Introduction to Memory Hierarchy and Cache

Joannah Nanjekye

July 18, 2024

Characteristics of Memory

Location
Internal (e.g., processor registers, cache, main
memory)
External (e.g., optical disks, magnetic
disks, tapes)
Capacity
Number of words
Number of bytes
Unit of Transfer
Word
Block
Access Method
Sequential
Direct
Random
Associative

Performance
Access time
Cycle time
Transfer rate
Physical Type
Semiconductor
Magnetic
Optical
Magneto-optical
Physical Characteristics
Volatile/nonvolatile
Erasable/nonerasable
Organization
Memory modules

Memory Performance

> Access time (latency): time it takes to perform a read or
write operation (random-access) or time it takes to position
the read-write mechanism at the desired location
(non-random-access)

» Memory cycle time: access time plus any additional time
required before a second access can commence

» Transfer rate: rate at which data can be transferred into or
out of a memory unit

where
T,, = Average time to read or write n bits
T4 = Average access time
n = Number of bits

R = Transfer rate, in bits per second (bps)

The Locality Principle
Programs tend to reuse data and instructions near those they
have used or referenced recently

> Spatial locality: items with nearby addresses tend to be
referenced close together in time

» Temporal locality: recently referenced items are likely to
be referenced in the near future

Lower Level|
To Processor Upper Level Memory
* Memory

Blk X

From Processor . - Bk Y

Memory Hierarchy

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Larger,
slower,
and
cheaper
(per byte)
storage
devices

L5:

LO:

egister CPU registers hold words retrieved
from L1 cache

L1:/ on-chip L1
cache (SRAM) } L1 cache holds cache lines retrieved

from the L2 cache memory

L2: off-chip L2
cache (SRAM) } L2 cache holds cache lines
retrieved from main memory
L3: main memory
(DRAM)
Main memory holds disk
blocks retrieved from local
disks
L4: local secondary storage

(local disks)

Local disks hold files
retrieved from disks on
remote network servers

remote secondary storage
(distributed file systems, Web servers)

Cache

A staging area for subset of data in a larger, slower device

For each level, the faster, smaller device at level n serves as

cache for larger, slower device at level n + 1

Memory hierarchies work because programs access data at
level n more often than they access data at level n + 1

Block Transfer

Word Transfer A
r*_,\

CPU Cache I E

Main Memory

Cache Structure

Line Memory
number Tag Block address
0 0
1 1
2 2 Block 0
3 (K words)
Cc-1
Block length
(K words) .
(a) Cache :
Block M-1
2"-1
Word
length

(b) Main memory

Cache Basics

» Transfer between main
memory and cache
» In units of blocks
> Applies spatial locality
» Transfer between main
memory and cache
» In units of words
» Algorithms are required
for:
»> Block placement
» Mapping function
» Block identification
> Write policies

CPU

Registers

Cache memory

Main memory

Word
transfer

Block
transfer

Cache Operation

Receive address
RA from CPU

Access main
‘memory for block
containing RA

Fetch RA word 'Allocate cache.
and deliver line for main
to CPU memory block

Load main i
‘memory block Deliver RA word
into cache line to CPU

Cache Operation

— AN
Address bus
,,,,,,, N é
\ 5 B
E]
.é '; Main
2 = memory
2,
] g g
777777 2
Data bus
Buffers N
disabled
(a) Read hit
Address bus
——————— - s o |
; =
;% 2 Main
2 g memory
2 Z.
:g &
S| D
Buffers N
enabled

(b) Read miss

Cache Addresses

» Logical/Virtual Cache: stores data using virtual

addresses
» Physical Cache: stores data using main memory physical
addresses
Logical address MMU Physical address
Processor paute
memory
(a) Logical cache
Logical address MMU Physical address
Processor Main
memory

Terminology

» Cache Hit: data appears in some block in the upper level
or cache

» Cache Hit Rate: the fraction of memory access found in
the lower level

» Cache Hit Time: time to access the lower level which
consists of RAM access time + time to determine hit/miss

» Cache Miss: data needs to be retrieve from a block in the
lower level

» Cache Miss Rate = 1 - (Hit Rate)

» Cache Miss Penalty: time to replace a block in the upper
level + time to deliver the block the processor

Cache Miss and Hit

Level

Level
k+1:

III Request
12

1 2 3

Program needs object d, which is stored
in some block b

Cache hit

I12I|

|14||3|\

= Program finds b in the cache at level k.

E Request
12

E.g., block 14

Cache miss

= b is not at level k, so level k cache
must fetch it from level k+1. E.g.,

Lo [1[[2][3]
[]|[5 [[6][7]
[8 |[o [[10][11]
[12][13][14][15]

block 12

= If level k cache is full, then some
current block must be replaced
(evicted). Which one is the “victim”?
e Placement policy: where can the new
block go? E.g., b mod 4

e Replacement policy: which block should
be evicted? E.g., LRU

Cache Miss

CACHE MISS!

