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 Complex Instruction Set 
(CISC)Computer 

Reduced Instruction 
Set (RISC) Computer 

Characteristic IBM 
370/168 

VAX 
11/780 

Intel 
80486 

SPARC MIPS 
R4000 

Year developed 1973 1978 1989 1987 1991 

Number of 
instructions 

208 303 235 69 94 

Instruction size (bytes) 2–6 2–57 1–11 4 4 
Addressing modes 4 22 11 1 1 

Number of general-
purpose registers 

16 16 8 40 - 520 32 

Control memory size 
(kbits) 

420 480 246 — — 

Cache size (kB) 64 64 8 32 128 
 

Table 15.1  
Characteristics of Some CISCs, RISCs, and 

Superscalar Processors

(Table can be found on page 538 in the textbook.)
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Table 15.1  
Characteristics of Some CISCs, RISCs, and 

Superscalar Processors
 Superscalar 
Characteristic PowerPC Ultra 

SPARC 
MIPS 

R10000 

Year developed 1993 1996 1996 

Number of 
instructions 

225   

Instruction size (bytes) 4 4 4 

Addressing modes 2 1 1 

Number of general-
purpose registers 

32 40 - 520 32 

Control memory size 
(kbits) 

— — — 

Cache size (kB) 16-32 32 64 
 (Table can be found on page 538 in the textbook.)



Instruction 
Execution 
Characteristics

High-level languages (HLLs)
•Allow the programmer to express algorithms more 
concisely

•Allow the compiler to take care of details that are not 
important in the programmer’s expression of 
algorithms

•Often support naturally the use of structured 
programming and/or object-oriented design

Semantic gap
•The difference between the 
operations provided in HLLs
and those provided in computer 
architecture

Operations performed
•Determine the functions to be 
performed by the processor and 
its interaction with memory

Operands used
•The types of operands and the 
frequency of their use determine 
the memory organization for 
storing them and the addressing 
modes for accessing them

Execution sequencing
•Determines the control and 
pipeline organization
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Table 15.2
Weighted Relative Dynamic Frequency of 

HLL Operations [PATT82a]
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Dynamic Occurrence 

Machine-Instruction 
Weighted 

Memory-Reference 
Weighted 

 Pascal C Pascal C Pascal C 

ASSIGN 45% 38% 13% 13% 14% 15% 
LOOP 5% 3% 42% 32% 33% 26% 
CALL 15% 12% 31% 33% 44% 45% 

IF 29% 43% 11% 21% 7% 13% 
GOTO — 3% — — — — 
OTHER 6% 1% 3% 1% 2% 1% 
 

(Table can be found on page 540 in the textbook.)



Table 15.3
Dynamic Percentage of Operands
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 Pascal C Average 
Integer Constant 16% 23% 20% 

Scalar Variable 58% 53% 55% 

Array/Structure 26% 24% 25% 
 



Table 15.4
Procedure Arguments 

and Local Scalar Variables
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Percentage of Executed 
Procedure Calls With 

Compiler, Interpreter, and 
Typesetter 

Small Nonnumeric 
Programs 

>3 arguments 0–7% 0–5% 

>5 arguments 0–3% 0% 

>8 words of arguments and 
local scalars 

1–20% 0–6% 

>12 words of arguments and 
local scalars 

1–6% 0–3% 

 

(Table can be found on page 541 in the textbook.)



+
Implications

n HLLs can best be supported by optimizing performance of 
the most time-consuming features of typical HLL programs

n Three elements characterize RISC architectures:
n Use a large number of registers or use a compiler to optimize 

register usage

n Careful attention needs to be paid to the design of instruction 
pipelines

n Instructions should have predictable costs and be consistent with 
a high-performance implementation

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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The Use of a Large Register File

n Requires compiler to allocate 
registers

n Allocates based on most used 
variables in a given time

n Requires sophisticated 
program analysis

n More registers

n Thus more variables will be in 
registers

Software Solution Hardware Solution

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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+
Global Variables

n Variables declared as global in an HLL can be assigned memory 
locations by the compiler and all machine instructions that 
reference these variables will use memory reference operands
n However, for frequently accessed global variables this scheme is 

inefficient

n Alternative is to incorporate a set of global registers in the 
processor
n These registers would be fixed in number and available to all 

procedures
n A unified numbering scheme can be used to simplify the instruction 

format

n There is an increased hardware burden to accommodate the 
split in register addressing

n In addition, the linker must decide which global variables 
should be assigned to registers
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Table 15.5
Characteristics of Large-Register-File 

and Cache Organizations
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Large Register File Cache 
All local scalars Recently-used local scalars 
Individual variables Blocks of memory 
Compiler-assigned global variables Recently-used global variables 
Save/Restore based on procedure 
nesting depth 

