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Designing for Performance
n The cost of computer systems continues to drop dramatically, while the performance 

and capacity of those systems continue to rise equally dramatically

n Today’s laptops have the computing power of an IBM mainframe from 10 or 15 years ago

n Processors are so inexpensive that we now have microprocessors we throw away

n Desktop applications that require the great power of today’s microprocessor-based 
systems include:
n Image processing
n Three-dimensional rendering
n Speech recognition
n Videoconferencing
n Multimedia authoring 
n Voice and video annotation of files
n Simulation modeling

n Businesses are relying on increasingly powerful servers to handle transaction and 
database processing and to support massive client/server networks that have 
replaced the huge mainframe computer centers of yesteryear

n Cloud service providers use massive high-performance banks of servers to 
satisfy high-volume, high-transaction-rate applications for a broad spectrum of 
clients
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Microprocessor Speed

Pipelining

Branch prediction

Superscalar 
execution

Data flow analysis

Speculative 
execution

• Processor moves data or instructions into a 
conceptual pipe with all stages of the pipe processing 
simultaneously

• Processor looks ahead in the instruction code fetched 
from memory and predicts which branches, or groups 
of instructions, are likely to be processed next

• This is the ability to issue more than one instruction in 
every processor clock cycle. (In effect, multiple 
parallel pipelines are used.)

• Processor analyzes which instructions are dependent 
on each other’s results, or data, to create an 
optimized schedule of instructions

• Using branch prediction and data flow analysis, some 
processors speculatively execute instructions ahead 
of their actual appearance in the program execution, 
holding the results in temporary locations, keeping 
execution engines as busy as possible

Techniques built into contemporary processors include:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



+
Performance 
Balance

Increase the number 
of bits that are 

retrieved at one time 
by making DRAMs 
“wider” rather than 

“deeper” and by 
using wide bus data 

paths

Change the DRAM 
interface to make it 

more efficient by 
including a cache or 

other buffering 
scheme on the DRAM 

chip

Reduce the frequency 
of memory access by 

incorporating 
increasingly complex 

and efficient cache 
structures between 
the processor and 

main memory

Increase the 
interconnect 

bandwidth between 
processors and 

memory by using 
higher speed buses 
and a hierarchy of 
buses to buffer and 
structure data flow

n Adjust the organization and 
architecture to compensate 
for the mismatch among the 
capabilities of the various 
components

n Architectural examples 
include:
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Improvements in Chip 
Organization and Architecture

n Increase hardware speed of processor
n Fundamentally due to shrinking logic gate size

n More gates, packed more tightly, increasing clock rate

n Propagation time for signals reduced

n Increase size and speed of caches
n Dedicating part of processor chip 

n Cache access times drop significantly

n Change processor organization and architecture
n Increase effective speed of instruction execution

n Parallelism
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Problems with Clock Speed and 
Login Density

n Power
n Power density increases with density of logic and clock speed
n Dissipating heat

n RC delay
n Speed at which electrons flow limited by resistance and 

capacitance of metal wires connecting them
n Delay increases as the RC product increases
n As components on the chip decrease in size, the wire 

interconnects become thinner, increasing resistance
n Also, the wires are closer together, increasing capacitance

n Memory latency
n Memory speeds lag processor speeds
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Figure 2.2   Processor Trends  
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The use of multiple 
processors on the same chip 
provides the potential to 
increase performance 
without increasing the clock 
rate

Strategy is to use two simpler 
processors on the chip rather 
than one more complex 
processor

With two processors larger 
caches are justified

As caches became larger it 
made performance sense to 
create two and then three 
levels of cache on a chip

Multicore
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Many Integrated Core (MIC)

Graphics Processing Unit (GPU)

n Leap in performance as well 
as the challenges in 
developing software to exploit 
such a large number of cores

n The multicore and MIC 
strategy involves a 
homogeneous collection of 
general purpose processors 
on a single chip

n Core designed to perform 
parallel operations on graphics 
data

n Traditionally found on a plug-in 
graphics card, it is used to 
encode and render 2D and 3D 
graphics as well as process 
video

n Used as vector processors for a 
variety of applications that 
require repetitive computations

MIC GPU
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Amdahl’s 
Law

n Gene Amdahl

n Deals with the potential speedup of a 
program using multiple processors 
compared to a single processor

n Illustrates the problems facing industry 
in the development of multi-core 
machines

n Software must be adapted to a highly 
parallel execution environment to 
exploit the power of parallel 
processing

n Can be generalized to evaluate and 
design technical improvement in a 
computer system
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Figure 2.3  Illustration of Amdahl’s Law
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Number of Processors

