇) = sites(β̇).

Proof. The proof directly follows from Lemma 30 and the definition of the relation

ċ
↔. ¥

Lemma 37. First level semantic equivalence is a congruence w.r.t. composition, i.e.,

if 〈α̇, β̇〉 satisfies the composition condition and [α̇, β̇] ∼İ [α̇′, β̇′], then 〈α̇′, β̇′〉 satisfies

the composition condition as well and

[α̇ C β̇] ∼İ [α̇′ C β̇′].

Proof. First, prove that if [α̇, β̇]
[ċ]
↔ [α̇′, β̇′], where ċ is a semantic identity, and 〈α̇, β̇〉

satisfies the composition condition, then so does 〈α̇′, β̇′〉.

By definition, there exist composite pairs 〈α̇0, β̇0〉 ∈ [α̇, β̇], 〈α̇′0, β̇
′
0〉 ∈ [α̇′, β̇′], and

ċ0 ∈ [ċ] such that 〈α̇0, β̇0〉
ċ
↔ 〈α̇′0, β̇

′
0〉. According to Lemma 35, 〈α̇0, β̇0〉 satisfies the

composition condition. It follows from Lemma 30 and the definition of the relation
ċ0↔

that so does 〈α̇′0, β̇
′
0〉, hence, according to Lemma 35, 〈α̇′, β̇′〉 satisfies the composition

condition as well.

Also, immediately from the definition of
ċ0↔, we have that α̇0 C β̇0

ċ0↔ α̇′0 C β̇′0,

hence, by definition of
[ċ]
↔, [α̇ C β̇]

[ċ]
↔ [α̇′ C β̇′].

Consider a relation R on the set of formation pairs defined as follows:

〈[α̇, β̇], [α̇′, β̇′]〉 ∈ R

6By a first level primitive type we mean a formation of the form [π̇], where π̇ is a first level
primitive.
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Figure 3.10: Semantically equivalent first level formations.
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Figure 3.11: Another first level formation equivalent to the ones in Fig. 3.10 but
composed of different primitive types.

if and only if either both [α̇, β̇] and [α̇′, β̇′] satisfy the composition condition and

[α̇ C β̇] ∼İ [α̇′ C β̇′], or none of them does so.

Relation R is reflexive, symmetric, and transitive, hence an equivalence relation.

Moreover, as shown above, R contains all pairs 〈[α̇, β̇], [α̇′, β̇′]〉 such that [α̇, β̇]
İ
↔

[α̇′, β̇′]. Since ∼İ is, by definition, the minimal equivalence relation containing these

pairs, ∼İ is contained in R, which implies the statement of the lemma. ¥

Note that the situation with congruence of the semantic equivalence relation

w.r.t. composition is somewhat simpler at the first level than at the basic level:

there is no need to introduce the auxiliary concept of weak composition, since the

congruence already holds for the regular operation of composition.

Lemma 38. If [α̇]
[ċ]
↔ [β̇], then

1. For all ċ ∈ [ċ], there exist α̇ ∈ [α̇], β̇ ∈ [β̇] such that α̇
ċ
↔ β̇.
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2. For all α̇ ∈ [α̇], there exist β̇ ∈ [β̇], ċ ∈ [ċ] such that α̇
ċ
↔ β̇.

Proof. We shall only prove the second statement, since the proof of the first one is

similar.

By definition of [α̇]
[ċ]
↔ [β̇], there exist α̇0 ∈ [α̇], β̇0 ∈ [β̇], ċ0 ∈ [ċ] such that α̇0

ċ0↔ β̇0.

According to the definition of
ċ0↔, this means that there exist composites γ̇1, γ̇2

such that

α̇0 = γ̇1 C γ̇0 C γ̇2

β̇0 = γ̇1 C γ̇′0 C γ̇2,

where ċ0 = 〈γ̇0, γ̇
′
0〉 or ċ0 = 〈γ̇

′
0, γ̇0〉.

Let

γ̇1 = 〈π̇1, . . . , π̇i〉

γ̇0 = 〈π̇i+1, . . . , π̇j〉

γ̇2 = 〈π̇j+1, . . . , π̇n〉,

then α̇0 = 〈π̇1, . . . , π̇n〉. Since α̇0 ≈ α̇, the lengths of sequences α̇0 and α̇ have to be

equal, hence α̇ = 〈π̇′1, . . . , π̇
′
n〉 for some primitives π̇′1, . . . , π̇

′
n.

Take

γ̇′1 = 〈π̇′1, . . . , π̇
′
i〉

γ̇ = 〈π̇′i+1, . . . , π̇
′
j〉

γ̇′2 = 〈π̇′j+1, . . . , π̇
′
n〉,

then α̇ = γ̇ ′1 C γ̇ C γ̇ ′2 and [γ̇1, γ̇2, γ̇0] = [γ̇ ′1, γ̇
′
2, γ̇].

Applying the Formation Projection lemma, find γ̇ ′ such that

[γ̇1, γ̇2, γ̇0, γ̇
′
0] = [γ̇ ′1, γ̇

′
2, γ̇, γ̇

′],

which, also by Formation Projection lemma, implies that [γ̇, γ̇ ′] = [γ̇0, γ̇
′
0].
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From congruence of ≈ w.r.t. composition, we obtain that

[γ̇′1 C γ̇′ C γ̇′2] = [γ̇1 C γ̇′0 C γ̇′2] = [β̇].

Therefore, for ċ = 〈γ̇, γ̇ ′〉 and β̇ = γ̇ ′1 C γ̇′ C γ̇′2, we have α̇
ċ
↔ β̇. ¥

Lemma 39. If [α̇] ∼İ [β̇], then for all α̇ ∈ [α̇], there exists β̇ ∈ [β̇] such that sites(α̇) =

sites(β̇).

Proof. Consider relation R on the set of formations defined as follows:

R
def
= {〈[α̇], [β̇]〉 | ∀ α̇ ∈ [α̇] ∃ β̇ ∈ [β̇] sites(α̇) = sites(β̇) and

∀ β̇ ∈ [β̇] ∃ α̇ ∈ [α̇] sites(α̇) = sites(β̇)}.

Relation R is an equivalence relation and, according to Lemma 36 and the defi-

nition of
[ċ]
↔, contains relation

[ċ]
↔, which implies, by definition of ∼İ , that R contains

∼İ . ¥

A first level struct is defined as an equivalence class of first level formations

w.r.t. ∼İ . The following theorem states that, if the struct finiteness condition is

imposed at the basic level, then, regardless of the set İ of first level semantic identities,

all first level structs are finite. In particular, it implies that the semantic equivalence

relation at the first level is decidable.

Theorem 11. If the struct finiteness condition holds, then for every first level struct

α̇, the number of first level formations in it, |α̇|, is finite.

Proof. Fix a composite α̇0 ∈ α̇, and let 〈γ0, γ
′
0〉 ∈ sites(α̇0). According to Lemma 39,

for any formation [α̇] ∈ α̇, there exists composite α̇ ∈ [α̇] such that sites(α̇) =

sites(α̇0). This implies that

res(〈γ0, body(α̇)〉) ⊂ [[γ ′0]].
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According to Theorem 9, the set of all possible struct tuples [[γ0, body(α̇)]], such that

the above inclusion holds, is finite. Moreover, if α̇ = 〈π̇1, . . . , π̇n〉, then for all i ∈ [1, n],

[[π̇i]] ¹ Ki−1([[γ0, body(α̇)]][1,i+1]).

Hence, due to the struct finiteness condition and Theorem 6, there are finitely many

possibilities for each [[π̇i]]. According to the definition of relation ≈ on first level

composites, struct tuples [[body(α̇)]] and [[π̇i]] (i ∈ [1, n]) uniquely specify a first level

formation [α̇]. ¥

3.1.7 First level inductive structure

The introduction of the first representational level is concluded with the concept of

a first level inductive structure, accompanied by an example on insertion strings.

Similarly to Section 2.1.7, two first level primitives π̇ = 〈α, β〉 and σ̇ = 〈α′, β′〉

will be called equivalent, if for the composites 〈π̇〉 and 〈σ̇〉 we have 〈π〉 ≈ 〈σ〉.

According to the definition of relation ≈ on first level composites, this is equivalent

to [[α, β]] = [[α′, β′]]. Thus, struct tuple [[α, β]] will be called a first level primitive

type and denoted [π̇].

A set of first level primitives Π̇ is called closed under site replacements,

if for all π̇ ∈ Π̇, [π̇] ⊂ Π̇. Clearly, to specify a set of primitives closed under site

replacements, it is sufficient to fix a set of primitive types ˙̄Π and one primitive, called

a specifying primitive, for every [π̇] ∈ ˙̄Π.

Similarly to Section 2.3, we define a first level inductive structure 〈Π̇, İ〉

(where İ is a set of first level semantic identities) as the collection of all first level

concepts that can be derived from Π̇ and İ, including the set of first level composites

build out of primitives from Π̇, Γ̇Π̇, the set of formations ˙̄ΓΠ̇, the semantic equivalence
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relation ∼İ , the set of structs Θİ , and the part/whole relations ¹ on each of these

sets. Note that there is no need to mention the restriction that ∼İ satisfies the struct

finiteness condition, since this requirement automatically follows from Theorem 11.

