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Abstract. Naive Bayes has been widely used in data mining as a simple
and effective classification algorithm. Since its conditional independence
assumption is rarely true, numerous algorithms have been proposed to
improve naive Bayes, among which tree augmented naive Bayes (TAN)
[3] achieves a significant improvement in term of classification accuracy,
while maintaining efficiency and model simplicity. In many real-world
data mining applications, however, an accurate ranking is more desirable
than a classification. Thus it is interesting whether TAN also achieves sig-
nificant improvement in term of ranking, measured by AUC(the area un-
der the Receiver Operating Characteristics curve) [8, 1]. Unfortunately,
our experiments show that TAN performs even worse than naive Bayes
in ranking. Responding to this fact, we present a novel learning algo-
rithm, called forest augmented naive Bayes (FAN), by modifying the
traditional TAN learning algorithm. We experimentally test our algo-
rithm on all the 36 data sets recommended by Weka [12], and compare it
to naive Bayes, SBC [6], TAN [3], and C4.4 [10], in terms of AUC. The
experimental results show that our algorithm outperforms all the other
algorithms significantly in yielding accurate rankings. Our work provides
an effective and efficient data mining algorithm for applications in which
an accurate ranking is required.

Keywords: data mining and knowledge discovery, learning algorithms, Bayesian
networks, decision trees.

1 Introduction

Classification is one of the most important tasks in data mining. In classification,
a classifier is built from a set of training examples with class labels. The predic-
tive ability of a classifier is typically measured by its classification accuracy on
the testing examples. In fact, most classifiers can also produce probability esti-
mates or “confidence” of the class prediction. Unfortunately, this information is
often ignored in classification.
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In many data mining applications, however, the classifier’s accuracy are not
enough, because they cannot express the information how “far-off” (be it 0.45
or 0.01?) is the prediction of each example from its target. For example, in
direct marketing, we often need to promote the top X% of customers during
gradual roll-out, or we often deploy different promotion strategies to customers
with different likelihood of buying some products. To accomplish these tasks, we
need more than a mere classification of buyers and non-buyers. We often need a
ranking of customers in terms of their likelihood of buying. Thus, a ranking is
more desirable than just a classification.

A natural question is how to evaluate a classifier in terms of its ranking
performance, rather than classification accuracy. Recently, the area under the
Receiver Operating Characteristics curve [8, 1], or simply AUC, has been used for
this purpose and received a considerable attention. AUC compares the classifiers’
performance cross the entire range of class distributions and error costs and is
a good “summary” for comparing two classifiers. Hand and Till [4] show that,
for binary classification, AUC is equivalent to the probability that a randomly
chosen example of class − will have a smaller estimated probability of belonging
to class + than a randomly chosen example of class +. They present a simple
approach to calculating the AUC of a classifier G below.

Â =
S0 − n0(n0 + 1)/2

n0n1
, (1)

where n0 and n1 are the numbers of negative and positive examples respectively,
and S0 =

∑
ri, where ri is the rank of ith positive example in the ranked list.

From Equation 1, it is clear that AUC is essentially a measure of the quality of a
ranking. For example, the AUC of a ranking is 1 (the maximum value of AUC)
if there is no positive example preceding a negative example.

In classification, an example E = (a1, a2, · · · , an), where ai is the value of
attribute Ai, is classified into the class C with the maximum posterior class
probability P (C|E) (or simply, class probability), as shown below.

Cpb(E) = arg
C

max P (C|E). (2)

Assume that all the attributes are independent given the value of class, called
conditional independence assumption and shown in Equation 3. The resulting
classifier, called naive Bayes, is shown in Equation 4. Figure 1 shows an example
of naive Bayes.