Figure 2.4  Amdahl’s Law for Multiprocessors
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Little’s Law

n Fundamental and simple relation with broad applications

n Can be applied to almost any system that is statistically in 
steady state, and in which there is no leakage

n Queuing system
n If server is idle an item is served immediately, otherwise an 

arriving item joins a queue
n There can be a single queue for a single server or for multiple 

servers, or multiple queues with one being for each of multiple 
servers

n Average number of items in a queuing system equals the 
average rate at which items arrive multiplied by the  time 
that an item spends in the system
n Relationship requires very few assumptions
n Because of its simplicity and generality it is extremely useful
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Figure 2.5   System Clock
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 Ic p m k τ 

Instruction set 
architecture X X    

Compiler technology X X X   
Processor 
implementation  X   X 

Cache and memory 
hierarchy    X X 

 
Table 2.1  Performance Factors and System Attributes 
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Ic – number of executed instructions
p – number of processor cycles needed to execute an instr.
m – number of memory references per instr.
k – ration between memory and processor cycle
! – processor cycle



The use of benchmarks to 
compare systems involves 

calculating the mean value of a 
set of data points related to 

execution time

The three 
common 
formulas 
used for 

calculating a 
mean are:

• Arithmetic
• Geometric
• Harmonic© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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(b) Clustered around a central value (3, 5, 6, 6, 7, 7, 7, 8, 8, 9, 11)
(c) Uniform distribution (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
(d) Large-number bias (1, 4, 4, 7, 7, 9, 9, 10, 10, 11, 11)
(e) Small-number bias(1, 1, 2, 2, 3, 3, 5, 5, 8, 8, 11)
(f) Upper outlier (11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
(g) Lower outlier (1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11)

(g)

Figure 2.6 Comparison of Means on Various Data Sets
(each set has a maximum data point value of 11)
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n An Arithmetic Mean (AM) is an 
appropriate measure if the sum of all the 
measurements is a meaningful and 
interesting value

n The AM is a good candidate for 
comparing the execution time 
performance of several systems

Arithmetic

Mean
For example, suppose we were interested in using a system
for large-scale simulation studies and wanted to evaluate several 
alternative products.  On each system we could run the simulation 
multiple times with different input values for each run, and then 
take the average execution time across all runs. The use of
multiple runs with different inputs should ensure that the results are 
not heavily biased by some unusual feature of a given input set. The 
AM of all the runs is a good measure of the system’s performance 
on simulations, and a good number to use for system comparison.

n The AM used for a time-based variable, such as 
program execution time, has the important property 
that it is directly proportional to the total time 

n If the total time doubles, the mean value doubles
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 Computer 
A time 
(secs) 

Computer 
B time 
(secs) 

Computer 
C time 
(secs) 

Computer 
A rate 

(MFLOPS) 

Computer 
B rate 

(MFLOPS) 

Computer 
C rate 

(MFLOPS) 
Program 1 
(108 FP 
ops) 

2.0 1.0 0.75 50 100 133.33 

Program 2 
(108 FP 
ops) 

0.75 2.0 4.0 133.33 50 25 

Total 
execution 
time 

2.75 3.0 4.75    

Arithmetic 
mean of 
times 

1.38 1.5 2.38    

Inverse of 
total 
execution 
time 
(1/sec) 

0.36 0.33 0.21    

Arithmetic 
mean of 
rates 

   91.67 75.00 79.17 

Harmonic 
mean of 
rates 

   72.72 66.67 42.11 

 

Table 2.2  

A Comparison 
of Arithmetic 

and 
Harmonic 
Means for 

Rates 
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Table 2.3   A Comparison of Arithmetic and Geometric Means for Normalized 
Results 

 
(a) Results normalized to Computer A 

 
 Computer A time Computer B time Computer C time 
Program 1 2.0 (1.0) 1.0 (0.5) 0.75 (0.38) 

Program 2 0.75 (1.0) 2.0 (2.67) 4.0 (5.33) 
Total execution time 2.75 3.0 4.75 
Arithmetic mean of 
normalized times 

  1.00 1.58 2.85 

Geometric mean of 
normalized times 

1.00 1.15 1.41 

 
(b) Results normalized to Computer B 

 
 Computer A time Computer B time Computer C time 
Program 1 2.0 (2.0) 1.0 (1.0) 0.75 (0.75) 

Program 2 0.75 (0.38) 2.0 (1.0) 4.0 (2.0) 
Total execution time 2.75 3.0 4.75 
Arithmetic mean of 
normalized times 

  1.19 1.00 1.38 

Geometric mean of 
normalized times 

0.87 1.00 1.22 
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Table 2.4   Another Comparison of Arithmetic and Geometric Means for 
Normalized Results 