Save/Restore based on cache 
replacement algorithm 

Register addressing 
Multiple operands addressed and 
accessed in one cycle 

Memory addressing 
One operand addressed and accessed 
per cycle 

 

(Table can be found on page 546 in the textbook.)
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+
Why CISC ?

n There is a trend to richer instruction sets which include a 
larger and more complex number of instructions

n Two principal reasons for this trend:
n A desire to simplify compilers
n A desire to improve performance

n There are two advantages to smaller programs:
n The program takes up less memory
n Should improve performance

n Fewer instructions means fewer instruction bytes to be fetched
n In a paging environment smaller programs occupy fewer 

pages, reducing page faults
n More instructions fit in cache(s)

(Complex Instruction Set Computer)
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Table 15.6
Code Size Relative to RISC I
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 [PATT82a] 
11 C Programs 

[KATE83] 
12 C Programs 

[HEAT84] 
5 C Programs 

RISC I 1.0 1.0 1.0 

VAX-11/780 0.8 0.67  
M68000 0.9  0.9 

Z8002 1.2  1.12 

PDP-11/70 0.9 0.71  
 

(Table can be found on page 550 in the textbook.)



Characteristics of Reduced 
Instruction Set Architectures

• Machine cycle --- the time it takes to fetch two operands from registers, 
perform an ALU operation, and store the result in a register

One machine 
instruction per 
machine cycle

• Only simple LOAD and STORE operations accessing memory
• This simplifies the instruction set and therefore the control unit

Register-to-register 
operations

• Simplifies the instruction set and the control unit
Simple addressing 

modes

• Generally only one or a few formats are used
• Instruction length is fixed and aligned on word boundaries
• Opcode decoding and register operand accessing can occur 

simultaneously

Simple instruction 
formats

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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8 16 16 16  8 4 16 

Add B C A  Load RB B 

Memory to memory  Load RC B 

I =  56, D= 96, M = 152  Add R
A 

RB RC  

     Store R
A 

A 

     Register to memory 

     I = 104, D = 96, M = 200 
 

(a) A ←  B + C 
 

8 16 16 16  8 4 4 4 

Add B C A  Add RA RB RC 

Add A C B  Add RB RA RC 

Sub B D D  Sub RD RD RB 

Memory to memory  Register to register 
I =  168, D= 288, M = 456  I = 60, D = 0, M = 60 

 
(b) A ←  B + C; B ←  A + C; D ←  D – B 

 
I = number of bytes occupied by executed instructions 
D = number of bytes occupied by data 
M = total memory traffic = I + D 
 

Figure 15.5   Two Comparisons of Register-to-Register and Memory-to-Memory Approaches 



a RISC that does not conform to this characteristic. 
b CISC that does not conform to this characteristic. 
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Processor 

Number 
of 

instruc-
tion 
sizes 

Max 
instruc-
tion size 
in bytes 

Number of 
addressing 

modes 
Indirect 

addressing 

Load/store 
combined 

with 
arithmetic 

Max 
number of 
memory 
operands 

Unaligned 
addressing 

allowed 

Max 
Number of 
MMU uses 

Number of 
bits for 
integer 
register 
specifier 

Number of 
bits for FP 

register 
specifier 

AMD29000 1 4 1 no no 1 no 1 8 3 a 

MIPS R2000 1 4 1 no no 1 no 1 5 4 

SPARC 1 4 2 no no 1 no 1 5 4 

MC88000 1 4 3 no no 1 no 1 5 4 

HP PA 1 4 10 a no no 1 no 1 5 4 

IBM RT/PC 2a 4 1 no no 1 no 1 4 a 3 a 

IBM RS/6000 1 4 4 no no 1 yes 1 5 5 

Intel i860 1 4 4 no no 1 no 1 5 4 

IBM 3090 4 8 2b no b yes 2 yes 4 4 2 

Intel 80486 12 12 15 no b yes 2 yes 4 3 3 

NSC 32016 21 21 23 yes yes 2 yes 4 3 3 

MC68040 11 22 44 yes yes 2 yes 8 4 3 

VAX 56 56 22 yes yes 6 yes 24 4 0 

Clipper 4a 8 a 9 a no no 1 0 2 4 a 3 a 

Intel 80960 2a 8 a 9 a no no 1 yes a — 5 3 a 
 

Table 15.7
Characteristics of Some Processors 

(Table can be found on page 554 
in the textbook.)
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Figure 15.6   The Effects of Pipelining