P (a1, · · · , an|C) =
n∏

i=1

P (ai|C). (3)

Cnb(E) = arg
C

max P (C)
n∏

i=1

P (ai|C). (4)

The structure of naive Bayes can be extended to represent the dependences
among attributes. Tree Augmented naive Bayes (TAN) is an extended tree-like
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Fig. 1. An example of NB

naive Bayes [3], in which the class node directly points to all attribute nodes
and an attribute node can have only one parent from another attribute node
(in addition to the class node). Figure 2 shows an example of TAN. In TAN,
each node has at most two parents (one is the class node). TAN outperforms
naive Bayes in terms of accuracy [3] and still maintains a considerably simple
structure.

A1 A2 A3 A4

C

Fig. 2. An example of TAN

One interesting question is whether TAN is also a good model for ranking.
In this paper, we investigate the ranking performance of TAN. Unfortunately,
the traditional TAN learning algorithm does not produce high quality ranking.
We propose a new TAN learning algorithm and our experiments show that our
algorithm performs better not only than the traditional TAN learning algorithm,
but also other popular state-of-the-art algorithms designed for yielding accurate
ranking.

The rest of the paper is organized as follows. In Section 2, we introduce
the related work on improving naive Bayes and on improving decision tree for
ranking. In Section 3, we present our new algorithm. In Section 4, we describe
the experimental setup and results in detail. In Section 5, we make a conclusion.
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2 Related Work

It is obvious that the conditional independence assumption in naive Bayes is
rarely true in many applications. Therefore, researchers have made a substan-
tial amount of effort to improve naive Bayes in classification. Research work to
improve the naive Bayes can be broadly divided into two approaches below.

1. Select attributes subsets in which attributes are conditionally independent.
For example, Langley and Sage [6] presented an algorithm, called Selective
Bayesian Classifiers (simply SBC), to improve naive Bayes. They used a
forward greedy search method to select a subset of attributes.

2. Relax the conditional independence assumption by extending the structure
of naive Bayes to represent the dependences among attributes. TAN is an
example of this approach. TAN is a specific case of general augmented naive
Bayesian networks (ANB), in which the class node also directly points to
all attribute nodes, but there is no limitation on the links among attribute
nodes (except that they do not form any directed cycle).

Unfortunately, learning an optimal ANB is intractable. Thus, TAN is a good
trade-off between the model complexity and learnability in practice. A number of
TAN learning algorithms have been proposed, among which the ChowLiu algo-
rithm (CL-TAN) [3] and the SuperParent algorithm (SP-TAN) [5] performs sig-
nificantly better than naive Bayes in classification. SP-TAN is a greedy heuristic
search algorithm in which an arc of achieving the highest accuracy improvement
is selected in each step. One disadvantage of SP-TAN is its time complexity of
O(mn3), where m is the number of training examples and n is the number of
attributes. However, CL-TAN has the time complexity of O(mn2), a consider-
able advantage over SP-TAN. CL-TAN is depicted below, which is the base of
our work.

Algorithm CL-TAN
1. Compute IP̂D

(Ai, Aj |C) between each pair of attributes, i 6= j.
2. Build a complete undirected graph in which nodes are attributes A1, · · ·,

An. Annotate the weight of an edge connecting Ai to Aj by IP̂D
(Ai;Aj |C).

3. Build a maximum weighted spanning tree.
4. Transform the resulting undirected tree to a directed one by choosing a

root attribute and setting the direction of all edges to be outward from
it.

5. Construct a TAN model by adding a node labeled by C and adding an
arc from C to each Ai.

In the preceding algorithm, IP̂D
(Ai, Aj |C) is an estimate of the conditional

mutual information which will be defined in Section 3.
Both SP-TAN and CL-TAN outperforms naive Bayes significantly in classi-

fication. Moreover, the ranking performance of SP-TAN has been studied [14].
Since CL-TAN is more efficient than SP-TAN, it is more practical in data mining
applications. In this paper, we focus on the ranking performance of CL-TAN.
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Decision tree learning algorithms are a major type of effective learning al-
gorithms in data mining. However, traditional decision tree algorithms, such as
C4.5 [11], have been observed to produce poor estimations of probabilities [10].
Aiming at this fact, Provost and Domingos [10] presented an algorithm, called
C4.4, to improve C4.5’s performance in ranking measured by AUC. In detail,
they used two techniques to improve the AUC of C4.5: smooth probability es-
timates by Laplace correction and turn off pruning. Their experiments show
that C4.4 performs significantly better than C4.5 in ranking. In this paper, we
compare our new algorithm with C4.4.