3.1.8 An example of first level inductive structure based on
insertion strings

Let us extend the inductive structure of insertion strings (Section 2.3.4) to a first

level inductive structure 〈Π̇, İ〉. For the specifying primitives, take transformations

π̇1 and π̇2 shown in Fig. 3.12, and let Π̇ = [π̇1] ∪ [π̇2].
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Figure 3.12: Specifying first level primitives.

A typical first level composite is shown in Fig. 3.13a, together with its pictorial

representation in Fig. 3.13b.

Note that the pictorial representation uniquely specifies the composite, however,

not all pictorial representations are admissible. For example, there exists no first level

composite with the pictorial representation shown in Fig. 3.14.

The pictorial representation can be used for two purposes: to visualize a first

level composite and to obtain a compact encoding for it. It should be noted here
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Figure 3.13: A first level composite.
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Figure 3.14: An inadmissible pictorial representation for a first level composite.

that the standard encoding shown in Fig. 3.13a is not feasible for computational

purposes because of its obvious redundancy and implied growth in size. On the other

hand, one has to be careful with the encoding based on the pictorial representation,

since it does not reflect the complexity of verification of the attachment condition.

This verification, as it is clear from Def. 39, involves context matching for each first

level primitive in the sequence. Thus, our ability to work efficiently with first level
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structures depends on the efficiency of the context matching algorithm, which, to

a great extent, depends on the basic level semantic identities. This algorithm, in

general, can be quite complex, although it always exists due to the struct finiteness

condition, as shown in Section 2.3.7). In the inductive structure of insertion strings,

the context matching operation requires finding a subsequence in a string, which is

easy. In the inductive structure of graphs, the problem is equivalent to the subgraph

isomorphism problem, which is NP-complete [Ga79]). That is why an additional

informal assumption is made, that the contexts of first level primitives are small, or,

in other words, the contexts are always matched locally. This locality requirement

has not been reflected in our definitions so far, but it should be kept in mind in view

of its direct relation to the complexity of the context matching algorithm. A detailed

analysis of computational complexity of verification of the attachment condition, as

well as an efficient implementation of first (and higher) level inductive structures, is

one of the primary goals for future research.

An example of a first level semantic identity is shown in Fig. 3.15a. The forma-

tion pair shown in this figure satisfies the semantic identity condition, since the two

composites in it have the same sets of first level site pairs, the smallest of which is

shown in Fig. 3.15b.7 This identity (call it [ċ]) induces all other semantic identities,

i.e., if İ is the set of all possible first level semantic identities, then ∼İ=∼[ċ].

Since every struct in the inductive structure 〈Π̇, İ〉 has a unique minimal site

pair, there is a one-to-one correspondence between first level structs of 〈Π̇, İ〉 and

their terminal structs (which are basic level structs). It will be shown in Section 5.3

that the set of terminal composites for a first level struct can always be represented

7In this case, as opposed to the general case, the smallest site pair does exist.
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Figure 3.15: A first level semantic identity and a site pair for composites in it.

as a disjoined union of structs. For example, the first level struct shown in Fig. 3.16a

corresponds to its minimal terminal struct, which, in turn, correspond to the string

aba abab . . . ab
︸ ︷︷ ︸

n+1

.

Similarly, the minimal struct that corresponds to the first level struct shown in

Fig. 3.16b, corresponds to the string

abaaba ab . . . ab
︸ ︷︷ ︸

n

b.

Note that the edit distances between the two first level structs and the corre-

sponding strings are different. Indeed, to convert the first struct into the second, one

needs to

(a) remove all primitives except for the first two, and

(b) attach n primitives to the middle site of the first primitive.
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This takes n − 1 + n = 2n − 1 editing operations. On the other hand, it is easy to

see that the edit distance between the corresponding strings is equal to 2.

Thus, editing operations at the first level are more specific, compared to the basic

level. This observation remains true for higher level structs (which will be introduced

in Section 3.2) as well.

To summarize this section:

• a transformation (=first level primitive) is a pair of composites τ = 〈α, β〉;

τ applies to a composite γ, if the latter contains α as a part, the result of

application being the composition of γ with β.

• a first level composite is a sequence of first level primitives satisfying the at-

tachment condition;

• the sites of a first level composite are basic level composites;

• first level formations are defined as first level composites “up to a site replace-

ment”, which allows to replace sites with semantically equivalent ones;
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• first level semantic equivalence is induced by a set of first level semantic identi-

ties, similarly to the basic level case, the equivalence classes are called first level

structs; the struct finiteness condition at the basic level implies that first level

structs are finite as well.
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3.2 Representational hierarchy

The construction of the first representational level (see Sections 2.4 and 3.1) can be

generalized by induction to an infinite hierarchy of representational levels.

The base case is the first level. Assume that the k-th representational level

(k ≥ 1) has been defined. That is, assume that (k − 1)-st level struct tuples have

been defined and all the statements of Section 2.4 hold for them, as well as k-th level

primitives, composites, formations, structs, and other k-th level concepts have been

defined as in Section 3.1 and all the statements of this section hold for them. In what

follows, to simplify notation, we will call the k-th level current, and the (k + 1)-level

(the one that is being introduced) the next level. Concepts, corresponding to the

current level, are denoted by dotted letters (e.g. π̇, α̇, [α̇], α̇), and the next level

concepts are denoted by double-dotted letters (e.g. α̈).

Following the same outline, we begin our definitions with the current level struct

tuples (as in Section 2.4), which will be followed by current level transformations

(=next level primitives), next level composites, formations, and structs. Most of

the definitions and statements remain unchanged (“level-invariant”), in which case

we just indicate it and refer the reader to the corresponding location in the above

sections. In a few cases, where the proofs of lemmas change slightly, we will redo

them.

Assume that a current level inductive structure 〈Π̇, İ〉 is fixed.

3.2.1 Current level struct tuples

The current level semantic equivalence relation is extended to current level struct

tuples exactly as in Def. 29. Then, the concept of a struct tuple projection (Def. 30)
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is defined and the Struct Projection lemma (L. 24) is restated, whose formulation and

proof are already level-invariant, hence remain unchanged. Lemma 25 is also restated,

and its proof is invariant as well. The proof of the next lemma, which states that the

part/whole distinguishability condition holds, involves site replacement mappings,

which is particular to the basic level and absent at all higher levels (since structural

site replacements cannot be expressed by just a mapping), therefore we restate and

reprove it here, even though the changes in the proof are minor.

Lemma 40. The current level semantic equivalence relation∼İ satisfies the part/whole

distinguishability condition.

Proof. Suppose, the part/whole distinguishability does not hold, i.e., there exist

formations [α̇] 6= [β̇] such that [α̇] ∼İ [β̇] and [α̇] ¹ [β̇].

By definition of ¹, there exist α̇ ∈ [α̇], β̇ ∈ [β̇] and γ̇1, γ̇2, not both empty, such

that β̇ = γ̇1 C α̇ C γ̇2. Since [α̇] ∼İ [β̇], we obtain [[α̇]] = [[γ̇1 C α̇ C γ̇2]].

According to the Struct Projection lemma, there exists γ̇ ′1 such that

[[γ̇1, α̇]] = [[γ̇ ′1, γ̇1 C α̇ C γ̇2]].

Since 〈γ̇1, α̇〉 satisfies the composition condition, by Lemma 37, 〈γ̇ ′1, γ̇1 C α̇ C γ̇2〉

must satisfy the composition condition as well, and

[[γ̇1 C α̇]] = [[γ̇ ′1 C γ̇1 C α̇ C γ̇2]].

Similarly, there exists composite γ̇ ′2 such that

[[γ̇1 C α̇ C γ̇2]] = [[γ̇ ′1 C γ̇1 C α̇ C γ̇2 C γ̇′2]].

Note that γ̇ ′1 and γ̇′2 cannot be both empty, therefore,

[γ̇1 C γ̇1 C α̇ C γ̇2 C γ̇′2] 6= [γ̇1 C α̇ C γ̇2].



CHAPTER 3. REPRESENTATIONAL HIERARCHY 146

The process can be continued and, as a consequence, we have an infinite sequence

of distinct formations

[α̇], [γ̇1Ċα̇ C γ̇2], [γ̇
′
1 C γ̇1 C α̇ C γ̇2 C γ̇′2], . . . ,

each of which belongs to the struct [[α̇]], which contradicts Theorem 11 stating that

the struct finiteness condition holds for the first level structs. ¥

The theorems that are related to the finiteness of struct tuples (Th. 6 and 7)

remain unchanged. The same is true for the definition of the part/whole relation on

struct tuples (Def. 31) and Theorem 8. The struct finiteness condition can now be

omitted in the statement of the theorem (due to Theorem 11), but the proof remains

the same:

Theorem 12. For any current level struct tuple Ṡ, the set of its parts

Parts(Ṡ)
def
= {Ṡ ′ | Ṡ ′ ¹ Ṡ}

is finite.

Note, however, that the proof of the above theorem refers to the following lemma

and theorem, which need to be restated and reproved here.

Lemma 41. For every formation [γ̇], the set Parts([γ̇]) is finite.

