Advanced Cache Optimizations

Joannah Nanjekye

July 23, 2024

Advanced Cache Optimizations

» Reduce the hit time: Small and simple first-level caches
and way- prediction.

» Increase cache bandwidth: Pipelined caches,
multibanked caches, and nonblocking caches.

» Reduce the miss penalty: Critical word first and merging
write buffers

» Reduce the miss rate: Compiler optimizations

> Reduce the miss penalty or miss rate via parallelism:
Hardware prefetching and compiler prefetching

1. Small and Simple First-level Caches

» Smaller hardware is faster, small data cache and thus fast
clock rate
» L1 cache is smaller or increased slightly
» L2 cache is also small enough to fit on the chip with the
processor (reduced off chip penalty)

» Simpler hardware is faster

» Direct-mapped caches reduce ht time due to concurrent tag
checks and data transmission

> Lower level of associativity involve fewer cache lines hence
low power consumption

» Small and simple cache for 1st-level cache

» Use L2 cache to avoid going to memory
» Keep tags on chip and data off chip for L2

Cache Size and AMAT

AMAT increases as cache size and associativity are increased
@ 4-way m 8-way

800 -

700 -

600

500 -

400 -

300 A

Access time in microseconds

200 -

100 -

16KB 32KB 64KB 128KB 256 KB
http://www.hpl.hp.com/research/cacti/ Cache size

Cache Size and Power Consumption

Energy consumption per read increases as cache size and
associativity are increased

Energy per read in nano joules

0.5 1

0.45 -

0.4 4

0.35 -

0.3

0.25 A

0.2 4

0.15 4

0.1+

0.05 |

B 1-way @ 2-way
@ 4-way @ 8-way

16 KB 32 KB 64 KB 128 KB 256 KB
Cache size

2. Fast Hit Times Via Way Prediction

» Direct mapped caches has faster hit time but 2-way
associative cache has lower conflict misses

» We can get both benefits by predicting a block within a set
for the next access

» We keep extra bits in the cache for this optimization

» It has an 85% accuracy but CPU pipeline is harder if hit
time is variable length

3. Increasing Cache Bandwidth by Pipelining

» Pipelining is applied to cache access

» It has fast cycle time and slow hit

» An increased number of pipe line stages leads to more
penalty for mispredicted branches

» And more clock cycles between the issue of the load and
the use of the data

4. Increasing Cache Bandwidth with Non-Blocking
Caches

» Non-blocking or lockup-free cache allows continued cache
hits during miss
> Requires out-of-order execution CPU

» Hit under miss reduces effective miss penalty by working
during miss vs. ignoring CPU requests

» Hit under multiple miss or miss under miss further lowers
effective miss penalty by overlapping multiple misses

» Significantly increases complexity of cache controller since
can be many outstanding memory accesses
» Requires multiple memory banks

5. Increasing Cache Bandwidth Via Multiple Banks

» Rather than treating cache as single monolithic block,
divide into independent banks to support simultaneous
accesses

» Works best if access is spread across banks

» Sequential interleaving mapping is best

» Where block addresses are sequentially placed across
banks, i modulo n for each bank

Block Block Block Block
address Bank 0 address Bank 1 address Bank 2 address Bank 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

6. Reduce Miss Penalty: Early Restart and Critical
Word First

» Don'’t wait for full block before restarting CPU

» Critical Word First: Request missed word from memory
first, send it to CPU right away; let CPU continue while
filling rest of block

» Early Restart: As soon as requested word of block
arrives, send to CPU and continue execution

block

7. Merging Write Buffer to Reduce Miss Penalty

» Write buffer lets processor continue while waiting for write
to complete
» Merge write buffer:

» |f buffer contains modified blocks, addresses can be
checked to see if new data matches that of some write
buffer entry

> If so, new data combined with that entry

word, byte access | Cachs block transfer

Fast Slow

Proces Main
o |_> Write s

Fast buffer Slow

\
Y

Y

word, byte access

Y

Slow

8. Reducing Misses by Compiler Optimizations
Software-only Approach

» Instructions:

>
>

Reorder procedures in memory to reduce conflict misses
Profiling to look at conflicts

» Data:

>

>

>

Loop interchange: Change nesting of loops to access data
in memory

Blocking: Improve temporal locality by accessing blocks of
data repeatedly vs. going down whole columns or rows
Merging arrays: Improve spatial locality by single array of
compound elements vs. 2 arrays

Loop fusion: Combine 2 independent loops that have same
looping and some variable overlap order

Loop Interchange Example

3
4

/* Before */ ®

for (k = 0; k < 100; k = k+1) " 4sod
for (j = 0; j < 100; j = j+l) Sequence of access:
for (i = 0; i < 5000; i = i+1) X[OI[O], X[1][0], X[2][0], ...

x[i1[3] = 2 * x[i]1[]];

/* After */
for (k = 0; k < 100; k = k+1)
for (1 = 0; i < 5000; i = i+1) Sequence of access:
for (3 =0; 3 <100, j = 3+1) X[0]jO], X[OJ(], X[](2], -..
x[i][3] = 2 * x[i][3];

Sequential accesses instead of striding through memory every 100 words;
improved spatial locality

Loop Fusion

/* Before */

for (i = 0; i < N; i = i+l)
for (j =0; j <N; j=3j+1)
alil[3] = 1/b[i]l[j] * cl[il[3]:

for (i =0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
d[i] [j] = a[i]l[J] + c[i][]]~

/* After */
for (i =0; i < N; i = i+1)

for (j = 0; j < N; j = j+l)
{a[i][3] = 1/b[4][3] * e[4]1[3]);
d[i][3] = a[4]1[3] + c[i][3]/}

2 misses per access to a & c vs. one miss per access; improve
spatial locality

Blocking

/* Before */

for (i = 0; i < N; i = 1+1) |

for (J = 0; j < N; J = j+1)
{r = 0;

for (k = 0; k < N; k = k+1){
=r + y[i]l[k]*z[k][3]:};
[31]

}i
® Two inner loops:
— Read all NxN elements of z[]
— Read N elements of 1 row of y[] repeatedly
— Write N elements of 1 row of x[]
® Capacity misses a function of N & Cache Size:
— 2N34 N2 => (assuming no conflict; otherwise ...)

* |dea: compute on BxB submatrix that fits

Merging arrays

(S N N N
a »~ W N

u]
o)
I
ul
it

9. Reducing Misses by Hardware Prefetching of
Instructions & Data

» Hardware prefetch items before the processor requests
them
» Both instructions and data can be prefetched
> Either directly into the caches or into an external buffer that
can be more quickly accessed than main memory
» Can have a negative impact for unused data

Compiler-Controlled Prefetching to Reduce Miss
Penalty or Miss Rate

Compiler to insert prefetch instructions to request data before
the processor needs it

Resources

> https://www.info425.ece.mcgill.ca/
tutorials/T08-Caches.pdf

» https://passlab.github.io/CSCE513/notes/
lecturell_CacheAndPerformance.pdf

» https://passlab.github.io/CSCE513/notes/
lecturel2_CacheOptimizations.pdf

https://www.info425.ece.mcgill.ca/tutorials/T08-Caches.pdf
https://www.info425.ece.mcgill.ca/tutorials/T08-Caches.pdf
https://passlab.github.io/CSCE513/notes/lecture11_CacheAndPerformance.pdf
https://passlab.github.io/CSCE513/notes/lecture11_CacheAndPerformance.pdf
https://passlab.github.io/CSCE513/notes/lecture12_CacheOptimizations.pdf
https://passlab.github.io/CSCE513/notes/lecture12_CacheOptimizations.pdf