+
Optimization of Pipelining

n Delayed branch
n Does not take effect until after execution of following instruction
n This following instruction is the delay slot

n Delayed Load
n Register to be target is locked by processor
n Continue execution of instruction stream until register required
n Idle until load is complete
n Re-arranging instructions can allow useful work while loading

n Loop Unrolling
n Replicate body of loop a number of times
n Iterate loop fewer times
n Reduces loop overhead
n Increases instruction parallelism
n Improved register, data cache, or TLB locality

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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Address Normal Branch Delayed Branch Optimized 
Delayed Branch 

100 LOAD X, rA LOAD X, rA LOAD X, rA 
101 ADD 1, rA ADD 1, rA JUMP 105 
102 JUMP 105 JUMP 106 ADD 1, rA 
103 ADD rA, rB NOOP  ADD rA, rB 
104 SUB rC, rB ADD rA, rB SUB rC, rB 
105 STORE rA, Z  SUB rC, rB STORE rA, Z  
106  STORE rA, Z   

 

Table 15.8
Normal And Delayed Branch 

(Table can be found on page 557 in the textbook.)
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(a) Traditional Pipeline
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Figure 15.7   Use of the Delayed Branch

(b) RISC Pipeline with Inserted NOOP
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do i=2, n-1 
 a[i] = a[i] + a[i-1] * a[i+l] 
end do 

 
(a) original loop 

 
do i=2, n-2, 2 
 a[i] = a[i] + a[i-1] * a[i+i] 
 a[i+l] = a[i+l] + a[i] * a[i+2] 
end do 
 
if (mod(n-2,2) = i) then 
 a[n-1] = a[n-1] + a[n-2] * a[n] 
end if 

 
(b) loop unrolled twice 

 
 

Figure 15.8    Loop unrolling 
 



MIPS R4000

One of the first 
commercially available 

RISC chip sets was 
developed by MIPS 

Technology Inc.

Inspired by an 
experimental system 
developed at Stanford

Has substantially the 
same architecture and 
instruction set of the 
earlier MIPS designs 
(R2000 and R3000)

Uses 64 bits for all 
internal and external 

data paths and for 
addresses, registers, and 

the ALU

Is partitioned into two 
sections, one containing 
the CPU and the other 

containing a coprocessor 
for memory 

management

Supports thirty-two 64-
bit registers

Provides for up to 128 
Kbytes of high-speed 
cache, half each for 

instructions and data

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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Operation

Operation Operation code
rs Source register specifier
rt Source/destination register specifier
Immediate Immediate, branch, or address displacement
Target Jump target address
rd Destination register specifier
Shift Shift amount
Function ALU/shift function specifier

I-type
(immediate)

rs

6 5 5 16

rt Immediate

OperationJ-type
(jump)

6 26

Target

Figure 15.9   MIPS Instruction Formats

OperationR-type
(register)

rs

6 5 5 5

rt rd

5 6

Shift Function
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Clock Cycle

Cycle

IF

IF =  Instruction fetch
RD =  Read
MEM =  Memory access
WB =  Write back to register file
I-Cache =  Instruction cache access
RF =  Fetch operand from register
D-Cache =  Data cache access
ITLB =  Instruction address translation
IDEC =  Instruction decode
IA =  Compute instruction address
DA =  Calculate data virtual address
DTLB =  Data address translation
TC =  Data cache tag check

I-Cache

(a) Detailed R3000 pipeline

(b) Modified R3000 pipeline with reduced latencies

RF

IDEC DA DTLBITLB

ITLB

Cycle

I-Cache ALU DTLB D-Cache

Cycle Cycle Cycle Cycle

RF WB

Cycle

(c) Optimized R3000 pipeline with parallel TLB and cache accesses

Figure 15.10  Enhancing the R3000 Pipeline
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Table 15.9
R3000 Pipeline Stages

Pipeline 
Stage Phase Function 
IF φ1 Using the TLB, translate an instruction virtual address to a physical 

address (after a branching decision). 
IF φ2 Send the physical address to the instruction address. 
RD φ1 Return instruction from instruction cache. 
  Compare tags and validity of fetched instruction. 
RD φ2 Decode instruction. 