Proof. Suppose, Parts([γ̇]) is infinite. Fix a composite γ̇0 ∈ [γ̇]. By definition of ¹

on formations, for each [α̇] ∈ Parts([γ̇]), there exist composites α̇ ∈ [α̇] and γ̇ ∈ [γ̇]

such that α̇ ∈ Parts(γ̇). Since both γ̇ and γ̇0 belong to the same formation,

[[body(γ̇)]] = [[body(γ̇0)]],
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and

[[γ̇i]] = [[γ̇0i
]], (i ∈ [1, |γ̇|]),

which, according to the Struct Projection lemma, implies that

[[body(α̇)]] = [[body(α̇0)]],

and

[[α̇i]] = [[α̇0i
]], (i ∈ [1, |α̇|]),

hence α̇ ≈ α̇0. Since formations are equivalence classes of composites, all α̇0 corre-

sponding to distinct [α̇] ∈ Parts([γ̇]) are distinct. However, the set of parts for any

composite is finite, contradiction! ¥

Theorem 13. For any struct γ̇, the set Parts(γ̇) is finite.

The proof is exactly the same as the one for case 1 of Theorem 2, where the

reference to Lemma 12 should be replaced by the above Lemma 41.

Now we proceed to composable tuples, thus preparing for the definition of a next

level composite. The 1-composable composite and formation tuples are introduced

exactly as in Def. 32. Correctness follows from the fact that relation ≈ on current

level composites is a congruence w.r.t. concatenation (Lemma 35). A 1-composable

struct tuple is defined as in Def. 33, whose correctness is justified by an analogue of

Lemma 28, which is formulated in exactly the same way. We reprove it here:

Lemma 42. If Ḋ, Ḋ′ are 1-composable formation tuples and Ḋ ∼İ Ḋ
′, then K(Ḋ) ∼I

K(Ḋ′).

Proof. First, reformulate Lemma 37 for arbitrary formation tuples: Let [ċ] be a

semantic identity. If Ḋ
[ċ]
↔ Ḋ′ and Ḋ is 1-composable, then so is Ḋ′ and Ḋ

[ċ]
↔ Ḋ′. The

proof is similar and for this reason omitted.
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Now, consider a relation R on the set of formation n-tuples defined as follows:

〈Ḋ, Ḋ′〉 ∈ R if and only if either both Ḋ and Ḋ′ are 1-composable andK(Ḋ) ∼İ K(Ḋ),

or none of them is 1-composable.

Relation R is an equivalence relation and contains
İ
↔, hence it must also contain

∼İ , which implies the statement of our lemma. ¥

Composable struct tuples and their i-compositions are defined as in Def. 34. The

theorem about the finiteness of struct tuples corresponding to a given i-composition

(Th. 9) also remains unchanged.

The definition of a result for a composite tuple is identical to the one given in

Defs. 35,36, and the proofs of existence of a result (Theorem 10), as well as the Result

criterion (Lemma 29) are level-invariant.

3.2.2 Next representational level

A current level transformation is, as in Def. 37, defined as a pair of current level

composites 〈α̇, β̇〉 satisfying the composition condition and having β̇ 6= λ. The def-

inition of application of a current level transformation to a current level composite

copies Def. 38 literally. As mentioned above, “current level transformation” will be

considered as a synonym for “next level primitive”.

The attachment condition for a sequence of next level primitives S = 〈π̈1, . . . , π̈n〉

remains unchanged, and so does the definition of a next level composite γ̈ (Def. 39),

its body-tuple body(γ̈) and sites (Def. 42). Note that the sites of γ̈ are current level

composites.

The following definitions and statements are level-invariant, i.e., can be carried

over to the next level without any changes: composition operation on composites
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(Def. 40), part/whole relation (Def. 41), the formula for sites(α̈ C β̈) (Lemma 30),

Composition criterion (Lemma 31), next level formation (Def. 43), Composite Recon-

struction lemma (L. 32), next level formation tuple (Def. 44), Formation Projection

lemma (L. 33), invariance of site equality w.r.t. ≈ (Lemma 34) and congruence of ≈

w.r.t. composition (Lemma 35), next level semantic identity (Def. 45), direct convert-

ibility relation
Ï
↔, next level semantic equivalence ∼Ï , invariance of site equality w.r.t.

c̈
↔ (Lemma 36) and congruence of ∼Ï w.r.t. composition (Lemma 37), Lemmas 38

and 39, next level struct finiteness theorem (Th. 11), concluded by the concept of a

next level inductive structure Ï = 〈Π̈, Ï〉 (Section 3.1.7).

The definition of the next representational level is complete and, by induction, we

obtain an infinite hierarchy of representational levels. The above list of definitions and

lemmas can be considered as an axiomatic definition of a representational hierarchy.

Every representational level, starting from the second, satisfies all the axioms. The

first level has the same definitions of concepts, but the proofs may slightly vary when

they refer to the basic-level concepts. The basic level is somewhat exceptional, which

is clear why: it was not possible to construct level 0 following the same scheme, since

the scheme, being inductive by its nature, relies on the concepts of the (k−1)-st level

when the k-th level is introduced.

Consider the concept of an abstract representational hierarchy, which is a se-

quence of inductive structures

. . . I(−2), I(−1), I, İ, Ï, I(3), . . . ,

where each structure is related to the previous one according to our scheme. I conjec-

ture that the sequence cannot extend to −∞, otherwise the struct finiteness condition
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will not hold at any level (although, it seems possible to construct such bidirectional

infinite hierarchies of levels, if the struct finiteness condition is disregarded). I would

like to leave the conjecture open until a formal axiomatic system will replace the

inductive construction presented in this section.

To summarize this section, the infinite hierarchy of representational levels has

been introduced. This hierarchy, as was mentioned in the Introduction (see Sec-

tion 1.8), corresponds to the natural hierarchy of objects such as atoms, molecules,

cells, tissues, organs, organisms, etc, and is supposed to be constructed by the process

of inductive inference. Thus, the representational hierarchy offers a systematic way of

constructing representations for complex objects, provided that an inductive inference

algorithm is designed (see the next chapter for the formulation of the optimization

criterion for the inductive inference problem). It also allows to classify objects, since

a description of a representational level can be thought of as class description.



Chapter 4

Generative power of the
representational hierarchy

In order to justify the restriction that transformations are context-dependent at-

tachments, the generative power of the ETS transformations is compared to that of

other generative mechanisms. In particular, I single out a class of string-rewriting

systems that can be simulated by transformations in an appropriate basic level induc-

tive structure and give three examples of graph languages (all simple graphs, cubic

graphs, and graphs without triangle subgraphs) that can be generated by first level

transformations. Based on intuition gained from the latter examples, I formulate a

conjecture that any recursive language can be similarly generated in the ETS model,

thus making it Turing-complete.

4.1 Simulation of acyclic string-rewriting systems

with inductive structures

In this section we will address the problem of simulation of rewriting systems with

inductive structures and transformations. We have briefly touched this issue in Sec-

tion 3.1.1, when we were justifying our definition of transformations as context-

151
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dependent attachments, as opposed to deletions or substitutions. The reason for

restricting ourselves to attachments only was that transformations correspond to evo-

lutionary steps, and evolutionary processes in nature are, in general, irreversible (or

acyclic).

Rewriting systems, including all kinds of string and graph grammars, are prob-

ably the most developed, if not the only, formalism, in which classes of objects are

described in a generative form. Most of rewriting systems, however, include deletions

and substitutions, and it is quite clear that without them the theory of rewriting

systems would have lost much of its power and many of its applications.

This is not the case with inductive structures. Indeed, we will show that, by

incorporating proper semantic identities into the inductive structure, one can design

an inductive structure isomorphic (in the sense explained below) to any given string-

rewriting system, provided that its derivations are acyclic.

A string-rewriting system is defined as a pair (Σ, I), where Σ is a finite alphabet

and I = {(li, ri)}, i = 1, . . . , k is a finite set of rewriting rules, each of which is a pair

of strings over Σ [Bo93]. Let →i be the single-step rewriting relation induced by the

i-th rewriting rule, i.e.,

u→i v ⇐⇒ u = xliy, v = xriy.

Let −→+
I be the transitive closure of the single-step rewriting relation

→I= ∪
k
i=1 →i .

A string-rewriting system (Σ, I) will be called strongly acyclic, if u −→+
I v implies that

string v is not a subsequence in u, i.e., u cannot be obtained from v through a sequence
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of insertions. In other words, (Σ, I) is strongly acyclic, if for Ie = I ∪{(λ, a) | a ∈ Σ},

where λ is the empty string, the relation −→+
Ie

is irreflexive.

Clearly, strongly acyclic rewriting system may contain substitution rules. For

example, if I = {(abc, bd)}, then no string can be rewritten into any of its subse-

quences, thus the string-rewriting system is strongly acyclic. Deletions, however, are

not allowed.

The following theorem asserts that for any strongly acyclic string-rewriting sys-

tem, there exists an “isomorphic” set of transformations over a basic level certain

inductive structure. Thus, provided that the condition of strong acyclicity holds

(which, as mentioned above, often happens to be the case in applications), it justi-

fies why we do not lose any generative power by restricting our transformations to

context-dependent attachments only.