 
(a) Results normalized to Computer A 

 
 Computer A time Computer B time Computer C time 
Program 1 2.0 (1.0) 1.0 (0.5) 0.20 (0.1) 

Program 2 0.4 (1.0) 2.0 (5.0) 4.0 (10) 
Total execution time 2.4 3.00 4.2 
Arithmetic mean of 
normalized times 

  1.00 2.75 5.05 

Geometric mean of 
normalized times 

1.00 1.58 1.00 

 
(b) Results normalized to Computer B 

 
 Computer A time Computer B time Computer C time 
Program 1 2.0 (2.0) 1.0 (1.0) 0.20 (0.2) 

Program 2 0.4 (0.2) 2.0 (1.0) 4.0 (2) 
Total execution time 2.4 3.00 4.2 
Arithmetic mean of 
normalized times 

  1.10 1.00 1.10 

Geometric mean of 
normalized times 

0.63 1.00 0.63 
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Benchmark Principles

nDesirable characteristics of a benchmark 
program:

1. It is written in a high-level language, making it 
portable across different machines

2. It is representative of a particular kind of 
programming domain or paradigm, such as 
systems programming, numerical 
programming, or commercial programming

3. It can be measured easily
4. It has wide distribution
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System Performance Evaluation 
Corporation (SPEC)

n Benchmark suite
n A collection of programs, defined in a high-level language

n Together attempt to provide a representative test of a computer in 
a particular application or system programming area

n SPEC
n An industry consortium

n Defines and maintains the best known collection of benchmark 
suites aimed at evaluating computer systems

n Performance measurements are widely used for comparison and 
research purposes
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SPEC 

CPU2006

n Best known SPEC benchmark suite

n Industry standard suite for processor 
intensive applications

n Appropriate for measuring 
performance for applications that 
spend most of their time doing 
computation rather than I/O

n Consists of 17 floating point programs 
written in C, C++, and Fortran and 12 
integer programs written in C and C++

n Suite contains over 3 million lines of 
code

n Fifth generation of processor intensive 
suites from SPEC
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Benchmark Reference 
time 

(hours) 

Instr 
count 

(billion) 

Language Application 
Area 

Brief Description 

400.perlbench 2.71 2,378 C 
Programming 
Language 

PERL programming 
language interpreter, applied 
to a set of three programs. 

401.bzip2 2.68 2,472 C 
Compression General-purpose data 

compression with most work 
done in memory, rather than 
doing I/O. 

403.gcc 2.24 1,064 C C Compiler Based on gcc Version 3.2, 
generates code for Opteron. 

429.mcf 2.53 327 C 
Combinatoria
l 
Optimization 

Vehicle scheduling 
algorithm. 

445.gobmk 2.91 1,603 C 
Artificial 
Intelligence 

Plays the game of Go, a 
simply described but deeply 
complex game. 

456.hmmer 2.59 3,363 C 
Search Gene 
Sequence 

Protein sequence analysis 
using profile hidden Markov 
models. 

458.sjeng 3.36 2,383 C 
Artificial 
Intelligence 

A highly ranked chess 
program that also plays 
several chess variants. 

462.libquantum 5.76 3,555 C 
Physics / 
Quantum 
Computing 

Simulates a quantum 
computer, running Shor's 
polynomial-time 
factorization algorithm. 

464.h264ref 6.15 3,731 C 
Video 
Compression 

H.264/AVC (Advanced 
Video Coding) Video 
compression. 

471.omnetpp 1.74 687 C++ 
Discrete 
Event 
Simulation 

Uses the OMNet++ discrete 
event simulator to model a 
large Ethernet campus 
network. 

473.astar 1.95 1,200 C++ Path-finding 
Algorithms 

Pathfinding library for 2D 
maps. 

483.xalancbmk 1.92 1,184 C++ 
XML 
Processing 

A modified version of 
Xalan-C++, which 
transforms XML documents 
to other document types. 

 

Table 2.5 

SPEC 
CPU2006 
Integer 

Benchmarks 

(Table can be found on page 69 in the textbook.)© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Table 2.6 

SPEC 
CPU2006 

Floating-Point 
Benchmarks 

Benchmark 
Reference 

time (hours) 
Instr count 

(billion) Language Application Area Brief Description 

410.bwaves 3.78 1,176 Fortran Fluid Dynamics 
Computes 3D transonic 
transient laminar viscous 
flow. 

416.gamess 5.44 5,189 Fortran Quantum 
Chemistry 

Quantum chemical 
computations. 

433.milc 2.55 937 C Physics / Quantum 
Chromodynamics 

Simulates behavior of 
quarks and gluons 

434.zeusmp 2.53 1,566 Fortran Physics / CFD 
Computational fluid 
dynamics simulation of 
astrophysical phenomena. 