3 Forest Augmented Naive Bayes:FAN

At first, let us introduce the definitions of mutual information and conditional
mutual information used in this paper.

Definition 1. Let X,Y are two variables,then the mutual information between
X and Y is defined by the following equation [3].

IP (X;Y ) =
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)
. (5)

Roughly speaking, this function measures how much information Y provides
about X.

Definition 2. Let X,Y,Z are three variables,then the conditional mutual infor-
mation between X and Y given Z is defined by the following equation [3].

IP (X;Y |Z) =
∑
x,y,z

P (x, y, z) log
P (x, y, z)P (z)
P (x, z)P (y, z)

. (6)

Roughly speaking, this function measures the information that Y provides about
X when the value of Z is known.

In a TAN, the class probability P (C|E) is estimated by the following equa-
tion:

P (C|E) = P (C)
n∏

i=1

P (Ai|Aip, C) (7)

where Aip is the parent of Ai and

P (Ai|Aip, C) =

{
P (Ai|Aip, C) {Aip} 6= ∅
P (Ai|C) {Aip} = ∅

(8)

An instance is classified into the class with the maximum class probability.
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We experimentally investigate the ranking performance of CL-TAN, mea-
sured by AUC. Unfortunately, CL-TAN yields poor AUC (see Table 1 and 2,
although its accuracy is higher than naive Bayes (see Table 3 and 4). By exper-
iments, we observe that there are two factors contributing this fact:

1. The directions of edges in a TAN are crucial. In Step 4 of the CL-TAN
algorithm, an attribute is randomly chosen as the root of the tree and the
directions of all edges are set outward from it. Notice that the selection of
the root attribute actually determines the structure of the resulting TAN,
since a TAN is a directed graph. It is interesting that the directions of edges
in a TAN do not affect the classification accuracy significantly. In contrast,
however, AUC is quite sensitive to it. Thus the selection of the root attribute
is important for building a TAN with accurate ranking.

2. Irrelevant edges may exist in a CL-TAN. In Step 3 of the CL-TAN, a maxi-
mum weighted spanning tree is built. Thus, the number of the edges is fixed
to n− 1. Sometimes, it might overfit the data, since some edges may not be
necessary to exist in the TAN.

Based on the preceding observations, we modify the CL-TAN algorithm cor-
respondingly as follows.

1. We choose the attribute Aroot with the maximum mutual information with
class, defined by Equation 1, as the root. That is,

Aroot = arg
Ai

max IP (Ai;C), (9)

where i = 1, · · · , n. It is natural to use this strategy, since intuitively the
attribute which has the greatest influence on classification should be the
root of the tree.

2. We filter out the edges that have a conditional mutual information less than
a threshold. To our understanding, those edges have a high risk to overfit the
training data, and thus undermine the probability estimation. More precisely,
we use the average conditional mutual information Iavg, defined in Equation
10, as the threshold. All the edges with the conditional mutual information
less than Iavg are removed.

Iavg =

∑
i

∑
j,j 6=i IP (Ai;Aj |C)

n(n− 1)
, (10)

where n is the number of attributes.

Since the structure of the resulting model is not a strict tree, we call our
algorithm forest augmented naive Bayes (FAN), depicted in detail as follows.

Algorithm FAN
1. Calculate the conditional mutual information IP (Ai;Aj |C), j 6= i be-

tween each pair of attributes, and calculate the average conditional mu-
tual information Iavg, defined in Equation 10.
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2. Build a complete undirected graph in which nodes are attributes Ai, i =
1, 2, . . . , n. Annotate the weight of an edge connecting Aj to Ai by
IP (Ai;Aj |C).