Theorem 14. For every strongly acyclic string-rewriting system (Σ, I), there exists

a basic level inductive structure 〈Π, I〉, an injective mapping φ : Σ∗ → Θ that maps

strings to the structs in this inductive structure, and a set of first level primitive types

T = {τ 1, . . . , τ k}, τ i = [[αi, βi]], such that for all u, v ∈ Σ∗ and i = 1, . . . , k

u→i v ⇐⇒ ∃ α ∈ φ(u), β ∈ φ(v), τ ∈ τ i β = α C τ.

Proof. Consider the inductive structure 〈Π, I〉 of insertion strings over Σ. Let map-

ping φ : Σ∗ → Θ be the mapping that corresponds strings to structs as it was defined

in Section 2.3.4.

For each rewriting rule (li, ri) ∈ I, construct a transformation τi = 〈αi, βi〉 as

follows (see an example in Fig. 4.1(a)):

1. let the context of τi, αi be any composite from φ(li);
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2. let the body of τi be a special primitive πi with the label i, |li| + 1 initial sites

and |ri|+ 1 terminal sites.
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Figure 4.1: Transformation and semantic identity corresponding to rewriting rule
(abc, bd).

Let Π′ be the set of primitives, whose specifying primitives are the above πi, i.e.,

Π′ is the minimal closed under site replacements set of primitives containing all πi.

Also, for each constructed transformation 〈αi, 〈πi〉〉, add a new semantic identity

[αi C 〈πi〉, βi] to I (see Fig. 4.1(b)), where βi is a composite from φ(ri) such that

its external sites match those of αi. Let I ′ be the set of thus constructed semantic

identities.

The fact that for all u, v ∈ Σ∗ and i = 1, . . . , k

u→i v ⇐⇒ ∃ α ∈ φ(u), β ∈ φ(v), τ ∈ τ i β = α C τ

follows directly from our construction.

It remains to show that the semantic equivalence relation induced by the con-

structed set of identities satisfies the struct finiteness condition.
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Define the one-way rewriting relation 7→ on composites as follows: for two com-

posites α, β and a composite pair c = 〈γ, γ ′〉 from one of the above constructed

semantic identities, let α 7→c β if and only if there exist composites γ1, γ2 such that

α = γ1 C γ C γ2

β = γ1 C γ′ C γ2.

Let 7→ be the union of all relations 7→c, where [c] ∈ I ′. Extend relation 7→ to the set

of structs of the inductive structure 〈Π ∪ Π′, I〉:

α 7→ β ⇐⇒ ∃α ∈ α, β ∈ β α 7→ β.

If α 7→ β, α will be called a direct descendant of β, and β a direct ancestor of α1

Also, struct α will be called an ancestor of struct γ (and γ is a descendant of α), if

γ 7→∗ α, where 7→∗ is the reflexive transitive closure of relation 7→.

Let ≡ be the reflexive symmetric transitive closure of 7→. Then

α ≡ β ⇐⇒ [α] ∼I∪I′ [β]

for all formations [α] ∈ α, [β] ∈ β.

Since structs of the inductive structure 〈Π ∪Π′, I〉 are finite, it remains to show

that every equivalence class w.r.t. ≡ is also finite. We shall denote an equivalence

class w.r.t. ≡ containing a struct α by [α].

Relation 7→ on the set of structs from 〈Π ∪ Π′, I〉 satisfies the following two

properties:

1. 7→ is noetherian, i.e., there exist no infinite chains

α1 7→ α2 7→ . . .

1Here we would like to be consistent with the ETS terminology, which is opposite to the one
conventional in the rewriting to theory and, according to which, ancestors are “smaller” than their
descendants.
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This is because if α1 7→ α2, then the number of primitives from Π′ in α2 is less

by one than this number for α1 (see Fig. 4.1).

2. 7→ is locally confluent, i.e., if α 7→ β and α 7→ γ, where β 6= γ, then there

exists α′ such that β 7→ α′ and γ 7→ α′. This is because different left-hand side

parts of the semantic identities from I ′ do not overlap, which is guaranteed by

the presence of primitives from Π′ in them.

Then, according to [Bo93, Theorem 1.1.12], every equivalence class [α] has unique

normal form, i.e., a struct α0 that is a common ancestor of all γ ∈ [α].

Assume that [α] is infinite. Then α0 has infinitely many descendants (which are

all structs from [α]). Since the number of direct descendants of α0 is finite, one of

them has to have infinitely many descendants, call it α1. For the same reason, α1 has

a direct descendant α2 with infinitely many descendants. Continuing this process,

obtain an infinite chain

α0,α1,α2, . . . (∗),

where for all j > 0, αj 7→ αj−1.

Now, observe that if we remove all primitives that belong to Π′ from a struct α,

we obtain a disjoined struct composed of primitives from Π, which thus corresponds

to a finite set of strings. Denote this set of strings by S(α) Then, if β 7→ α, we

obtain that S(β) = S(α) \ {u} ∪ {v}, for some strings u ∈ S(α), v ∈ S(β) such that

v →I u.

Thus, we have obtained an infinite sequence of strings corresponding to the above

sequence of structs (∗): u0, u1, u2, . . . , where for all j > 0, uj →I uj−1.

According to Higman’s Lemma [Hi52, Der90], for any infinite sequence of strings,
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there exist indices i < j such that ui is a subsequence of uj, which contradicts our

assumption that relation →I is strongly acyclic. ¥
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4.2 Inductive structures for graphs and graph lan-

guages

As has been shown before, the set of all labeled directed multigraphs without discon-

nected vertices and loops can be represented as a particular (basic level) inductive

structure (see Section 2.3.5). It turns out that at the first level one can represent

more interesting graphs languages. Here, the examples of first level inductive struc-

tures corresponding to the simple graphs, cubic graphs, and graphs without triangle

subgraphs are given. In the end, a conjecture that the generative power of first level

inductive structures is exactly the family of all recursive languages is formulated.

4.2.1 Simple graphs

Consider a simple undirected graph as a result of a constructive process which creates

vertices and connects some of them by directed edges. In order to prohibit multiple

vertices and edges at the same place, represent them by the first level primitives

shown in Fig. 4.3. These first level primitives are assumed to be constructed over a

basic level inductive structure, whose primitives and semantic identities are shown

in Fig. 4.2.2 The struct finiteness condition holds, since all identities preserve the

number of primitives, and the set of all formations with a fixed number of primitives

is finite.

Assume that all semantic identities are present at the first level. Then for each

simple undirected graph, there is a unique first level struct corresponding to it. An

example of such correspondence is shown in Fig. 4.4. Vice versa, every struct α̇,

such that for every composite α̇ ∈ α̇ there exists γ ∈ init(α̇) free of primitive “v”,

2In this and the following example, identities of the form [π1 C π2, π2 C π1] will always be
implicitly assumed to be present.
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Figure 4.2: Specifying basic level primitives and semantic identities for the inductive
structure of simple graphs.
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Figure 4.3: Specifying first level primitives for the inductive structure of simple
graphs.

corresponds to a simple graph. All other structs contain edges that connect vertices

not created within these structs and may be thought of as “transformations” of graphs,

rather than just “graphs”—for example, a first level struct consisting of a single edge

primitive is such a transformation, which can also be interpreted as “an edge without

vertices”, or “an edge, which can be applied to a pair of vertices, thus connecting

them”.
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Figure 4.4: Example of a simple graph (a), the corresponding first level struct (a
particular formation from it is shown) (b), and a site pair (initial composite shaded)
for a composite from this formation (c).

4.2.2 Cubic graphs

The first level inductive structure of cubic graphs (simple undirected unlabeled graphs

in which every vertex has degree 3) is defined in Fig. 4.6 (the first level specifying

primitives) and Fig. 4.5 (the basic level specifying primitives and semantic identities).

The struct finiteness condition holds, because one can assign weights to primitives so

that all identities preserve the total weight of formations (for example, one can assign

2 to each primitive except “a” and “b”, and 1 to “a” and “b”); the set of formations

with a fixed weight is finite.

Now, consider the union of the inductive structure of cubic graphs and that of
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Figure 4.5: Specifying basic level primitives and semantic identities for the inductive
structure of cubic graphs.
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Figure 4.6: Specifying first level primitives for the inductive structure of cubic graphs.

simple graphs (i.e., put all primitives and semantic identities together). The first

level formations whose composites are composed of the primitives from Fig. 4.6 will
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be called “cubic formations”; similarly, formations whose composites are composed

of the primitives from Fig. 4.3 will be called “simple graph formations”. Now, the

structs that contain both kinds of formations, cubic and simple graph, correspond to

cubic graphs. An example of such struct is shown in Fig. 4.7.
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Figure 4.7: Example of a cubic graph (a), the corresponding first level cubic struct
(a particular formation from it is shown) (b), a site pair for a composite from this
formation (c), a pair of composites semantically equivalent to this site pair (d), and
a formation from the corresponding simple graph struct with the same site pair (e).

4.2.3 Graphs without triangle subgraphs

Consider the set of simple undirected unlabeled graphs without triangle subgraphs.

The specifying first level primitives for the corresponding inductive structure are

shown in Fig. 4.11; the underlying basic level primitives and semantic identities are

shown in Figs. 4.8, 4.9, 4.10.