435.gromacs 1.98 1,958 C, Fortran 
Biochemistry / 
Molecular 
Dynamics 

Simulate Newtonian 
equations of motion for 
hundreds to millions of 
particles. 

436.cactusAD
M 3.32 1,376 C, Fortran Physics / General 

Relativity 
Solves the Einstein 
evolution equations. 

437.leslie3d 2.61 1,273 Fortran Fluid Dynamics Model fuel injection flows. 

444.namd 2.23 2,483 C++ 
Biology / 
Molecular 
Dynamics 

Simulates large 
biomolecular systems. 

447.dealII 3.18 2,323 C++ Finite Element 
Analysis 

Program library targeted at 
adaptive finite elements and 
error estimation. 

450.soplex 2.32 703 C++ 
Linear 
Programming, 
Optimization 

Test cases include railroad 
planning and military airlift 
models. 

453.povray 1.48 940 C++ Image Ray-tracing 3D Image rendering. 

454.calculix 2.29 3,04` C, Fortran Structural 
Mechanics 

Finite element code for 
linear and nonlinear 3D 
structural applications. 

459.GemsFDT
D 

2.95 1,320 Fortran Computational 
Electromagnetics 

Solves the Maxwell 
equations in 3D. 

465.tonto 2.73 2,392 Fortran Quantum 
Chemistry 

Quantum chemistry 
package, adapted for 
crystallographic tasks. 

470.lbm 3.82 1,500 C Fluid Dynamics Simulates incompressible 
fluids in 3D. 

481.wrf 3.10 1,684 C, Fortran Weather Weather forecasting model 

482.sphinx3 5.41 2,472 C Speech recognition Speech recognition 
software. 

 
(Table can be found on page 70 

in the textbook.)© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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Terms Used in SPEC Documentation

n Benchmark
n A program written in a high-level 

language that can be compiled 
and executed on any computer 
that implements the compiler

n System under test
n This is the system to be evaluated

n Reference machine
n This is a system used by SPEC to 

establish a baseline performance 
for all benchmarks
n Each benchmark is run and 

measured on this machine to 
establish a reference time for 
that benchmark

n Base metric
n These are required for all 

reported results and have strict 
guidelines for compilation

n Peak metric
n This enables users to attempt to 

optimize system performance by 
optimizing the compiler output

n Speed metric
n This is simply a measurement of the 

time it takes to execute a compiled 
benchmark
n Used for comparing the ability of 

a computer to complete single 
tasks

n Rate metric
n This is a measurement of how many 

tasks a computer can accomplish in 
a certain amount of time
n This is called a throughput, 

capacity, or rate measure
n Allows the system under test to 

execute simultaneous tasks to 
take advantage of multiple 
processors
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Figure 2.7  SPEC Evaluation Flowchart
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Table 2.7   Some SPEC CINT2006 Results 
 

(a) Sun Blade 1000 
 

Benchmark Execution 
time 

Execution 
time 

Execution 
time 

Reference 
time Ratio 

400.perlbench 3077 3076 3080 9770 3.18 
401.bzip2 3260 3263 3260 9650 2.96 
403.gcc 2711 2701 2702 8050 2.98 
429.mcf 2356 2331 2301 9120 3.91 
445.gobmk 3319 3310 3308 10490 3.17 
456.hmmer 2586 2587 2601 9330 3.61 
458.sjeng 3452 3449 3449 12100 3.51 
462.libquantum 10318 10319 10273 20720 2.01 
464.h264ref 5246 5290 5259 22130 4.21 
471.omnetpp 2565 2572 2582 6250 2.43 
473.astar 2522 2554 2565 7020 2.75 
483.xalancbmk 2014 2018 2018 6900 3.42 
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(b) Sun Blade X6250 
 

Benchmark Execution 
time 

Execution 
time 

Execution 
time 

Reference 
time Ratio Rate 

400.perlbench 497 497 497 9770 19.66 78.63 
401.bzip2 613 614 613 9650 15.74 62.97 
403.gcc 529 529 529 8050 15.22 60.87 
429.mcf 472 472 473 9120 19.32 77.29 
445.gobmk 637 637 637 10490 16.47 65.87 
456.hmmer 446 446 446 9330 20.92 83.68 
458.sjeng 631 632 630 12100 19.18 76.70 
462.libquantum 614 614 614 20720 33.75 134.98 
464.h264ref 830 830 830 22130 26.66 106.65 
471.omnetpp 619 620 619 6250 10.10 40.39 
473.astar 580 580 580 7020 12.10 48.41 
483.xalancbmk 422 422 422 6900 16.35 65.40 
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