Read register file. 
If branch, calculate branch target address. 

ALU φ1+φ2 If register-to-register operation, the arithmetic or logical operation is 
performed. 

ALU φ1 If a branch, decide whether the branch is to be taken or not. 
If a memory reference (load or store), calculate data virtual address. 

ALU φ2 If a memory reference, translate data virtual address to physical using 
TLB. 

MEM φ1 If a memory reference, send physical address to data cache. 
MEM φ2 If a memory reference, return data from data cache, and check tags. 
WB φ1 Write to register file. 
 

(Table can be found on page 563 in the textbook.)



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Clock Cycle

IC1

IF =  Instruction fetch first half
IS =  Instruction fetch second half
RF =  Fetch operands from register
EX =  Instruction execute
IC =  Instruction cache

DC =  Data cache
DF =  Data cache first half
DS =  Data cache second half
TC =  Tag check
WB = Write back to register file

(a) Superpipelined implmentation of the optimized R3000 pipeline

Figure 15.11   Theoretical R3000 and Actual R4000 Superpipelines
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IC1 RF ALU DC2 TC2IC2 ALU DC1 TC1 WB

φ2

Clock Cycle

IF

(b) R4000 pipeline

RF DF TCIS EX DS WB

IF RF DF TCIS EX DS WB

φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2



R4000 Pipeline Stages

n Instruction fetch first half
n Virtual address is presented to the 

instruction cache and the translation 
lookaside buffer

n Instruction fetch second half
n Instruction cache outputs the 

instruction and the TLB generates the 
physical address

n Register file
n One of three activities can occur:

n Instruction is decoded and check 
made for interlock conditions

n Instruction cache tag check is 
made

n Operands are fetched from the 
register file

n Tag check
n Cache tag checks are performed for 

loads and stores

n Instruction execute
n One of three activities can occur:

n If register-to-register operation 
the ALU performs the operation

n If a load or store the data virtual 
address is calculated

n If branch the branch target 
virtual address is calculated 
and branch operations checked

n Data cache first
n Virtual address is presented to the 

data cache and TLB 

n Data cache second
n The TLB generates the physical 

address and the data cache 
outputs the data

n Write back
n Instruction result is written back 

to register file

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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SPARC

n Architecture defined by Sun Microsystems

n Sun licenses the architecture to other vendors to produce 
SPARC-compatible machines

n Inspired by the Berkeley RISC 1 machine, and its instruction 
set and register organization is based closely on the 
Berkeley RISC model

Scalable Processor Architecture

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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Instruction Type Addressing Mode Algorithm SPARC Equivalent 
Register-to-register Immediate operand = A S2 

Load, store Direct EA = A R0 + S2 

Register-to-register Register EA = R RS1, RS2 
Load, store Register Indirect EA = (R) RS1 + 0 

Load, store Displacement EA = (R) + A RS1 + S2 
 
S2 = either a register operand or a 13-bit immediate operand 

Table 15.10  
Synthesizing Other Addressing Modes 

with SPARC Addressing Modes 

(Table can be found on page 568 in the textbook.)
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OpCall Format PC-relative displacement
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RISC versus CISC Controversy
n Quantitative

n Compare program sizes and execution speeds of programs on 
RISC and CISC machines that use comparable technology

n Qualitative
n Examine issues of high level language support and use of VLSI 

real estate

n Problems with comparisons:
n No pair of RISC and CISC machines that are comparable in life-

cycle cost, level of technology, gate complexity, sophistication of 
compiler, operating system support, etc.

n No definitive set of test programs exists
n Difficult to separate hardware effects from complier effects
n Most comparisons done on “toy” rather than commercial products
n Most commercial devices advertised as RISC possess a mixture of 

RISC and CISC characteristics
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+ Summary

n Instruction execution characteristics
n Operations
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