As in the above example of cubic graphs, consider the union of the inductive
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Figure 4.8: Specifying basic level primitives for the inductive structure of graphs
without triangles.
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Figure 4.9: Semantic identities for the inductive structure of graphs without triangles
(part 1).

structures of graphs without triangle subgraphs and simple graphs. The structs that

contain formations from both inductive structures correspond to graphs without tri-

angles. An example of such graph and the corresponding first level struct is shown

in Fig. 4.12. A chain of equivalences that proves that the struct in Fig. 4.12 contains

a simple graph formation is shown in Fig. 4.13.
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Figure 4.10: Semantic identities for the inductive structure of graphs without triangles
(part 2). These identities allow to shift the arrow primitive to the right, provided
that its three initial sites are not connected to a triangle. Starting from a leftmost
position, the arrow primitive can traverse all n(n − 1)(n − 2)/6 positions to the
rightmost position if and only if in all these positions the arrow primitive is not
connected to a triangle.

The example of graphs without triangle subgraphs can be easily generalized to

the case of graphs without any particular fixed subgraph (or several fixed subgraphs).
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Figure 4.11: Specifying first level primitives for the inductive structure of graphs
without triangles.
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Figure 4.12: Example of a graph without triangle subgraphs (a), the corresponding
first level struct (b), and a site pair for a composite from this struct (c).
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Figure 4.13: Chain of equivalences that proves that the struct in Fig. 4.12 contains a
simple graph formation.
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In order to do this, one should modify the “arrow identities” in Fig. 4.10.

The above examples with graph languages show that in ETS model one can

choose certain first level primitives, basic level primitives, and semantic identities

so that the construction of first level structs, essentially, incorporates the parsing

algorithm.3 It turns out that one can, in principle, incorporate any parsing algorithm

in this manner—not only those for cubic graphs or graphs without triangles. To see

this, think about the parsing algorithm as a Turing machine that starts with an input

written on the tape and finishes in state qY or qN , depending on whether the input

belongs to the language or not; in addition, one can always force the Turing machine

to clean up the tape before entering states qY or qN . In the corresponding first level

inductive structure, there are transformations that add primitives corresponding to

the tape, head, and state qY of the Turing machine4; then, other transformations

simulate the reverse computation of the Turing machine; finally, whenever a formation

containing the primitive corresponding to the initial state q0 of the Turing machine

is obtained, it is guaranteed to be equivalent to a string-like formation (the identities

replace the head and current state of the machine by a single string initialization

primitive, and the tape becomes the string itself). In such a construction, the struct

finiteness condition should follow from the fact that a Turing machine cannot enter

the same situation twice during a particular computation (otherwise, it will never

stop on certain inputs). I would like to leave the exact formulation and proof of this

conjecture about the Turing-completeness of first level inductive structures beyond

the scope of this thesis. If the conjecture is true, the first level inductive structures

3The parsing algorithm determines whether a given graph belongs to the language.
4These three things are called a situation of the Turing machine.
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(FLIS) fill the gap between the context-sensitive (type 1) and unrestricted (type 0)

grammars in the Chomsky hierarchy (in the following table, all inclusions are proper):

Languages: Reg ⊂ CF ⊂ CS ⊂ Recursive ⊂ RecEnum

Grammars: type 3 type 2 type 1 FLIS type 0



Chapter 5

Generating process and inductive
learning

For an inductive structure 〈Π, I〉 of any representational level, we define a stochastic

generating process associated with it. The version of the generating process presented

here is preliminary, for intuitively the generating process should encapsulate all rep-

resentational levels simultaneously. Some kind of interaction between the processes

at different levels should be present in the model, and the precise formalization of

this interaction is one of my primary research directions.

As mentioned above, the concept of formation is the one which corresponds

to a single constructive process. However, formations only describe the “spatial”

component of the process, i.e., which constructive transformations and “where” are

applied. The stochastic generating process adds temporal information to the one

already stored in a formation. Again, since both concepts—formation and stochastic

generating process—essentially describe the same thing—a constructive process—

they should better be unified and studied as a single data structure, which is also left

for future research.

Because my formal understanding of the concept of generating process is now at

169
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such an early stage, compared to the rest of the model, I have decided to give only a

semi-formal exposition of its theory here. The reader interested in some formal results

about the first level generating process is referred to [Golub02]. The main reason

why the generating process is being discussed here is that this is the central concept,

around which the ETS model currently continues to develop. Once formulated, it will

allow to complete the formalization of the model with the formulation of the inductive

inference (learning) problem as an optimization problem and proceed toward the

design of the inductive learning algorithm and applications.

5.1 Definition of the generating process

To account for the continuous temporal component of constructive processes (the

structural component is already encoded in composites and formations), assume that

each primitive in a composite takes a certain time to be applied, depending on the

primitive’s type. To reflect this assumption, we add to the description of an inductive

structure 〈Π, I〉 a mapping t : Π̄ → R+. For a primitive type π̄ ∈ Π̄, t(π̄) signifies

the mean time it takes to apply any primitive π ∈ π̄ (which implies that this time is

a random variable). The triple 〈Π, I, t〉 is called a weighted inductive structure.

For a struct γ, let

A(γ)
def
= {[[γ, 〈π〉]] | [[γ, 〈π〉]] is composable, γ ∈ γ, π ∈ Π}

be the set of applications (of primitives from Π) to γ. The result of application

[[γ, 〈π〉]] ∈ A(γ) is the struct γ ′
def
= K([[γ, 〈π〉]]).

Definition 46. For a weighted inductive structure 〈Π, I, t〉, a generating process

is a continuous parameter Markov chain G = xt(ω) (or, equivalently, a stochastic
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Markov process with a countable state space [Chu60]) defined as follows:

1. The states of G are structs

2. The initial state of G is the empty struct [[λ]].

3. The amount of time G spends in a state γ is a random variable distributed

exponentially with mean

T =
1

∑

[[γ,〈π〉]]∈A(γ)

1/t(π̄)
(∗)

4. When G leaves state γ, it chooses randomly an application [[γ, 〈π〉]] ∈ A(γ) with

probability

T

t(π̄)
(∗∗)

and enters the result of application γ ′ = K([[γ, 〈π〉]]).

5. All random variables in 3 and 4 are mutually independent.

I

I would like to state explicitly the assumptions on the generating process which

have lead to the above definition.

First, since no generating process can be fully isolated from the surrounding

environment, its behavior cannot be completely and deterministically specified by its

own description. At the same time, we cannot take all external factors into account

explicitly, since there are too many of them. Hence, we have to use a probabilistic

model.

Second, the assumption that the corresponding stochastic process is a Markov

process, i.e., its behavior depends only on the current state and not on any of its
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previous states, is based on the fact that the current state of the process is a struct

which already contains all necessary information about its constructive history, thus

there is no need to refer to the previous states.

Third, the time the process spends in a state, until a primitive is applied and the

state changes, is distributed exponentially, because it is assumed that the primitives,

from the perspective of the current level generating process, are indivisible. I.e.,

a primitive is either completely applied, which causes a change in the state of the

process, or not applied at all, meaning that no changes are made whatsoever. This

implies that if ξ is the random amount of time the process spends in a state, then for

all T, t > 0,

P(ξ < T + t | ξ > T ) = P(ξ < t).

The above property means that the system is memoryless and implies that the random

variable ξ is distributed exponentially [Fe66, Chapter I].

Fourth, transformations that are applicable to a fixed state γ are assumed to

be independent of each other. Thus, random variables ξ1, . . . , ξk, which denote the

waiting times for different applications to γ, are mutually independent. Since the

process remains in state γ until one of the applications occurs, the time the process

spends in γ is expressed by the random variable ξ = min(ξ1, . . . , ξk). The minimum of

mutually independent exponentially distributed random variables is an exponentially

distributed random variable with mean (∗) [Fe66, Chapter 1]. Also, the probability

that a particular random variable ξi is minimal among {ξ1, . . . , ξk} is proportional to

the inverse of the expectation of ξi, hence we obtain formula (∗∗).

Finally, we can assume that all random variables are mutually independent, if

we postulate that the choice of a particular application to a struct is independent
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of both the constructive historic process of the struct and the time this process has

taken. This postulate arises naturally from the fact that a struct represents a set of

constructive processes indistinguishable (or equivalent) from the point of view of a

higher level primitive.

5.2 Typicality measure

A stochastic generating process induces a probability measure on the set of structs

(of a particular representational level) as follows. Assume that the process is being

observed by an external observer, who “approaches” the process at a random time

moment and “records” its state. The probability that a particular struct is recorded

is called the typicality of this struct for the observer.

In order to define the typicality measure formally, we first need to provide a

formal model of the observer. Take the simplest possible model: assume that the

expected waiting time for the observer to come is always the same, which implies

that the moment of observation is an exponentially distributed random variable. Call

it ξu:

P{ξu(ω) < t} = 1− e−ut, t ≥ 0,

where u is the parameter of exponential distribution. Also, assume that this random

variable is independent of the generating process xt(ω), i.e., independent of each

random variable xt(ω) for all t ≥ 0.