3. Search a maximum weighted spanning tree.
4. Calculate the mutual information IP (Ai;C), i = 1, 2, . . . , n between each

attribute and the class, and find the attribute Aroot that has the maxi-
mum mutual information with class, according to Equation 9.

5. Transform the resulting undirected tree to a directed one by setting Aroot

as the root and setting the directions of all edges to be outward from it.
6. Delete the directed edges with the weight of the conditional mutual in-

formation below the average conditional mutual information Iavg.
7. Construct a FAN model by adding a vertex labeled by C and adding an

directed arc from C to each Ai, i = 1, 2, . . . , n.

The time complexity and space complexity of FAN are O(n2·N) and O(|C|(n|V |)2),
respectively, where n is the number of attributes, N is the number of training
instances, |C| is the number of classes, and |V | is the average number of values
for an attribute. Both of them are same as the CL-TAN algorithm. However,
our experiments, described in next section (Section 4) that FAN improves the
ranking performance of CL-TAN significantly.

4 Experimental Methodology And Results

We conduct our experiments on all the 36 data sets recommended by Weka
[13], which come from the UCI repository [7]. We download these data sets in
format of arff from main web of Weka. All the preprocessing stages of data sets
were carried out by the Weka system. They mainly include the following three
processes:

1. We use the filter of ReplaceMissingValues in Weka to replace the missing
values of attributes.

2. We use the filter of Discretize in Weka to discretize numeric attributes.
3. It is well-known that, if the number of values of an attribute is almost equal

to the number of instances in the data set, this attribute does not contribute
any information to classification. So we use the filter of Remove in Weka
to delete these attributes. In these 36 data sets, there only exists three this
type of attributes, namely Hospital Number in colic.ORIG, Instance Name
in Splice and Animal in zoo.

We conduct experiments to compare our algorithm (FAN) with naive Bayes,
SBC [6], TAN [3], and C4.4 [10] in AUC . All algorithms are implemented within
the Weka framework. Multi-class AUC has been calculated by M-measure in [4].
The AUC of each classifier is measured via the ten-fold cross validation for all
data sets. Runs with the various classifiers were carried out on the same training
sets and evaluated on the same test sets. In particular, the cross-validation folds
are the same for all the experiments on each data set. Throughout, we compare
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our algorithm with each other algorithm via two-tailed t-test with significantly
different probability of 0.95, because we speak of two results for a data set as
being “significantly different” only if the difference is statistically significant at
the 0.05 level according to the corrected two-tailed t-test.

Table 1 shows the AUC and standard deviations of each classifier on the test
sets of each data set, and the average AUC and deviation are summarized at
the bottom of the table. Table 2 shows the results of two-tailed t-test between
each pair of algorithms, and each entry w/t/l means that the algorithm at the
corresponding row wins in w data sets, ties in t data sets, and loses in l data
sets, compared to the algorithm at the corresponding column.

The detailed results displayed in Table 1 and Table 2 show that our algorithm
outperforms significantly all the other algorithms in AUC. Now, we summarize
the highlights as follows:

1. FAN outperforms naive Bayes significantly: It wins in 9 data sets, ties in 27
data sets and loses in 0 data set. The average AUC for FAN is 89.95%, it
is slightly higher than the average AUC 89.61% of naive Bayes. This fact is
understandable, since the conditional independence among attributes have
been relaxed and represented in FAN. Thus, the class probability estimates
of FAN are expected to be more accurate than those of naive Bayes.

2. FAN also outperforms C4.4 significantly: It wins in 13 data sets, ties in 20
data sets and loses in 3 data sets. The average AUC for C4.4 is 85.92%,
lower than that of FAN. Since C4.4 is the state-of-the-art decision tree al-
gorithm designed specifically for yielding accurate rankings, this comparison
also provides evidence to support FAN.

