
Advanced Cache Optimizations

Joannah Nanjekye

July 23, 2024



Advanced Cache Optimizations

▶ Reduce the hit time: Small and simple first-level caches
and way- prediction.

▶ Increase cache bandwidth: Pipelined caches,
multibanked caches, and nonblocking caches.

▶ Reduce the miss penalty: Critical word first and merging
write buffers

▶ Reduce the miss rate: Compiler optimizations
▶ Reduce the miss penalty or miss rate via parallelism:

Hardware prefetching and compiler prefetching



1. Small and Simple First-level Caches

▶ Smaller hardware is faster, small data cache and thus fast
clock rate
▶ L1 cache is smaller or increased slightly
▶ L2 cache is also small enough to fit on the chip with the

processor (reduced off chip penalty)
▶ Simpler hardware is faster

▶ Direct-mapped caches reduce ht time due to concurrent tag
checks and data transmission

▶ Lower level of associativity involve fewer cache lines hence
low power consumption

▶ Small and simple cache for 1st-level cache
▶ Use L2 cache to avoid going to memory
▶ Keep tags on chip and data off chip for L2



Cache Size and AMAT

AMAT increases as cache size and associativity are increased



Cache Size and Power Consumption
Energy consumption per read increases as cache size and
associativity are increased



2. Fast Hit Times Via Way Prediction

▶ Direct mapped caches has faster hit time but 2-way
associative cache has lower conflict misses

▶ We can get both benefits by predicting a block within a set
for the next access

▶ We keep extra bits in the cache for this optimization
▶ It has an 85% accuracy but CPU pipeline is harder if hit

time is variable length



3. Increasing Cache Bandwidth by Pipelining

▶ Pipelining is applied to cache access
▶ It has fast cycle time and slow hit
▶ An increased number of pipe line stages leads to more

penalty for mispredicted branches
▶ And more clock cycles between the issue of the load and

the use of the data



4. Increasing Cache Bandwidth with Non-Blocking
Caches

▶ Non-blocking or lockup-free cache allows continued cache
hits during miss
▶ Requires out-of-order execution CPU

▶ Hit under miss reduces effective miss penalty by working
during miss vs. ignoring CPU requests

▶ Hit under multiple miss or miss under miss further lowers
effective miss penalty by overlapping multiple misses
▶ Significantly increases complexity of cache controller since

can be many outstanding memory accesses
▶ Requires multiple memory banks



5. Increasing Cache Bandwidth Via Multiple Banks

▶ Rather than treating cache as single monolithic block,
divide into independent banks to support simultaneous
accesses

▶ Works best if access is spread across banks
▶ Sequential interleaving mapping is best
▶ Where block addresses are sequentially placed across

banks, i modulo n for each bank



6. Reduce Miss Penalty: Early Restart and Critical
Word First

▶ Don’t wait for full block before restarting CPU
▶ Critical Word First: Request missed word from memory

first, send it to CPU right away; let CPU continue while
filling rest of block

▶ Early Restart: As soon as requested word of block
arrives, send to CPU and continue execution



7. Merging Write Buffer to Reduce Miss Penalty

▶ Write buffer lets processor continue while waiting for write
to complete

▶ Merge write buffer:
▶ If buffer contains modified blocks, addresses can be

checked to see if new data matches that of some write
buffer entry

▶ If so, new data combined with that entry



8. Reducing Misses by Compiler Optimizations
Software-only Approach

▶ Instructions:
▶ Reorder procedures in memory to reduce conflict misses
▶ Profiling to look at conflicts

▶ Data:
▶ Loop interchange: Change nesting of loops to access data

in memory
▶ Blocking: Improve temporal locality by accessing blocks of

data repeatedly vs. going down whole columns or rows
▶ Merging arrays: Improve spatial locality by single array of

compound elements vs. 2 arrays
▶ Loop fusion: Combine 2 independent loops that have same

looping and some variable overlap order





Loop Fusion



Blocking



Merging arrays



9. Reducing Misses by Hardware Prefetching of
Instructions & Data

▶ Hardware prefetch items before the processor requests
them
▶ Both instructions and data can be prefetched
▶ Either directly into the caches or into an external buffer that

can be more quickly accessed than main memory
▶ Can have a negative impact for unused data



Compiler-Controlled Prefetching to Reduce Miss
Penalty or Miss Rate

Compiler to insert prefetch instructions to request data before
the processor needs it



Resources

▶ https://www.info425.ece.mcgill.ca/
tutorials/T08-Caches.pdf

▶ https://passlab.github.io/CSCE513/notes/
lecture11_CacheAndPerformance.pdf

▶ https://passlab.github.io/CSCE513/notes/
lecture12_CacheOptimizations.pdf

https://www.info425.ece.mcgill.ca/tutorials/T08-Caches.pdf
https://www.info425.ece.mcgill.ca/tutorials/T08-Caches.pdf
https://passlab.github.io/CSCE513/notes/lecture11_CacheAndPerformance.pdf
https://passlab.github.io/CSCE513/notes/lecture11_CacheAndPerformance.pdf
https://passlab.github.io/CSCE513/notes/lecture12_CacheOptimizations.pdf
https://passlab.github.io/CSCE513/notes/lecture12_CacheOptimizations.pdf