Given this model of an observer, the typicality measure on the set of structs is

defined as follows:

gu(α)
def
= P{xξu(ω)(ω) = ᾱ}.
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The typicality measure can be computed in O(|Anc(α)|2) time (see [Golub02, Section

7]), where Anc(α) denotes the set of ancestors of the struct α. The reader can also

find some examples of typicality measures for the inductive structures of natural

numbers, binary sequences, insertion strings, and graphs in [Golub02].

5.3 Global typicality

From now on, the observer’s parameter u will be included into the description of the

weighted inductive structure, resulting in an observed weighted inductive structure

〈Π, I, t, u〉. This inductive structure is endowed with a typicality measure g
def
= gu on

the set of structs.

As it is clear from the definition of a first (or higher) level composite (Def. 39),

it requires an initial composite from the previous level, in order to be constructed.

Therefore, if for a particular composite γ̇, the composites from init(γ̇) have a low

typicality w.r.t. the previous level typicality measure, it should naturally follow that

the typicality of γ̇ is also low.

Two minor technical problems need be addressed here, in order to account for

the dependence of the typicality of a composite γ̇ on the typicality of its initials: first,

we clearly need a combination of the typicality measures from different levels, and

second, each one of them is defined not on composites but on structs, so we shall

extend the concepts of initials and terminals to structs.

In what follows, the current level composites are denoted by dotted letters (e.g.

α̇), and the ones from the previous level by letters without dots (e.g. α).

First, let us introduce for a current level formation [γ̇] an auxiliary set, which is
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the union of all site pairs of composites in [γ̇]: let

s([γ̇])
def
=

⋃

α̇∈[γ̇]

sites(α̇).

It turns out that s([γ̇]) can be represented as a disjoined union of previous level struct

pairs:

Lemma 43. If 〈α, β〉 ∈ s([γ̇]), then [[α, β]] ⊂ s([γ̇]).

Proof. Let 〈α′, β′〉 ∈ [[α, β]]. Let γ̇ be an attachment sequence for γ̇ such that

α ∈ init(γ̇) and β ∈ res(〈α, body(γ̇)〉). According to the Struct Projection lemma

(L. 24), there exists a composite tuple B ′ such that

[[α, body(γ̇), β]] = [[α′, B, β ′]].

Due to the Composite Reconstruction lemma (L. 32), there exists first level composite

γ̇′ ∈ [γ̇] such that body(γ̇ ′) = B. Then, α′ ∈ init(γ̇ ′), since struct tuple

[[α′, body(γ̇ ′)]] = [[α, body(γ̇)]]

is composable.

To show that β ′ ∈ res(〈α′, body(γ̇ ′)〉), we will prove that for any composite δ′,

Kn([[α
′, body(γ̇ ′), δ′]]) = [[β ′, δ′]],

where n = |γ̇|, and then apply the Result Criterion (L. 29). According to the Struct

Projection lemma, there exists δ such that

[[α′, body(γ̇ ′), δ′, β′]] = [[α, body(γ̇), δ, β]].

Then, since β ∈ res(〈α, body(γ̇)〉) and, due to the Result Criterion,

Kn([[α
′, body(γ̇ ′), δ′, β′]]) = Kn([[α, body(γ̇), δ, β]]) = [[β, δ, β]] = [[β ′, δ′, β′]].
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Hence,

Kn([[α
′, body(γ̇ ′), δ′]]) = [[β ′, δ′]].

¥

The above lemma justifies the following definition of the set of site pairs for a

current level formation:

Definition 47. For a current level formation [γ̇],

sites([γ̇])
def
= {[[α, β]] | 〈α, β〉 ∈ s([γ̇])}.

I

The initial and terminal structs of [γ̇] are defined as projections of sites([γ̇])

onto the first and second components, respectively.

As it follows from Lemma 36, the set sites([γ̇]) is invariant w.r.t. the semantic

equivalence relation ∼İ , which implies correctness of the following definition:

Definition 48. For a current level struct γ̇,

sites(γ̇)
def
= sites([γ̇]),

where [γ̇] is any formation from γ̇. I

Now we are ready to introduce the global typicality measure:

Definition 49. Let

I, İ, Ï, . . . , I(k), . . .

be an infinite hierarchy of observed weighted inductive structures, where each induc-

tive structure I(k) is assumed to be endowed with a typicality measure g(k).
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For a basic level struct, the global typicality measure is, by definition, equal to

the typicality measure of the basic level:

µ(γ)
def
= g(0)(γ).

For all k > 0, the global typicality measure of a k-th level struct γ (k) is

defined by the following recurrence relation:

µ(γ(k))
def
= g(k)(γ(k)) ·

∑

α(k−1)∈init(γ(k))

µ(α(k−1)). (5.1)

I

The first factor in (5.1) is the typicality of γ (k) w.r.t. the k-th level generating

process, and the second factor represents the typicality of the “prerequisites” for this

process, i.e., the sum of typicalities of all initial structs for the struct γ (k).

5.4 Structural measurement and inductive learn-

ing

From the ETS point of view, the goal of inductive learning is construction of new

object representations, which are in some sense advantageous to the old ones and

provide a better adaptation of the cognitive agent to the environment. The construc-

tion of new representations is inevitably based on the agent’s previous knowledge,

i.e., on its previous representational capabilities.

Within the conventional classification of machine learning paradigms [Br96], the

model suggested here falls into the category of symbolic empirical learning, i.e. given

examples from a class, it attempts to learn the class description, which can then be

used to recognize other objects as instances of the class, as well as generate represen-

tations of new objects from the class. The learning optimization criterion is based
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not on a similarity measure (which is the most common choice in symbolic empiri-

cal learning models) but on the class typicality measure introduced in the previous

section. It is also useful to note that in ETS the instance space and the hypothesis

space are essentially the same spaces, because both structs and transformations are

constructed from primitives of the same inductive structure (see also the discussion

of implications below), as well as the typicality measures in these spaces are similar.

Below we formulate the supervised version of the learning problem; more specifically,

it is the problem of learning of a single class description from positive examples.

In terms of the ETS model, the representational capabilities of a cognitive agent

A can be described as a finite hierarchy of representational levels

HA = I, İ, Ï, . . . , I(k).

Then, the goal of inductive learning is the construction of the next, (k + 1)-th, level,

yielding a new hierarchy

H′A = I, İ, Ï, . . . , I(k), I(k+1).

The existing levels may also change, but the most essential part of learning is still

the construction of a new level, hence I omit here the discussion of possible changes

of the existing levels.

Since learning always involves some kind of interaction of the agent with the

environment, we also need to describe this process of interaction. It will be called the

structural measurement process (see also [GG01]). Note that both structural and

conventional numeric measurement processes interact with real objects and produce

their representations—but there is also an important difference in the form of the
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resulting representations. Even though most of the existing measurement devices are

numeric1, the structural measurement devices are expected to be much more general.

For instance, one can think of organs of perception and sensation, which all animals

have, as examples of structural measurement devices. The fact that human sensation

is, to a large extent, inseparable from further processing and classification, is also

reflected in the ETS model (but certainly not in numeric models).

To describe interaction with environment, assume the global environmental pro-

cess, which creates and modifies all objects in the environment, is described by a gen-

erating process in a certain “huge” high-level representational hierarchy HE. Also,

assume that representational hierarchies of the cognitive agent (HA) and of the en-

vironment (HE) have some common primitives. In other words, assume that the

perceived object and the perceiving device are, perhaps at a very low level of the rep-

resentational hierarchy, made of the same primitives (this does not have to be level

0, though). Then HE can provide contexts for primitives from HA and, vice versa,

HA can influence HE in the same way.

Creation of new contexts by the environmental process HE opens new direc-

tions for the agent’s generating process, since the transformations that did not have

matching contexts before may now become applicable. This affects the agent’s global

typicality measure µ, resulting in the increase of typicality of those structs, whose

primitives use the new contexts. As a result, these structs are observed (in the sense of

Section 5.3) more and more often and eventually extracted into a separate collection

called the training set (assume that the agent has a special extraction mechanisms

that creates training sets from the structs with high typicality). Since a collection of

1See an example of a “not-quite-numeric” measurement in Section 1.4.
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structs can always be represented by a single disjoined struct, we will speak about

the training struct, which, in general, corresponds to a training set.

Extraction of a training struct induces a change in the agent’s representational

hierarchy HA, via an inductive learning step. The result of a single inductive

learning step can be defined formally as a solution to the following optimization

problem:

Definition 50. Given a k-th level training struct β(k), construct a (k + 1)-st repre-

sentational level 〈Π(k+1), I(k+1), t(l+1), u(k+1)〉 such that

µ(Π̄(k+1)) ·
∑

γ(k+1):β(k)∈term(γ(k+1))

µ(γ(k+1)) (5.2)

is maximal. I

The first factor in (5.2) is the typicality of the new set of primitive types Π̄(k+1).

Since these primitive types have to be constructed by the agent’s generating process,

the higher their typicality is, the more likely they will appear as a result of the

inductive step. As shown in Section 3.1.7, each (k + 1)-level primitive type can be

specified by a k-th level composable struct pair [[α(k), β(k)]]. We assume that the

typicality of this struct pair is computed as the typicality of its composition, i.e.,

equals

µ([[α(k) C β(k)]]).