3. FAN outperforms significantly SBC and TAN. It wins in 11 data sets, ties in
25 data sets and loses in 0 data set, compared with SBC; and it wins in 24
data sets, ties in 12 data sets and loses in 0 data set, compared with TAN.
Notice that, although SBC and TAN improve naive Bayes’ performance in
classification, they do not improve naive Bayes’ performance in ranking.

In our experiments, we also observe the classification accuracy of each al-
gorithm, shown in Table 3, and Table 4 shows the results of two-tailed t-test
with confidence level of 95% between each pair of algorithms in terms of accu-
racy. We can see that our experiment repeats experimental results of SBC [6]
and CL-TAN [3], both of which improve the classification performance of naive
Bayes. It is also interesting to notice that FAN also slightly outperforms all the
algorithms in terms of accuracy.

5 Conclusions

In this paper, we investigate the ranking performance of the CL-TAN learning
algorithm, and find that CL-TAN performs even worse than naive Bayes in rank-
ing. Responding to this problem, we present a novel TAN learning algorithm FAN
to build a TAN for accurate ranking. We experimentally test our algorithm mea-
sured by AUC, using all the 36 data sets recommended by Weka, and compare
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Table 1. Experimental results on AUC. FAN: Forest Augmented naive Bayes;
NB: naive Bayes; SBC: Selective Bayesian Classifiers; CL-TAN : Tree Augmented naive
Bayes with smoothed parameter of 5.0; C4.4: C4.5 with Laplace correction and without
tree pruning.

Data set FAN NB SBC CL-TAN C4.4

anneal 96.4±0.51 95.9±1.3 94.7±3.92 92.97±2.51 93.78±2.9
anneal.ORIG 95.1±2.93 94.49±3.67 94.35±4.31 85.42±7.04 92.69±3.15
audiology 70.92±0.59 70.96±0.73 70.98±0.67 70.16±0.55 70.58±0.63
autos 92.13±5.24 89.18±4.93 90.43±3.43 90.28±2.59 90.73±4.52
balance-scale 84.46±4.1 84.46±4.1 84.46±4.1 76.47±7.56 63.06±6.18
breast-cancer 68.04±12.43 69.71±15.21 67.67±12.63 67.4±10.4 59.3±12.03
breast-w 99.15±0.94 99.19±0.87 99.16±0.62 98.74±1.32 97.85±1.86
colic 85.25±6.16 83.71±5.5 84.86±7.13 50.6±8.29 85.02±7.03
colic.ORIG 74.91±9.77 80.67±6.98 81.82±4.9 62.89±7.73 80.56±8.94
credit-a 91.3±3.36 92.09±3.43 87±3.75 63.3±13.3 89.42±3.1
credit-g 78.25±6.42 79.27±4.74 77.41±4.67 60.18±6.84 69.62±5
diabetes 82.71±5.65 82.31±5.17 82.79±5.04 74.18±5.87 75.5±5.76
glass 79.03±7.02 80.5±6.65 80.97±8.37 84.79±4.34 82.36±4.38
heart-c 83.95±0.71 84.1±0.54 83.87±0.64 82.96±1.12 83.1±1.19
heart-h 83.66±0.8 83.8±0.7 82.83±1.38 82.69±0.72 83.04±0.85
heart-statlog 90.42±5.36 91.3±4.19 87.98±6.91 80.12±11.94 81.36±9.15
hepatitis 85.91±11.52 88.99±8.99 83.62±12.29 53.83±14.97 82.03±14.04
hypothyroid 86.69±9.61 87.37±8.52 85.25±8.16 84.03±12.22 81.58±8.8
ionosphere 98.48±1.47 93.61±3.36 92.26±5.26 72.05±7.4 93.1±3.76
iris 98.58±2.67 98.58±2.67 99±1.46 94.17±5.51 97.33±2.63
kr-vs-kp 98.12±0.9 95.17±1.29 96.41±0.78 87.21±1.49 99.95±0.06
labor 93.33±14.05 98.33±5.27 65.83±32.5 68.33±40.41 74.17±31.04
letter 98.28±0.19 96.86±0.24 97.03±0.23 94.5±0.25 95.39±0.39
lymph 89.95±1.57 89.69±1.49 88.14±3.35 85.56±6.98 87.26±3.75
mushroom 100±0 99.79±0.04 99.98±0.02 99.87±0.04 100±0
primary-tumor 78.9±1.03 78.85±1.35 78.88±1.45 76.39±1.9 75.48±2.33
segment 99.55±0.27 98.51±0.46 98.93±0.42 95.35±1.06 98.85±0.32
sick 98.22±0.77 95.91±2.35 94.5±4.28 73.25±2.73 99.07±0.35
sonar 85.96±10.19 85.48±10.82 79.89±13.1 67.4±13.83 77.01±8.59
soybean 99.61±0.64 99.53±0.6 99.08±0.74 96.73±1.59 91.43±2.6
splice 99.47±0.32 99.41±0.22 99.14±0.36 97.72±0.68 98.14±0.72
vehicle 89.05±2.99 80.81±3.51 81.31±4.02 76.86±3.8 86.5±2.28
vote 98.03±1.51 96.56±2.09 94.26±4.14 93.49±1.38 96.77±2.96
vowel 99.51±0.26 95.81±0.84 96.12±0.59 92.33±1.23 91.28±2.46
waveform-5000 94.92±0.63 95.27±0.58 95.12±0.76 78.9±2.03 80.83±1.24
zoo 89.88±4.05 89.88±4.05 89.06±4.49 89.88±4.05 88.88±4.5