Read 007,

1t

001 003

000 004
005 | 006 | 007 | 008
009 | 010 | 011 | 012
013 014 015 016
017 018 019 020
021 022 023 024

CACHE

MEMORY

uon

t 007

005 | 006 | 007 | 008
005 006
000 001 003 | 004
005 | 006 | 007 | 008
009 | 010 011 | 012
013 014 015 016
017 | 018 019 | 020
021 022 023 | 024

CACHE

007 008

MEMORY

Causes of misses

» Compulsory: first reference to a block. Would happen
even for infinite caches

» Capacity: blocks discarded and later retrieved

» Conflict: program makes repeated references to multiple
addresses from different blocks that map to the same
location in the cache

Block Placement

> Set associative: block is mapped into a set and the block
is placed anywhere in the set

» Finding a block: map block address to set and search set
(usually in parallel) to find block

> n blocks in a set: n-way associative cache
» One block per set (n=1): direct-mapped cache
» One set per cache: fully associative cache

Fully Associative Cache

Memory block 3 can go anywhere in the cache

Block 0

Block 1

Block 2

Block 3

Block 0 | 000 001 003 | 004

Block 1| 005 006 007 008

Block 2| 009 010 011 012
[Block3| 013 | 014 [015 [016

Block 4| 017 018 019 020

Block 5| 021 022 023 024

CACHE

MEMORY

2-Way Set Associative Cache

Memory block 3 can only go into cache set (3 mod 2) = 1 in the
cache

{ Block 0
SETO Block 1

SET 1{Block 2 CACHE

Block 3

Block0 [000 | 001 | 003 | 004
Block 1| 005 | 006 | 007 | 008
Block2| 009 | 010 | 011 | 012
[Biock3| 013 | 014 [015 | 016 || MEMORY
Block4| 017 | 018 | 019 | 020
Block5| 021 | 022 | 023 | 024

Direct-Mapped Cache

Memory block 5 can only go into cache block (5 mod 4) =1 in
the cache

SETO0O Block0
SET1 Block 1

SET 2 Block 2 CACH E

SET 3 Block3

Block0 | 000 | 001 | 003 | 004
Block 1| 005 | 006 | 007 | 008
Block2| 009 | 010 | o1 | 012
Block3| 013 | 014 | 015 | 016 MEMORY
Block4| 017 | 018 | 019 | 020

I Block5| 021 | 022 | 023 | 024 |}

Block Replacement

» Direct-mapped cache:

> replace the block in the location where the incoming block

has to go
» Fully Associative or Set Associative:

» Random: spreads allocation uniformly

» Least Recently Used (LRU): the block replaced is the one
that has been unused for the longest time

> First In First Out (FIFO): selects the oldest rather than the
LRU block

Writing to the Cache

» There are two approaches:

» Write-through: Immediately update lower levels of
hierarchy

» Write-back: Only update lower levels of hierarchy when an
updated block is replaced

» In all cases use a write buffer to make writes asynchronous

Writing-through

Forces all writes to update both the cache and the main

memory

It uses up bandwidth between the cache and the memory

Block 0
Block 1
Block 2
Block 3

CACHE HIT!

Write 018@ t

005 006 007 008
017 018 019 020
000 001 003 | 004
005 006 007 008
009 010 011 012
013 014 015 016
017 018 019 020
021 022 023 024

CACHE

MEMORY

1Aan

Writing-back

The memory is not updated until the cache block needs to be
replaced

Block 0
CACHE misst Do !
Block 2

Block 3

Read 024,

005 006 007 | 008
017 018 019 020

018

000 001 003 | 004 |
005 006 007 008
009 010 011 012
013 014 015 016
017 018 019 | 020
021 022 023 | 024

CACHE

MEMORY

BLOCK 1
REPL

CPU

Block 0
Block 1
Block 2
Block 3

Read 024@

20

005 006 007 | 008
021 022 023 | 024
021 022
000 001 003 | 004
005 006 007 | 008
009 010 011 012
013 014 015 | 016
017 018 019 | 020
021 022 023 | 024

CACHE

023 024

MEMORY

Performance Impact of Misses

Misses _ Miss rate X Memory accesses _ yr. o Memory accesses
Instruction Instruction count - Instruction

Average memory access time = Hit time + Miss rate X Miss penalty

MemoryStallCycles = NumberOfMisses x MissPenalty =

Mi .
=ICx Le,s x MissPenalty
Instruction

=ICx MemoryAccesses x MissRate x MissPenalty

Instruction

Resources

> https://courses.cs.washington.edu/courses/
cse378/09%wi/lectures/lecl8.pdf

» https://www.cs.utexas.edu/~mckinley/352/
lectures/16.pdf

> https:
//www.cs.hmc.edu/slides/classll_memory.ppt

https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec18.pdf
https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec18.pdf
https://www.cs.utexas.edu/~mckinley/352/lectures/16.pdf
https://www.cs.utexas.edu/~mckinley/352/lectures/16.pdf
https://www.cs.hmc.edu/slides/class11_memory.ppt
https://www.cs.hmc.edu/slides/class11_memory.ppt