Next, a set of primitive types Π̄(k+1) can be thought of as one “disjoined” k-th level

struct pair, whose typicality is denoted by µ(Π̄(k+1)) in (5.2).

The second factor in (5.2) is the new typicality of the training struct β(k) com-

puted after its conversion to the (k + 1)-st level. Indeed, after the inductive step is
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completed, β(k) acquires a new representation, which can be any (k + 1)-level struct

γ(k+1) whose minimal terminal struct equals β(k). If several minimal terminal structs

exist, any one will do for the (k+1)-level representation of β(k), hence we obtain the

sum of their typicalities for the new typicality of β(k) as in (5.2).

Roughly speaking, the optimization criterion “works”, because the first factor

limits the size of the new (k + 1)-level primitives from above (since very large prim-

itives become untypical), and the second factor, on the contrary, forces to decrease

the number of primitives in γ(k+1), thus limiting the size of the primitives from be-

low. Correspondingly, the maximum is achieved for some primitives of “intermediate

size”, so that the trivial extreme solutions, such as the one where each new primitive

consists of a single k-th level primitive or, on the contrary, where a new primitive is

equal to the entire training struct β(k), are excluded. An illustration of the behavior

of the optimization criterion based on a simple inductive structure of shapes, with

computation of the corresponding typicalities, can be found in [GG01].

I do not know yet any efficient algorithm that would solve the above optimization

problem exactly. However, I suggest that even an exponential algorithm can be fast

enough. Indeed, the size of (k + 1)-level primitives, which need be composed from

known k-th level primitives, should normally be small. An indication for it has been

noted by psychologists, who have observed that human capability to process several

different representations at once (in short-term memory) is limited to a very small

number of them, known as “the magic number seven” [So88, Chapter 6]. However,

the structural complexity of each of these representations is not limited, in princi-

ple, which in the ETS model is reflected by the fact that they can correspond to

structs of any level. Thus, if the cognitive agent has to combine significantly more
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than seven representations together, this is done via several inductive learning steps,

involving construction of several intermediate representational levels. Such gradual

construction algorithm can be based on a greedy strategy and therefore should have

a smaller complexity, compared to an algorithm that searches for an optimal large

transformations at a fixed representational level.

5.5 ETS learning criterion and MDL principle

One can consider the optimization criterion formulated in Def. 50 as an instance of

the minimum description length (MDL) principle in its probabilistic interpretation

(sometimes called the principle of stochastic complexity) [Ri89, Section 3.6]. Here we

discuss the relationship between them.

The MDL principle is formulated as follows (see [Gr98]). Given a countable set A,

whose elements are called data items. A probabilistic model (also called a hypothesis)

is, in general, a probability distribution defined over arbitrary long data samples

x = x1, . . . , xn, xi ∈ A. Let M be a class of probabilistic models parametrized by a

set Γ:

M = {P (·|θ) | θ ∈ Γ}.

Here P (·|θ) means the probability of the data given that the model used is the model

named θ. For a sequence of data samples x, a hypothesis H ∈ M is called the best

hypothesis according to the MDL principle, if the product

P (θ) · P (x|θ) (5.3)

is maximal. The above expression implies that the MDL principle requires a distribu-

tion on the class of modelsM (or, equivalently, on its parameterizing set Γ), denoted
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P (θ), which is known as a prior. Our discussion here will be centered around this

concept, since it looks like here the ETS learning criterion (Def. 50) has a funda-

mental advantage over the general formulation of the MDL principle and many of its

applications.

Clearly, the selection of the prior significantly affects the MDL criterion However,

as mentioned in [Ri89], this selection is not guided by any formal principle whatsoever.

On the contrary, it is suggested that the priors are determined by “the code lengths

of the coding system defined by the ground language, the mixture of English and

mathematics. [. . .] since we have not formalized the ground language, caution and

judgment are needed in estimating the relevant code lengths. This ambiguity, we

think, is here to stay; there is no way to reconcile the arbitrariness in the formalization

of the language and the demands of intuition” ([Ri89, p.81]).

I cannot agree with such categoric claim that it is impossible in principle to

formalize the informal ground language, since this is precisely what the ETS model

attempts to do. In the ETS formalism, every hypothesis (in the MDL sense) is a

certain high level inductive structure, whose description is constructed based on the

known previous level inductive structure. Moreover, the k-th level inductive structure

induces a measure on the descriptions of the (k + 1)-st level inductive structures,

denoted by µ(Π̄) in Def. 50. This measure plays exactly the role of a prior, with

the only difference that its selection is now based on the known k-th level inductive

structure and the inductive inference algorithm (and not on any other informal ground

language). It is only the choice of the basic level inductive structure, that lies outside

the formal scope of our model, whereas all higher levels are supposed to be constructed

automatically, as a result of several inductive learning steps.
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This distinction between the ETS optimization criterion and the general formu-

lation of the ETS principle exhibits itself also in a different form. The two factors in

Def. 50,

µ(Π̄(k+1)) and
∑

γ(k+1):β(k)∈term(γ(k+1))

µ(γ(k+1)),

are, essentially, based on the same typicality measure µ. On the contrary, in various

various applications of the MDL principle, due to a significant difference in the de-

scriptions of the hypotheses and the data, the reasons behind the choice of the prior

P (θ) (=distribution of the hypotheses) and probabilistic models P (x|θ) (=distribu-

tions of the data) are also completely different. For example, in [Ke97], the MDL

principle is applied to the grammatic inference problem, in which the hypotheses are

specified by probabilistic grammars. It is clear that the formulas for the prior, i.e.,

the probability of a grammar, and for the probabilistic models, i.e., the probability

of derivation of a particular sentence by a given grammar, are chosen in [Ke97] on

completely different grounds. As a result, the two probabilities in the MDL principle,

P (θ) and P (x|θ), are, in principle, incommensurable, which makes their combination

in a single optimization criterion not quite meaningful. The importance of providing

such meaning is also emphasized in [Ri89]. In the ETS model, the meaning is pro-

vided by the fact that both hypothesis and data are expressed in the same language,

since they both are represented in certain inductive structures.
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Conclusion and future directions

The formal framework proposed in this thesis (see also [GGK01]) defines the concept

of structural object representation as a collection of semantically equivalent represen-

tations of object constructive histories. A constructive history is defined as a sequence

of elementary constructive steps, called primitives. A primitive can be a basic level

primitive, in which case it is defined as a triple consisting of a label and two finite

ordered sets of sites. The sites specify whether and how several primitives can be

sequentially attached to each other, thus forming a composite. A primitive can also

be a higher (first, second, etc.) level primitive, in which case it consists of a context

and a body, both being previous level composites. Context and body play the role

of sites at higher levels, i.e., they determine whether several higher level primitives

can be sequentially attached to each other, thus forming a higher level composite.

When the sites are “erased” from a composite (formally, an equivalence class of com-

posites with respect to site replacements is considered), the concept of formation is

obtained, which corresponds to a representation of an object constructive history.

The semantic equivalence relation is induced on the set of formations by a finite set

of semantic identities; each identity represents a postulated equivalence between two

185
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(short) segments of constructive history. An equivalence class of formations with

respect to semantic equivalence relation is called a struct and corresponds to a repre-

sentation of a single object. Thus, each level of representation consists of primitives,

composites, formations, and structs; it is completely specified by a set of primitives

and a set of semantic identities. Together, all representational levels form an infinite

representational hierarchy.

The inductive learning (or inference) problem is formulated as a problem of con-

structing new next level primitives, given a training struct at a certain level. In or-

der to formulate this problem as an optimization problem, for each representational

level, weights on its primitives are introduced. These weights and interpreted as the

mean times of application of elementary constructive steps, to which the primitives

correspond. A stochastic process (continuous parameter Markov chain), called the

generating process, which applies primitives according to their weights and produces

structs is defined. The generating process induces a typicality measure on structs, at

each level. The typicality measures for all levels are unified into a global typicality

measure. The optimization criterion for inductive learning has the form of a minimum

description length criterion and requires to maximize the typicalities of both new next

level primitives and the training struct represented at the next level via these primi-

tives. The problem of defining the complexities of class description and of the training

set within a class in a consistent manner, which is common for the applications of

the MDL principle, is resolved by putting both class descriptions and training sets

into a general framework of representational levels, in which both complexities are

computed in essentially the same way, via the above typicality measure.

In applications of the framework, the basic representational level needs to be
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postulated. All higher levels can, in principle, be constructed by the inductive learning

algorithm (assuming that the latter can be designed based on the above optimization

criterion). Thus, the framework suggests a systematic approach for construction of

representations of complex objects. These representations are automatically classified,

where the classes are specified by the descriptions of representational levels. The lower

the level, the broader the corresponding class is; the basic level corresponds to the

universal class that contains all objects in discourse of a given scientific problem.

As most of the concepts are defined as certain equivalence classes, correctness

of the corresponding definitions (i.e., invariance with respect to the choice of repre-

sentatives) is proved (which takes a significant part of proofs in this thesis). The

proofs are presented in a level-invariant form, so that the inductive construction of

an infinite hierarchy of representational levels becomes possible. The question of

finiteness of object representations as collections of representations of constructive

histories is studied formally and a criterion of finiteness is proved. It is also proved

that the equality relation is decidable for finite object representations but undecid-

able in general. In addition, it is shown that the question whether all structs in a

given inductive structure are finite is undecidable in general. The generative power of

first level primitives is compared with that of existing generative formalisms, string

and graph grammars; it is proved that any strongly acyclic string-rewriting system

(or, equivalently, unrestricted formal grammar) can be isomorphically simulated in a

certain first level inductive structure.