Mean 89.95±3.795 89.61±3.54 87.92±4.746 80.58±5.991 85.92±4.708
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Table 2. Results of two-tailed t-test on AUC. An entry w/t/l means that the
algorithm at the corresponding row wins in w data sets, ties in t data sets, and loses in
l data sets, compared to the algorithm at the corresponding column. The significantly
different probability of two-tailed t-test is 0.95.

NB SBC CL-TAN C4.4

FAN 9/27/0 11/25/0 24/12/0 13/20/3
NB - 1/31/4 23/12/1 13/20/4
SNB - - 20/16/0 9/22/5

CL-TAN - - - 4/20/12

our algorithm FAN with naive Bayes, SBC, TAN, and C4.4. The experimental
results show that our algorithm improves significantly naive Bayes’ performance
in ranking, and outperforms some widely used extended naive Bayes algorithms,
such as SBC and CL-TAN and the state-of-the-art decision tree learning algo-
rithm C4.4. In a word, our work provides an effective and efficient data mining
algorithm especially when a ranking is more desirable than just a classification.
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Table 3. Experimental results on accuracy. FAN: Forest Augmented naive Bayes;
NB: naive Bayes; SBC: Selective Bayesian Classifiers; CL-TAN: Tree Augmented naive
Bayes with smoothed parameter of 5.0; C4.4: C4.5 with Laplace correction and without
post pruning.