Conventional data structures, including natural numbers, sequences, strings,

trees, and graphs, are shown to be particular cases of basic level inductive structures.

Once represented as inductive structures, strings, trees, and graphs reveal an expo-
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nential number of constructive histories behind them, which is argued to be the reason

for the intractability of the inductive inference, and sometimes even parsing, prob-

lems for the corresponding grammars. It is suggested that the number of constructive

histories should be decreased as much as possible (which, of course, requires explicit

representation of them), in order to allow for efficient inductive inference. The pro-

posed definition of transformations (i.e., next level primitives) as context-dependent

attachments of composites (without deletions or substitutions) should facilitate the

development of the inductive inference algorithm as well.

The “proof of concept” for the proposed model, of course, depends on the success

of its applications. Out of a broad range of possible applied areas, I would like to select

bioinformatics, computational linguistics, artificial intelligence, and pattern recogni-

tion as the most promising ones. These areas have nowadays attracted a greater

interest from the scientific community than ever before because of a tremendous ac-

cumulation of new experimental data and challenging problems of classification and

explanation of these data. In my opinion, our ability to explain them, essentially de-

pends upon the proper understanding and formalization of the concept of structural

representation. Conventional numeric models do not fulfill this purpose, as is pointed

in the introduction to this thesis and referred sources in the literature. However,

since most of the existing formalisms are based on numeric concepts, and structural

concepts seem to be so much different, it should not be forgotten that the develop-

ment of structural formalisms is a very complex and long-term task, and this thesis

pretends to have made one of the first little steps toward its solution.

Speaking about the following steps, which I can foresee in the nearest future, one

can single out the following two main directions. First, there are still concepts that
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need further formal clarification. I think that the core concept, the representational

hierarchy, has currently acquired quite a reliable formalization. Yet, a full formal un-

derstanding of the multi-level generating process and the inductive inference problem

is still to be developed. Only then one can start working on algorithms for inductive

inference (for particular conventional data structures, such algorithms have been pro-

posed and studied in [Dew91, Sa92, Ni93, GN94, Kam95, Ab02]). Second, in order to

resolve computational problems successfully, one has to establish further connections

with the existing computational models, or prove that they are inadequate and design

a new one. In particular, I would like to investigate more the generating power of

high-level inductive structures and compare it with the power of existing generative

formalisms. Also, based on the definition of infinite representational hierarchy, one

can try to obtain a new description of classes of good instances for computationally

hard problems, e.g., NP-complete problems. From the purely theoretical perspective,

it would be interesting to consider infinite structures corresponding to the finite forma-

tions and structs introduced in this thesis. Since many (if not all) conventional data

structures can be expressed as particular cases of inductive structures, one will then

immediately obtain a theory of infinite data structures. We have already started (see

the forthcoming paper [Golub03]) to investigate this direction and obtained a topol-

ogy on the set of insertion strings with a countable compactification, which turned

out to be related with the the well-quasi-ordering property of the part/whole rela-

tion on strings (see [Der90]). This study can potentially produce new results about

classification of countable topological spaces and related to stochastic processes with

countable state spaces.

As it has always been the case in science, formal models that arise from the study
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of a completely new natural phenomenon, cannot fail to produce non-trivial math-

ematical results. It has often been the case that these results appeared long before

the practical applications of the models were found. Since I do not doubt the nov-

elty of the concept of structural representation, and also hope that the formal model

presented in this thesis has grasped at least some of its important features properly,

I expect that some non-trivial results will appear down the road of development of

the model.



Appendix A

Primitive types

The definition of primitives (Def. 1) raises several questions, such as: Why are prim-

itives defined in this way? What do they correspond to in real world? Why are the

sets of initial and terminal sites ordered?

Let us introduce auxiliary concepts of a primtype, primtype realization, and con-

nection, in order to answer these questions and provide a mental image for primitives

and composites.

Definition 51. A primitive type, or primtype, is a triple 〈α, i, t〉, where α is any

individual called the label of the primitive type and i, t are non-negative integers.

I

Primitive types serve as templates for objects called primtype realizations:

Definition 52. For a primitive type 〈α, i, t〉, a triple of the form 〈α, I, T 〉, where I

and T are finite disjoint sets of cardinalities i and t respectively, is called a primtype

realization. The elements of I and T are called the initial and terminal connectors

of the primtype realization 〈α, i, t〉. I

Pictorially, a primtype realization can be represented similarly to a simplistic

representation of an atom (see Fig. A.1). However, the connectors of a primtype
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realization are distinguishable, whereas, one might argue, electrons are not. Moreover,

the connectors of a primtype realization are split into initial and terminal. This is

because a primtype realization (as well as a primitive) also stands for a primitive

constructive operation, which naturally has a direction: it is applied to a context,

which comes first, and then produces a result. We hope that the reader will not

be confused by this dual interpretation of primtype realizations, simultaneously as a

particle and as an operation.

a b
c

d e

Figure A.1: A primtype realization.

Imagine an environment1 consisting of objects, each of which can be represented

by a primtype realization. For example, the primtype realizations could represent

atoms, in which case the environment is called atomic. Other examples of environ-

ments include those of amino acids, proteins, cells, organs, organisms, societies. Aside

from chemistry and biology, there exist virtual environments of phonemes, letters,

words, sentences, visual primitives, etc.

Primtype realizations from one environment can be (and often are) composed

of those from another environment (e.g., amino acids are composed of atoms and

proteins are composed of amino acids).

Fix an environment and call the set of primtype realizations in it PR. Initially (i.e.

1This is an informal concept, which corresponds to the formal concept of inductive structure
introduced in Section 2.3.
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before any evolutionary or constructive processes commence), the primitive objects in

the environment are independent, or disconnected. In terms of primtype realizations,

this means that for any pair of distinct primtype realizations 〈α, I, T 〉, 〈α′, I ′, T ′〉 ∈

PR,

(I ∪ T ) ∩ (I ′ ∪ T ′) = ∅.

Then, as a result of constructive processes, connections between primitive objects

start to appear. A connection from a primtype realization pr = 〈α, I, T 〉 to a primtype

realization pr′ = 〈α′, I ′, T ′〉 is specified by an injective partial mapping f : I → T ′

indicating which initial connectors of pr are connected to which terminal connectors

of pr′.

A pair of connected primtype realizations is specified by a triple 〈pr1, pr2, f〉,

where pr1, pr2 are distinct primtype realizations and f is a connection from pr2 to

pr1. This pair corresponds to two interconnected primitive objects.

Consider a triple pc
def
= 〈pr, g, h〉, where g is an injective mapping with domain I

and h is an injective mapping with image T (the image of g and the domain of h can be

any finite sets). This triple can be interpreted as a primtype realization pr = 〈α, I, T 〉

potentially connected with (in both directions) other primtype realizations.

A pair of potentially connected primtype realizations pc1 = 〈pr1, g1, h1〉 and

pc2 = 〈pr2, g2, h2〉 corresponds to a pair of (actually) connected primtype realizations,

〈pr1, pr2, f〉, where f = h1 ∩ g2.
2

An injective mapping f with finite domain and image can be specified by fixing

the set of pairs B(f) = {〈x, f(x)〉}, known as the graph of f . Once B(f) is fixed,

2In this formula, consider mappings h1 and g2 as relations, in order for their intersection to be
meaningful.
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the domain and image of f can be obtained as projections of B(f) onto the first and

second components, denoted B1(f) and B2(f). Any other injective mapping f ′ with

the same domain and image can be specified by fixing two linear orderings <1, <2

on B(f). Indeed, <1 induces an ordering on the domain B1(f) and <2 induces an

ordering on the image B2(f). Since both are finite, f ′ can be specified as follows: if

a is the i-th element of B1(f) with respect to <1, then f ′(a) equals the i-th element

of B2(f) with respect to <2.

Now, a potentially connected primtype realization pc = 〈pr, g, h〉 can be equiva-

lently specified by

• a pair of sets BI = B(g) and BT = B(h) and

• a pair of linear orderings, <1 on BI and <2 on BT , where <1 is the first ordering

for g and <2 is the second ordering for h.

The 3-tuple 〈α, 〈BI , <1〉, 〈BT , <2〉〉 is a primitive (see Def. 1). Thus, primitives

are potentially connected primtype realizations.

Now it should be clear what the sites of a primitive are and why the sets of

initial and terminal sites are ordered. Indeed, sites are points of the graph B(f)

of the injective partial mapping, which specifies a connection between two primtype

realizations. For a pair of primitives, π1 and π2, the set term(π1) ∩ init(π2) and two

orderings on it, which are induced from those on term(π1) and init(π2), specify a

connection between the primtype realizations, that constitute the first components of

primitives π1 and π2.
Now that connections are incorporated into primitives, we can define composites,

which are quite complex graph-like objects, simply as sequences of primitives. All our
subsequent definitions depend on this interpretation of composites.
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