Data set FAN NB SBC CL-TAN C4.4

anneal 97.1±1.5 94.32±2.38 96.88±2.5 96.66±2.35 99±0.98
anneal.ORIG 90.98±3.64 87.53±4.69 88.75±3.72 87.98±3.62 91.76±3.07
audiology 71.19±5.14 71.23±7.03 76.01±7.05 75.16±8.45 78.3±8
autos 77.55±8.11 64.83±11.18 67.71±11.27 76.07±10.01 81.45±7.48
balance-scale 91.36±1.38 91.36±1.38 91.36±1.38 86.08±3.18 69.3±4.25
breast-cancer 68.21±5.11 72.06±7.97 73.45±8.91 66.82±7.01 68.57±7.49
breast-w 97.13±2.03 97.28±1.84 96.42±2.26 96.71±1.79 92.99±3.66
colic 81.25±5.31 78.81±5.05 81.77±4.89 77.18±7.04 80.17±5.95
colic.ORIG 72.57±6.5 75.26±5.26 75.53±6.15 75.51±7.15 76.08±8.74
credit-a 84.49±3.99 84.78±4.28 85.51±4.16 84.64±5.03 83.19±3.5
credit-g 75.6±5.15 76.3±4.76 74.1±3.87 73.4±4.12 68.6±4.3
diabetes 75.4±6.61 75.4±5.85 75.53±5.07 75.13±4.71 69.54±5.12
glass 59.87±7.98 60.32±9.69 57.99±6.89 55.71±10.81 58.83±7.73
heart-c 81.13±7.8 84.14±4.16 82.47±7.61 77.53±7.41 74.26±11.46
heart-h 82±5.94 84.05±6.69 79±9.77 79.97±6.39 72.78±11
heart-statlog 82.59±6.77 83.7±5 79.26±9.75 81.11±3.68 75.93±8.95
hepatitis 83.17±9.66 83.79±8.79 80.63±6.8 83.83±8.05 81.25±11.52
hypothyroid 93.19±0.78 92.79±1.02 93.53±0.66 92.79±1.06 92.5±0.58
ionosphere 92.61±4.64 90.89±3.49 91.17±4.12 90.6±3.83 84.63±4.45
iris 94.67±8.2 94.67±8.2 97.33±4.66 90.67±11.42 92.67±5.84
kr-vs-kp 92.52±2.09 87.89±1.81 94.34±1.23 93.18±1.6 99.41±0.45
labor 88.33±15.81 93.33±11.65 77±11.91 88±11.46 77.67±15.64
letter 76.77±0.78 70±0.81 70.57±0.88 80.45±0.91 80.56±0.87
lymph 83.14±7.22 85.67±9.55 79±6.84 84.38±9.1 74.29±12.56
mushroom 99.4±0.27 95.57±0.45 99.67±0.23 99.77±0.12 100±0
primary-tumor 46.31±2.33 46.89±4.32 46.02±5.19 48.37±5.83 38.91±4.97
segment 94.37±1.59 88.92±1.95 90.43±1.96 86.36±2.36 92.86±1.39
sick 97.67±0.47 96.74±0.53 97.59±0.69 97±0.4 97.83±0.61
sonar 78.5±16 77.5±11.99 70.71±12.97 71.62±12.64 67.69±10.94
soybean 95.76±1.61 92.08±2.34 91.79±2.72 93.41±2.1 92.68±1.56
splice 95.3±1.48 95.36±1 94.76±1.6 95.39±1.35 91.57±1.37
vehicle 69.98±3.29 61.82±3.54 60.65±4.73 69.86±3.47 69.03±2.63
vote 92.66±4.65 90.14±4.17 95.18±3.93 93.12±4.02 94.96±3.83
vowel 92.42±2.2 67.07±4.21 68.69±3.47 83.43±3.84 75.66±5.18
waveform-5000 82±1.24 79.96±1.92 81.32±1.54 81.52±1.21 64.86±1.83
zoo 97.09±4.69 94.18±6.6 93.18±7.93 97.09±4.69 92.18±8.94
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Table 4. Results of two-tailed t-test on accuracy. the results of two-tailed t-test
between each pair of algorithms, each entry w/t/l means that the algorithm at the
corresponding row wins in w data sets, ties in t data sets, and loses in l data sets,
compared to the algorithm at the corresponding column. The significantly different
probability of two-tailed t-test is 0.95.

NB SBC CL-TAN C4.4

FAN 10/26/0 5/29/2 4/30/2 12/21/3
NB - 1/29/6 4/26/6 11/15/10
SNB - - 4/28/4 7/22/7

CL-TAN - - - 7/15/4
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